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Figure 1: Comparison of incompressible Kelvinlet deformations generated using three vertical displacements with the same brush scale.
Prior tri-scale Kelvinlet brush using multi-scale extrapolation (left) is inherently smooth, whereas our new Bi-Laplacian Kelvinlet solution (middle)
can be blended with its Cusp Bi-Laplacian Kelvinlet counterpart (right) for increased control over brush sharpness and locality. ©Disney/Pixar

ABSTRACT
In this work, we present an extension of the regularized Kelvin-
let technique suited to non-smooth, cusp-like edits. Our approach
is based on a novel multi-scale convolution scheme that layers
Kelvinlet deformations into a finite but spiky solution, thus offering
physically based volume sculpting with sharp falloff profiles. We
also show that the Laplacian operator provides a simple and effec-
tive way to achieve elastic displacements with fast far-field decay,
thereby avoiding the need for multi-scale extrapolation. Finally,
we combine the multi-scale convolution and Laplacian machinery
to produce Sharp Kelvinlets, a new family of analytic fundamental
solutions of linear elasticity with control over both the locality and
the spikiness of the brush profile. Closed-form expressions and
reference implementation are also provided.
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1 INTRODUCTION
Regularized Kelvinlets [de Goes and James 2017] provide analyt-
ical expressions for volume deformations based on regularized
fundamental solutions of linear elastostatics in an infinite elastic
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medium. Since their development and deployment in Pixar’s short
Lou [Tieryas et al. 2017], these tools have been widely adopted both
as a sculpting brush and as a rigging deformer. Figures 2 and 3
showcase some results produced using Kelvinlets in Pixar’s feature
film Incredibles 2 [Hamou-Lhadj et al. 2018] (see also the supplemen-
tal video). Despite the interactive physics-based response, Kelvinlet
solutions offer no control on the sharpness of the brush profile,
thus limiting cusped edits such as creases and spikes.

In this paper, we introduce an extended and more general collec-
tion of Kelvinlet deformations that provide fine control over both
the sharpness and the spatial locality of the brush falloff. First, we
derive a new solution of linear elastostatics that presents a cusp-
like profile, which is achieved by convolving the original Kelvinlet
displacements across various regularization scales using a kernel
function and subject to finiteness constraints. We then show that
elastic deformations with fast far-field decay can be computed by
taking Laplacians of the Kelvinlet solutions. This approach leads
to simpler closed-form expressions that have increasingly rapid
decay upon repeated Laplacian differentiation. By combining these
two techniques, we obtain physically based volume sculpting with
cusped and localized falloffs, which we refer to as Sharp Kelvinlets.

2 RELATEDWORK
Spiky falloff profiles are commonly used in geometric sculpting
systems to provide precise editing of non-smooth details such as
creases or cusps. However, similar to other non-physical modeling
brushes, these geometric deformers do not produce deformations
consistent with physical elasticity and thus offer limited compress-
ibility and smoothness control. Sculpting brushes designed to pro-
duce incompressible flows [Angelidis et al. 2006, 2004; von Funck
et al. 2006] are also insufficient to support cusp-like solutions. Simi-
larly, the formulation of regularized Kelvinlets [de Goes and James
2017] involves only smooth deformations contingent to a regular-
ization density function. In contrast, we present in this work spiky
static solutions of linear elasticity.

Finite sharp solutions are rare in elastostatics, since distributed
loads tend to produce smooth displacement profiles. Exceptions
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Figure 2: Kelvinlet deformations in “Jack-Jack vs Raccoon” fight sequence: (Top) Input animation; (Middle) animation shot polishing
was done using Kelvinlet sculpting brushes to achieve the desired deformations of Jack-Jack; (Bottom) final render. ©Disney/Pixar

occur in contact mechanics for nonsmooth indentors, e.g., the ana-
lytical solution due to a conical indentor contacting an elastic half-
space has been derived for punch tools [Sneddon 1965]. In other
fields, cusped solutions occur naturally for nonlinear dynamical
systems described by specific partial differential equations. Exam-
ples include solutions for non-linear wave equations [Qiao and
Qiao 2005], spiky features in pattern formation [Iron et al. 2001], or
magnon solutions in string theory [Ishizeki and Kruczenski 2007],
where their dynamic stability is of interest. We instead target the
design of sharp falloffs associated with elastic deformations caused
by static load. To our knowledge, our work is the first to produce
finite and regularized cusp-like solutions to elastostatic equations.

Our approach takes inspiration from scale-space filtering tech-
niques pioneered byWitkin [1983], which involvemulti-scale Gauss-
ian convolutions of signals to support scale-specific signal analysis,
e.g., of images in computer vision [Sporring et al. 2013]. However,
we use multi-scale convolution not for the analysis of arbitrary sig-
nals, but rather for the analytical derivation of elasticity solutions
with specific spatial properties. A discrete version of multi-scale
convolutionwas previously considered by de Goes and James [2017],
which combined a finite number of Kelvinlet solutions with differ-
ent scales to achieve faster far-field decay. Alternatively, we rely
on Laplacian differentiation of Kelvinlets to obtain fast decay, and
introduce continuous multi-scale convolution to obtain generalized
closed-form elastic deformations with spiky profiles.

3 PRIMER ON REGULARIZED KELVINLETS
We begin by briefly summarizing the notation and formulation
of regularized Kelvinlets [de Goes and James 2017]. We denote a
point in 3D by r , its norm by r = ∥r ∥, and its regularized norm by
rε =

√
r2+ε2, where ε >0 is a radial regularization scale. We define a

displacement field by u : R3→R3 and its corresponding body load
by b : R3→R3. A displacement u represents a solution to linear
elastostatics in response to a loadb if and only if the Navier-Cauchy
equation Nu = b is verified [Slaughter 2002]. Here, we use N as

short for the (linear) Navier’s operator:

Nu = µ∆u +
µ

(1 − 2ν )
∇(∇ · u), (1)

which includes the elastic shear modulus µ >0 indicating the ma-
terial stiffness, and the Poisson ratio ν ∈ [0, 1/2) controlling the
volume compressibility. In the special case of ν =1/2, the displace-
ment is hard constrained to be divergence-free (i.e., ∇ · u=0), thus
leading to an incompressible deformation.

Regularized Kelvinlets are solutions to linear elastostatics as-
sociated with a smoothed point load of the form b(r ) = f ρε (r ),
where f is a force vector and ρε is a normalized density function.
In [de Goes and James 2017], this density was set to the smooth
radially symmetric function ρε (r )= (15ε4)/(8πr7ε ). A regularized
Kelvinlet can be encoded by a 3×3 matrix Kε (r ) that maps a force
vector f to a displacement uε at point r . This solution can further
be expanded into a canonical form:

uε (r ) = Kε (r )f =
[
Aε (r ) I + Bε (r )rr

⊤
]
f , (2)

Figure 3: Rigmuscle bulgeswere achieved using Kelvinlet deform-
ers, here shown for Helen from Incredibles 2. ©Disney/Pixar
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with the radial scalar coefficients given analytically by

Aε (r ) =
(a−b)

rε
+
a

2
ε2

r3ε
and Bε (r ) =

b

r3ε
, (3)

where a=1/(4πµ) and b=a/[4(1−ν )].
Several extensions of the regularized Kelvinlet formulation were

considered in [de Goes and James 2017, 2018], including a 2D solu-
tion, generalization to affine transformations, and an elastodynamic
analogue. In particular, a multi-scale extrapolation scheme was pro-
posed to control the displacement falloff profile. By combining a
discrete number of Kelvinlets with varying scales, the far-field de-
cay evaluated as r→∞ can be adjusted from O(1/r ) to high-order
rates. For instance, the difference between two Kelvinlets reduces
the brush decay to O(1/r3). In the next sections, we revisit the spa-
tial locality of Kelvinlet solutions using differentiation and exploit
multi-scale superposition to generate spiky deformations.

4 FALLOFF PROFILES
Falloff profiles are commonly used to define the influence of radially
symmetric deformers (Figure 4), and typically control the amount
of sharpness versus smoothness nearby the brush tip, as well as the
decay rate at larger distances. For example, if we define a falloff pro-
file as a function P(r ) ≥ 0 based on the radial distance r ≥ 0, we can
then define a radially symmetric displacement field u(r ) = P(r )u0.
This notion of sculpting profile does not immediately generalize
to physics-based elastic deformers, such as regularized Kelvinlets,
since the displacement field resulting from a (regularized) force
load lacks radial symmetry for physical reasons, e.g., violation of
compressibility constraints.

To analyze the falloff profile of Kelvinlet solutions, we find it
useful to use a simplified deformation problem. We consider the x-
component of the displacement fielduε (r ) resulting from a (regular-
ized) unit load in the+x direction applied at the origin. Since Kelvin-
lets are accompained by the matrixKε (r ), this specialized deforma-
tion problem corresponds to uε ([x , 0, 0]) = Kε ([x , 0, 0])[1, 0, 0]⊤,
and therefore its non-trivial solution reduces to the matrix entry
Kxx
ε ([x , 0, 0]). We thus define the Kelvinlet profile function as:

P(x) = Kxx
ε ([x , 0, 0]) = Aε (|x |) + Bε (|x |)x

2. (4)

Substituting (3) into (4), we obtain:

P(x) =
a

xε
+

aε2

2x3ε
−
bε2

x3ε
, (5)

which is symmetric in x and has a clear O(1/x) falloff as |x | → ∞.

5 CUSPED KELVINLETS
In this section, we show how to construct a modified Kelvinlet solu-
tion with a spiky falloff, which we name cusped Kelvinlet. We define
a cusp as a non-zero displacement with discontinuous derivative
about the brush center. Our approach consists of designing a falloff
profile that approximates a linear function P(x)≈P(0)(1 − |d x |) as
x→0, where d is the desired slope parameter. Unfortunately, exist-
ing regularized Kelvinlets and multi-scale variants are inherently
smooth and have zero gradients at the origin. This is observed by
expanding the Kelvinlet profile function (5) around zero:

P(x) ≈
3a − 2b

2ε
+
6b − 5a
4ε3

x2 +O(x4), (6)
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Figure 4: Examples of radially symmetric falloff profiles for
a typical displacement brush of the form u(r )=P(r )u0. None of these
correspond to physical elasticity solutions, but they exhibit the need
for artistic control of the smoothness amount, since the dashed profiles
present a cusp due to the non-zero radial derivative at r =0.

which exhibits a smooth parabolic shape. An exception is the classi-
cal Kelvin’s solution [Kelvin 1848] (corresponding touε with ε = 0),
which is singular and returns infinite at the brush tip. Next, we de-
scribe how to combine Kelvinlets of multiple regularization scales
in order to modulate the falloff profile.

5.1 Multi-scale Convolutions
We propose to introduce cusps by convolving the Kelvinlet solution
uε against a multi-scale distribution η(ε ; ε0) of radial scale values ε .
This distribution η is chosen by ensuring a series of properties:

(1) η must be nonnegative and normalized such that∫ ∞

0
η(ε ; ε0) dε = 1; (7)
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Figure 5: Comparison of Kelvinlet falloff profiles P(x) con-
volved with different scale density functions η(ε) (shown inset): (Or-
ange) the smooth Kelvinlet solution corresponds to a multi-scale con-
volution with a single-scale Dirac density function, e.g., here ε=1 so
η(ε)=δ (ε−1); (Blue) Kelvin’s classical singular solution (ε =0) cor-
responds to η(ε)=δ (ε); (Green) the Cusped Kelvinlet is a multi-scale
convolution with a piecewise linear η function. Note that they all have
a similar O(1/x) far-field decay, but differ near x=0.
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(2) η(0; ε0) = 0 so that the singular Kelvinlet is eliminated and
the resulting displacement is finite at the origin;

(3) η(ε ; ε0) = 0 for every ε ≥ ε0, so that the largest radial scale is
well defined;

(4) the resulting falloff profile P(x) must be monotonic, non-
negative, and discontinuous at the origin.

Given a distribution η verifying the properties above, we then
define the ε-convolved Kelvinlet matrix as:∫ ∞

0
Kε (r ) η(ε ; ε0) dε . (8)

Since it is a linear superposition of solutions of the Navier-Cauchy
equation, this convolved Kelvinlet is also a solution of linear elasto-
statics, associated with a convolution of regularized force loads.

Although various basis function are feasible, we observed in
our derivation that is sufficient to model η(ε ; ε0) using a monomial
distribution of degree n:

η(ε ; ε0) ≡ η(ε ; ε0,n) =


(n + 1)
εn+10

εn ε ≤ ε0

0 otherwise.
(9)

We are now ready to compute cusped solutions by evaluating the
ε-convolved Kelvinlet matrix analytically.

5.2 Analytical Solution
The integral in (8) with monomial distributions can be computed us-
ing symbolic packages (e.g., Mathematica), but yields a long expres-
sion with many hypergeometric functions and complex dependence
on n. Instead, we considered series expansions of the profile func-
tion P(x)≡Kxx

ε (x , 0, 0) about x = 0+ to determine the monomial
degree n that produces a cusp. We found that a cusped deformation
satisfying the required conditions listed in §5.1 can be obtained
with n=1. Using the canonical form in (2), the cusped Kelvinlet is

Cusped KelvinletRegularized Kelvinlet
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Figure 6: 3D Cusped Kelvinlet provides additional sharpness (de-
rivative control) compared to the traditional regularized Kelvinlet
solution: (Top) compressible (ν = 0) and (Bottom) incompressible
(ν =1/2) materials. All results use the same brush scale, ε , and vertical
displacement. ©Disney/Pixar

then expressed in closed-form with the radial coefficients:
Aε (r ) =

a

ε2

(
r2

rε
+ 3rε − 4r

)
+
2b
ε2

(r − rε )

Bε (r ) =
2b
ε2

(
1
r
−

1
rε

)
.

(10)

The corresponding falloff profile is

P(x) =
ε2(3a − 2b) + 4x2(a − b)

ε2xε
−
4(a − b)

ε2
|x |. (11)

Expanding the profile near zero (i.e., |x | ≪ ε) yields

P(x) ≈
3a − 2b

ε
−
4(a − b)

ε2
|x | +

(5a − 6b)
2ε3

x2 +O(x4), (12)

which has a clear cusp-like structure due to the |x | term for every
material configuration so that a,b. We note that the special case of
a=b requires a non-physical Poisson’s ratio ν = 3/4 and therefore
can be disregarded. Observe that the falloff profile produced by a
cusped Kelvinlet still exhibits an O(1/r ) far-field decay:

P(x) ≈
a

x
−
bε2

2x3
+O(1/x5), (13)

thusmatching the regularized Kelvinlet solution as x→∞ (Figure 5).
One can further create localized cusped solutions by combining
cusped Kelvinlets of multiple scales ε via multi-scale extrapolation,
as previously described in [de Goes and James 2017]. However,
there is a more effective way to obtain cusped solutions with fast
decay rates for which multi-scale extrapolation can be avoided
entirely. To this end, we must first introduce Laplacian Kelvinlets
in the following section.

6 LAPLACIAN LOCALIZATION
Prior work on Kelvinlets relied on multi-scale extrapolation to pro-
duce faster decay by linearly combining regularized solutions of
different scales ε so that the leading 1/r terms in a far-field expan-
sion were annihiliated. It turns out that fast decay can be achieved
analytically, without combining multiple solutions, by repeated ap-
plication of the Laplacian operator. Since Navier’s operator N com-
mutes with the Laplacian ∆, it follows that Laplacians of Kelvinlets
(and their derivatives) are also solutions to Navier-Cauchy equation,
with suitably differentiated force distributions, i.e.:

N ∆m uε (r ) = ∆m N uε (r ) = ∆m bε (r ), m = 0, 1, 2, ... (14)

We further notice that these differentiated Kelvinlets have faster far-
field decay, while also retaining a similar volume response. Plots of
Laplacian Kelvinlets are shown in Figure 7, and the corresponding
force densities ρε (r ) are given in Figure 8.

We therefore compute the Laplacian of the regularized Kelvinlet
and obtain a new solution referred to as Laplacian Kelvinlet, which
can be expressed analytically using the canonical coefficients

Aε (r ) =
15aε4 − 2br2ε (5ε2 + 2r2)

2r7ε
, Bε (r ) =

3b
(
7ε2 + 2r2

)
r7ε

. (15)

This solution decays as O(1/r3) and is the analogue of the bi-scale
Kelvinlet [de Goes and James 2017].
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Figure 7: Laplacian Kelvinlets provide compact analytical ex-
pressions for elastic deformations with fast decay. This plot exhibits
solutions normalized to one at the origin with a=1, b=1/2, and ε=1.

Similarly, we can derive the Bi-Laplacian Kelvinlet, which yields
another compact expression for the radial coefficients

Aε (r ) =
105ε4

(
3a

(
ε2 − 2r2

)
− 2br2ε

)
2r11ε

, Bε (r ) =
945bε4

r11ε
. (16)

Although this solution is the analogue of the O(1/r5) tri-scale
Kelvinlet [de Goes and James 2017], it decays surprisingly far faster
as O(1/r9), which was previously only achievable with a costly
five-scale extrapolation scheme.

We finally point out that higher-order Laplacian Kelvinlets are
possible, but seem unnecessary given the extremely fast decay of
the Bi-Laplacian Kelvinlets, and undesirable due to the possible
introduction of numerical issues associated with cancellation and
division by high-orders powers of rε . Affine Laplacian Kelvinlets
are also straightforward to derive following the gradient-based
construction in [de Goes and James 2017]. However, since gradients
of cusped solutions are discontinuous at the origin, they are not
desirable in practice. Therefore, we limit our Laplacian localized
and cusped solutions only for grab-like brush interactions. Lastly,
we present the 2D version of these solutions in Appendix A.

7 SHARP KELVINLETS
Equipped with multi-scale convolutation and the Laplacian ma-
chinery, we can now report the complete family of cusped elastic
deformations with varying degrees of localization, which we refer
to as Sharp Kelvinlets. To combine the cusped formulation with a
specific Laplacian Kelvinlet, we repeated the steps described in §5.2
and manually searched for the monominal degree n of the scale
distribution η(ε ; ε0,n) that leads to a cusped profile function. In
practice, we noticed that the results followed a simple pattern that
increases n by one for every Laplacian differentiation.

The cusped Laplacian Kelvinlet, for instance, can be generated by
integrating ∆Kε against a monomial distribution η(ε ; ε0,n) with
n = 3. The resulting closed-form solution has a fast O(1/r3) falloff

��������
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Figure 8: Force densities ρε (r ) of Laplacian Kelvinlets exhibit
negative lobes due to Laplacian differentiation, which act as “shields”
that localize the displacement response. In this plot, the number of
applied Laplacian operators equals the number of roots of the density.
The densities are also normalized to one at the origin.

produced by the following radial coefficients:

Aε (r )=
2

ε4r5ε

[
(15a − 10b)ε6 + (90a − 88b)ε4r2

+120ε2r4(a − b) + 48(a − b)r (r5 − r5ε )
]

Bε (r )=
−12b
ε4rr5ε

[
2ε2r2 (4rε − 5r ) + 4r4 (rε − r )

+ε4(4rε − 7r )
]
.

(17)

Similarly, the cusped Bi-Laplacian Kelvinlet is found for n = 5
and has a super-fastO(1/r9) decay rate as r → ∞, making it highly
suitable for detailed sculpting and editing work (Figure 9).

The raw expression for its radial coefficients is quite long and
requires care to evaluate. Instead, we rearrange these analytical
expressions in a form more convenient for computation. To do
so, we rescale r to be in units of ε by setting r = εR, and then
we carefully factored the Kelvinlet solution into subexpressions in
terms of R, yielding:

Aε (r ) =
9

ε5R101

{
a
[
− 512R R101 +

(
((((512R2 + 2304)R2

+ 4032)R2 + 3360)R2 + 1260)R2 + 105
)
R1

]
+2b

[
128R R101 − R31

(
35 + R2(280

+ R2(560 + R2(448 + 128R2)))
) ]}

Bε (r ) =
18b

ε7 R R91

[
128R91 − R (R2(R2(R2(128R2 + 576)

+ 1008) + 840) + 315)
]
,

(18)

where R1 ≡
√
R2 + 1. We also observed that the a and 2b coefficients

(in square brackets) are a source of catastrophic cancellation effects
for large R. In practice, this cancellation implies that the solution
is numerically zero starting at R = 5 (Figure 10) and it can be
problematic in single-precision arithmetics. Therefore, we evaluate
these expressions only for R < 5, otherwise we return zero.
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Figure 9: Bi-Laplacian Kelvinlet and its cusped solution
shown for theKxx

ε component with ε=1. Both exhibit a rapidO(1/r9)
falloff, but with different sharpness near the brush origin. We can also
blend these two solutions linearly for fine falloff control.

8 RESULTS
We implemented Sharp Kelvinlets as a C++ plugin to the sculpting
package of Pixar animation system (Presto), to Maya, and Houdini.
The deformation is computed by evaluating the Kelvinlet displace-
ment for every selected point in parallel via Intel TBB. The user
can also edit the falloff sharpness and locality interactively, in ad-
dition to the brush scale ε . Similar to [de Goes and James 2017],
we observed performances averaging near 60 frames per second
on a 2.3 GHz Intel Xeon E5-2699 with 18 cores for scenes with
100k points. In the suplemental material, we provide a reference
C++ implementation that includes Sharp Kelvinlets as well as affine
[de Goes and James 2017] and dynamic Kelvinlets [de Goes and
James 2018]. Finally, results for 2D Laplacian and Cusp Kelvinlets
are listed in Appendix A.

Figure 11 showcases the falloff control offered by Sharp Kelvin-
lets. Figure 1 compares the deformation generated by three Kelvin-
lets applied simultaneously on a tentacle model with various levels
of spikyness and locality. In Figure 2, we include a few frames of an
animation sequence from Incredibles 2 sculpted using a combination
Kelvinlet brushes. Our tool was also employed as flex rig deformers,
which are illustrated in Figure 3 and in the supplemental video.

It is worth noticing that Sharp Kelvinlets exhibit the same limita-
tions from previous Kelvinlet techniques. In particular, surfaces de-
formed using Kelvinlets move as if embedded in an infinite medium.
As a result, points that are spatially close but geodesically apart
will move together. To address these issues, our implementation
also supports surface-based masking, which rescales the Kelvinlet
displacements in a post-processing step.

9 CONCLUSION
In this work, we conveyed new extensions of the regularized Kelvin-
lets solutions for volume sculpting based on elasticity. Motivated
by earliest feedback received when we deployed Kelvinlets at Pixar,
we introduced a family of Sharp Kelvinlet solutions for analytical
and efficient evaluation of localized and cusped Kelvinlet brushes
suited to non-smooth, spiky edits. Laplacian localization was also

Figure 10: Catastrophic cancellation can result when evaluating
the cusped Bi-Laplacian Kelvinlet (shown for theKxx

ε component with
ε = 1) for large r values, which can limit precision in finite precision
arithmetic (see oscillations in the right side of the plot). Fortunately,
it does not need to be evaluated for large values (e.g., beyond r = 10ε)
since it rapidly approaches zero due to its rapid O(1/r9) falloff.

utilized to construct Kelvinlet solutions with increasingly fast far-
field decay. Finally, we note that artists can blend between smooth
and cusped solutions interactively, thus achieving a variety of brush
profiles for sculpting or other production applications.
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Figure 11: Comparison of all 3D Kelvinlet brushes: Colors indicate the displacement magnitude; ν = 1/2, the same ε and the same brush
displacement of (0,1,0) for all examples. The blue-red discontinuity represents magnitude of 1/2.

A SHARP KELVINLETS IN 2D
We now report the 2D Laplacian Kelvinlet and Cusp solutions,
following a process analogous to the 3D results shown earlier in
the paper. All 2D solutions are of the standard form

K(r) = A(r) I + B(r) rrt , (19)

for which we now report the resultingA(r) and B(r) functions; here
r = [x ,y], r = ∥r∥, and rε =

√
r2 + ε2.

A.1 2D Laplacian Kelvinlets
The 2D Laplacian Kelvinlets results are reported below, and plotted
in Figure 12. The 2D regularized Kelvinlet is known from [de Goes

and James 2017]:

Aε (r) = 2 (b−a) ln(rε ) + a
ε2

r2ε
, Bε (r) =

2b
r2ε

(20)

and can be derived by suitably integrating the 3D Kelvinlet. It has
a nonzero far-field displacement due to the O(log(rε )) decay.

2D Laplacian Kelvinlet: The negative Laplacian of (20) yields

Aε (r) =
4
(
2aε4 − b

(
2ε4 + 3ε2r2 + r4

) )
r6ε

Bε (r) =
8b

(
3ε2 + r2

)
r6ε

(21)
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Figure 12: 2D Laplacian Kelvinlet Profiles (P(x) = Kxx (x , 0))
also exhibit fast decay with repeated Laplacian differentiation. (The
solutions are normalized to 1 at the origin; a = 1, b = 1/2, ε = 1.)

which has a faster O(1/r2) decay rate.
2D Bi-Laplacian Kelvinlet: This solution is

Aε (r) =
96ε4

(
a

(
ε2 − 3r2

)
− b

(
ε2 + r2

) )
r10ε

,

Bε (r) =
768bε4

r10ε

(22)

which has a much faster far-field decay rate of O(1/r8), analogous
to the 3D Bi-Laplacian Kelvinlet’s steep decay.

A.2 2D Sharp Kelvinlets
Similar to the 3D case, the multiscale convolution with 2D (Lapla-
cian) Kelvinlets produces cusp solutions, but with n shifted down
by 1. All 2D cusp Kelvinlet solutions are expressible in 2D standard
form (19), for which we now report the resulting A(r) and B(r)
functions. Notice the presence of log and arctan functions.

2D Cusped Kelvinlet is obtained for n = 0:

Aε (r) = 2(b − a) log rε + (2b − 3a)
(
r

ε
tan−1

( ε
r

)
− 1

)
Bε (r) =

2b tan−1
( ε
r

)
εr

(23)

Similar to the 2D Kelvinlet, the 2D Cusped Kelvinlet is not localized
due to the log rε far-field form of its profile

P(x) ≈ 2(b + (b − a) logx) −
bε2

3x2
+O

(
1
x4

)
, x → ∞. (24)

2D Cusped Laplacian Kelvinlet is obtained for n = 2:

Aε (r)=
3
ε3

(
ε3(5a−2b)
r2ε

+5(3a−2b)(r tan−1(ε/r) − ε)

+
2aε5

r4ε

)
Bε (r)=

6b
ε3

(
7ε3 + 5εr2

r4ε
−
5 tan−1

( ε
r

)
r

) (25)

Its profile’s far-field form is P(x) ≈ −4b/x 2.

2D Cusped Bi-Laplacian Kelvinlet requires n = 4:

Aε (r) =
5

ε5r8ε

(
96(a − b)ε9 + r(3a − 2b)

(
279ε7r

+511ε5r3 + 385ε3r5 + 105εr7 − 105r8ε tan
−1(ε/r)

))
Bε (r) =

10b
ε5

(
105 tan−1(ε/r)

r

−
ε
(
279ε6 + 511ε4r2 + 385ε2r4 + 105r6

)
r8ε

)
(26)

This cusp solution exhibits an extremely rapid 1/r8 far-field decay,
making it ideal for detailed cusp edits. Its profile’s far-field form is
P(x) ≈ 160

3 (7b − 3a) ε
4

x 8 .
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