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Figure 1:An example of our statistical acceleration technique on a production shot: Our technique accelerates rendering by quickly computing
noisy, low sample indirect illumination and using the variation over time to statistically denoise it. The left image shows a zoomed view of
the shot using the noisy, unfiltered indirect illumination while the middle image uses the statistically filtered indirect illumination (contrast
has been enhanced slightly to better illustrate the noise in print). The rightmost image shows the final comped frame using the statistically
filtered indirect illumination. See the video for the full animation sequence.

Abstract

Global illumination provides important visual cues to an animation,
however its computational expense limits its use in practice. In this
paper, we present an easy to implement technique for accelerating
the computation of indirect illumination for an animated sequence
using stochastic ray tracing. We begin by computing a quick but
noisy solution using a small number of sample rays at each sam-
ple location. The variation of these noisy solutions over time is
then used to create a smooth basis. Finally, the noisy solutions are
projected onto the smooth basis to produce the final solution. The
resulting animation has greatly reduced spatial and temporal noise,
and a computational cost roughly equivalent to the noisy, low sam-
ple computation.
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1 Introduction

Global illumination effects provide important visual cues and have
proved to be extremely important for many fields including com-
puter animation, visual effects and computer games. However, sim-

ulating global illumination is a complex and computationally ex-
pensive task.

One of the most general techniques for computing global illumina-
tion is to use Monte Carlo integration (using stochastic ray tracing -
or one of its variants) to solve theRending Equation[Kajiya 1986]:

Lr (x,ωr ) = Le(x,ωr )+
∫

Ω
fr (ωr ,x,ωi) Li(x,ωi) cosθ δωi (1)

Solving this equation is computationally expensive as it requires a
large number of sample rays to reduce the noise to an acceptable
level. This expense is exacerbated when rendering animated global
illumination since the number of sample rays must be increased to
capture the animated illumination as well as to reduce the tempo-
ral noise. In fact, typical errors and noise levels that are acceptable
in static global illumination images often produce unpleasant flick-
ering, shimmering and popping in animations when they are not
coherent in time.

Since global illumination is so important, it should come as no sur-
prise that it has attracted significant attention from researchers. We
will only list the most relevant works and refer the reader to one of
the many excellent survey papers (such as [Damez et al. 2003]) for
a more in depth review.

Most techniques for computing global illumination attempt to re-
duce both the computational overhead as well as the noise by inter-
polating from a sparse (either in space, time, or both) set of samples.
Wardet al.’s irradiance cachingtechnique [Ward et al. 1988; Ward
and Heckbert 1992], for instance, creates a cache containing all of
the irradiance samples computed while integrating the global illu-
mination for a frame. When a new irradiance sample is needed, the
density of nearby samples in the cache is used to determine if the
irradiance can be interpolated from the cache samples or must be
computed from scratch. This interpolation both reduces the number



of times that the expensive illumination integral must be computed
as well as reduces the noise.Irradiance Filtering[Kontkanen et al.
2004], on the other hand, computes a sparse set of low sample irra-
diance values and then uses a spatially varying filter to reduce the
noise and smooth the results.

The predominant technique for computing global illumination in
both academia and industry is the photon mapping technique of
Jensen [Jensen 1996]. This method is efficient, even in complex
environments, and allows for the simulation of all possible light
paths. In the first pass, photons are emitted from the light sources
and traced through the scene. As the photons hit surfaces, they are
stored in a k-d tree, thus creating the photon map. In the second
pass, the image is rendered using a Monte Carlo ray tracer in con-
junction with the photon map. The photon map is sampled using
a nearest neighbor density estimation technique when fast approx-
imate radiance computations are required by the ray tracer. Us-
ing this technique, the noise and number of radiance samples is
greatly reduced, resulting in impressive images and computational
efficiency. Extensions [Cammarano and Jensen 2002] also allow
time varying photon maps to be used and correctly handle motion
blur.

It should be noted that the computation times for photon mapping
are often dominated by a stochastic ray tracing process known as
final gathering. Our technique is complimentary to photon mapping
and can be used to accelerate final gathering. In fact, all of the
indirect illumination examples in this paper were computed using
final gathering from a photon map-like data structure.

Nimeroff et al.[Nimeroff et al. 1996] uses a range-image based
framework in which the indirect illumination is sampled sparsely
in time and interpolated. The keyframes at which the indirect il-
lumination is computed are found by recursively subdividing the
timeline. The indirect illumination is computed at the key time
steps and the solutions for consecutive keyframes are compared. If
a large percentage of the vertices contain differences greater than a
threshold, the time sequence is subdivided and the process repeats.
The temporal interpolation of the indirect illumination is possible
due to the observation that time, like space, often has slow, smooth
indirect illumination changes. Interpolating through time takes ad-
vantage of this smoothness both reducing the computation required
as well as avoiding flicking and popping effects. However, the ac-
curacy of the solution varies with the distance to the keyframes and
improper keyframe placement can cause global illumination effects
to be missed.

Myskowski et al.[Volevich et al. 2000; Myszkowski et al. 1999;
Myszkowski et al. 2001], on the other hand, sparsely samples the
indirect lighting on every frame - reducing the chances of missing
an illumination event. The samples from preceding and following
frames are used to reduce the noise to an acceptable level. The num-
ber of frames to collect these samples from is controlled by statistics
such as the photon density on each mesh element. Again, reusing
these samples over several frames greatly improves the computa-
tion efficiency as well as reduces the temporal aliasing.

Like previous work, our technique accelerates the indirect illumi-
nation computations using the correlation of the illumination sam-
ples to reduce both the number of samples required as well as the
noise in the resulting solution. Unlike previous work however, we
achieve this speed up by computing the indirect illumination for the
entire sequence using a small number of sample rays when com-
puting the integral in equation 1. This produces a noisy indirect
illumination sequence. This sequence is then statistically analyzed
to produce a smooth indirect illumination basis which captures the
structure in the sequence. Finally, the noisy sequence is projected
onto the smooth basis producing a smooth indirect illumination se-

quence whose computational cost is roughly the same as the initial
noisy computation. The following sections will explain these steps
in more detail.

2 Statistical Filtering

In this section, we describe our technique for rendering an ani-
mation with global illumination. We will focus on computing the
indirect illumination as its cost dominates most scenes containing
global illumination.

Let us for the moment assume that the camera and all objects in the
scene are not moving - therefore, the only changes to the illumi-
nation are a result of lighting changes or surface material changes.
While this seems like a harsh restriction, it will allow us to describe
the technique working solely in image space - and it is not a limita-
tion of our algorithm. This restriction to static cameras and objects
will be removed in section 3 and is used here only for ease of expo-
sition.

2.1 Overview

We wish to compute an animated sequence of indirect illumina-
tion images quickly. One simple way of doing this is to reduce the
number of ray samples used to integrate equation 1. However, as
mentioned previously, this will produce noisy images that flicker
when played in an animation. A key observation is that although
the individual pixels are noisy, correlation in the temporal domain
still provides us with important information. For instance, if the
illumination were static over the animation, we could simply aver-
age the pixel value over time to get a more accurate value for the
pixel. This is similar to the technique of negative stacking used by
astronomers. By taking 2 or more original negatives of the same
object and stacking them, the signal in the resulting image is in-
creased while the noise, being independent, actually cancels out
and is reduced.

A slightly more complex case would be when the lighting scales
linearly over time. Here we could simply find the linear lighting
animation that best fits the noisy images and use this as our final
animation. This suggests a more general approach. If we have a
basis for the illumination in the animation, we can simply project
the noisy animation onto this basis to produce our final, smooth
animation. The next step is to choose such a basis.

2.2 Choosing the basis

Given our noisy image sequenceÎ(x, t), wherex is the pixel loca-
tion andt is time, we useprinciple component analysis(PCA) to
represent the noisy animation sequence:

Î(x, t) =
N

∑
i=1

wi(t) Bi(x) (2)

whereN is the number of images in the noisy sequence, andBi(x)
are the basis functions computed by PCA. An example of the PCA
basis functions (or modes) for a noisy image sequence is shown
in figure 2(middle). Notice how the noise in the basis images in-
creases as we increase the basis number. This is due to the fact
that in a PCA constructed basis, the low numbered functions cap-
ture the slowly varying components of the signal. Since the indirect
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Figure 2: Overview of our global illumination acceleration algorithm: (top) The indirect illumination for each frame of the animation is
computed using a small number of ray samples (32) resulting in a sequence of noisy indirect illumination images. (middle) A basis is
computed from this noisy sequence using principle component analysis. Notice how the higher numbered basis functions contain more of the
sequence’s noise. A truncation of the basis is computed to remove the higher numbered basis functions that reconstruct the noise. (bottom)
The noisy images are projected onto the truncated basis (using 5 functions) resulting in a smooth sequence of indirect illumination images.

illumination varies slowly compared to the noise, most of the indi-
rect illumination is contained in the lower numbered basis functions
while the higher numbered basis functions are mainly needed to re-
construct the noise of the original image sequence. This suggests
that if we choose a subset of the PCA basis functions, say the first
M, we can project the noisy image sequence onto this truncated
basis to produce our smooth image sequence.1.

2.3 Choosing the truncation

We now need to computeM such that reconstructing the noisy
image sequence,̂I(x, t), using the truncated basisBi , results in a
smooth image sequenceĨ(x, t) that captures the indirect illumina-
tion effects:

1This projection can be viewed as a filtering operation using the optimal
spatial filter kernels for the sequence [Capon et al. 1967]

Î(x, t)≈ Ĩ(x, t) =
M

∑
i=1

wi(t) Bi(x) (3)

Choosing a value ofM that is too small will lead to the loss of some
of the indirect illumination effects, while choosing a value that is
too large will result in added noise structure in the solution.

Since the reconstruction is extremely fast once the initial noisy im-
age sequence is generated, we can allow a user to interactively
chooseM by viewing the reconstructed sequence and adjusting a
slider. However, for times when user intervention is undesirable,
we have devised an automatic solution for choosingM. The auto-
matic system is based on the variance unexplained by the truncated
PCA reconstruction. Knowing the percentage of unexplained vari-
ance when usingx basis functions (percentVar(x)), we chooseM



as the lowestx such that:

(percentVar(x)≤ ε)

and
(percentVar(x)− percentVar(x+1))≤ εchange

for a user definedε andεchange. Intuitively, these criteria represent
the fact that we want to be reasonably close to the original image se-
quence, and we want to stop adding basis functions when adding the
next one doesn’t produce much improvement (it is probably mostly
reconstructing the noise at that point).

2.4 Animated Indirect Illumination Algorithm

Combining what we have learned from the previous sections, our
final animated indirect illumination algorithm is as follows:

1. Render the sequence of imagesÎ using a small number (e.g.
16-32) of ray samples at each spatial location. (Figure 2(top))

2. Use PCA on the sequence of imagesÎ to construct a basis
Bi and truncationM in which the sampling noise cannot be
expressed. (Figure 2(middle))

3. Project the image sequenceÎ onto the truncated basisBi
to produce the final smoothed image sequenceĨ . (Figure
2(bottom))

Using this algorithm, we can produce animation sequences that
contain no noisy flickering or popping for roughly the cost of a
low sample, noisy animation.

3 Extensions

While section 2 described the basic filtering algorithm, there are
several extensions that we can add to make the algorithm much
more useful.

3.1 Moving cameras and objects

The most important extension is to remove the image space restric-
tion and to allow for moving cameras and objects. The difficulty
with naively storing the illumination at pixel locations when using a
moving camera is that the temporal changes at a pixel would encode
both illumination changes as well as changes due to the camera
motion (such as visibility changes). Although our algorithm could
still be used on the resulting pixels, the additional, non-illumination
variations make the denoising process much more difficult. A bet-
ter solution would be to compute the indirect illumination at the
same set of object space positions for each frame, and then store
these values in a point cloud or texture map. Since the object space
points are fixed, the temporal variation of each value is due only to
changes in the illumination (in addition to the noise). Therefore,
the point clouds or textures can be denoised using the same basis
projection technique used for images in the previous section. When
the indirect illumination is needed for the final render, it can be
accessed via a lookup into these smoothed point clouds or textures.

Rigidly moving objects can be handled in the same manner as a
moving camera by storing the results in an object space point cloud,
texture map or similar structure. Deforming objects require the use
of a rest or reference object with a static set of sample points. The
indirect illumination should be computed for each frame at points

on the deformed object that correspond to the points on the refer-
ence/rest object. By storing these illumination values at the refer-
ence sample positions (using either a point cloud or texture map),
these deforming objects can be denoised similarly to rigid objects.
Figure 1 (and the accompanying video) shows an example of our
statistical acceleration technique on an animation containing both a
moving camera and objects.

Although the result shown here stores irradiance in a point cloud,
directionally varying results could easily be incorporating using a
structure in the spirit of [Kristensen et al. 2005]: each sample loca-
tion would store a spherical harmonic representation of the lighting
and the denoising would be performed on the coefficients of the
spherical harmonic basis functions (as opposed to just on the single
irradiance value).

3.2 Per Pixel Truncation and Importance Sampling

While the truncation selection method described in section 2.3 does
a good job of computingM for the entire image, there are times
whenM should be chosen more locally. One example of this is Fig-
ure 3 which displays an indirect illumination frame from a sequence
in which a ball is moving along the floor creating a translating con-
tact shadow. In this sequence, it is perfectly reasonable to use a
small number of modes (1 or 2) for the background walls and ceil-
ing since they do not vary much. However, the contact shadow on
the floor requires many more modes. The problem that arises when
using the larger number of modes is that the back wall, which was
well described by 1 or 2 modes, gains only noise structure in the
higher modes (see Figure 3(b)). Therefore, we may wish to choose
M on a pixel by pixel basis.

Choosing the truncation on a pixel by pixel basis allows each pixel
to decide how many basis functions are required for proper recon-
struction. Unfortunately, if neighboring pixels don’t use similar
truncations artifacts can occur. To remedy this the truncation map
should be smoothed using a technique such as [Kontkanen et al.
2004] to produce a smooth floating point truncation map. An ex-
ample of a truncation map for the moving ball example is shown
in Figure 3(c) - where blue indicates a small value ofM and red
indicates a large value ofM. A non-integer truncation simply indi-
cates that an interpolation should be performed between solutions
with f loor(M) andceil(M) (a truncation of 4.7 would simply be
an interpolation of 0.7 between the 4 basis solution and the 5 basis
solution). Figure 3(d) shows the reconstruction using the truncation
map in (c). Notice how the structure on the back wall is significantly
reduced.

The truncation map can also be used to drive importance sampling.
Pixels with a larger value ofM usually require more ray samples
than those with a smaller value ofM since such pixels have higher
variation in the sequence. Noting this, we can use the truncation
map to determine how many ray samples to use in each pixel. We
have had success with a very simple scheme in which pixels with
M less than a threshold valueMmin are reconstructed using the trun-
cated basis as normal, while those withM ∈ (Mmin,Mmax] are in-
terpolated between the basis reconstruction,Ĩ , and a high sample
computation,Ihi. The pixel value is thus:

Ĩ , M ≤Mmin

(1−α)Ĩ +αIhi, M ∈ (Mmin,Mmax]
Ihi, M ≥Mmax

whereα = M−Mmin
Mmax−Mmin

.



(a) Noisy Indirect Illumination (b) Per Image Truncation

(d) Per Pixel Truncation

(c) Smoothed Mode Depths

(e) Importance Sampled (f) 512 sample reference solution

Figure 3: An example of denoising with a moving contact shadow: In this sequence, the front ball translates from right to left (see the
video for the full animation). (a) A single frame of the indirect illumination on the set computed using 32 ray samples per hemispherical
integration. (b) The smoothed image using 7 basis functions. The translating contact shadow requires all 7 basis functions, but using 7 basis
functions actually introduces additional structure on the back wall (which only required 1-2 basis functions). (c) The smoothed, per pixel
basis truncations allow us to reconstruct using a different number of basis functions in each pixel - as in (d) - greatly reducing the structure
on the back wall. (e) Adding additional samples where needed (based on the basis truncation) allows us to reduce the structure on the floor
even further producing a result very close to the 512 sample reference image in (f). Note that all images were significantly contrast enhanced
to make the structure more visible.

While more intelligent schemes could be derived (such as inter-
polating between statistically denoised solutions with different ray
samples), we have found this simple scheme to be sufficient in our
cases. Figure 3(e) shows this scheme on the moving ball example
(hereMmin = 4, Mmax= 7, and 512 samples were used when com-
puting Ihi). Notice how the structure on the floor is reduced such
that it approaches the look of the 512 sample reference solution in
Figure 3(f). Using this simple importance sampling technique does
increase the average ray samples per pixel to 51.845, up from the
base value of 32.

4 Results

Several results using our statistical acceleration system are shown
in Figures 1, 2, 3 and the accompanying video. In all examples, we
setε = 0.005, andεchange= 0.001. All timings (see Table 1) were
performed on a 3.4GHz Intel Xeon.

Figure 2 and the first video segment show an example of indirect il-
lumination in the Cornell box resulting from moving a single point
light in a circular path along the ceiling. A sample of the noisy
indirect illumination images is shown in Figure 2(top). The com-
puted basis functions are shown in Figure 2(middle) and the result-
ing smoothed images (projecting onto the first 5 basis functions) in
Figure 2(bottom). Using our acceleration scheme on this 100 frame
sequence results in an 8.09x speedup over an irradiance cached, 512
sample render.

Figure 3 and the second video segment show an example on the
indirect light in the Cornell box resulting from moving the front
ball from left to right (note that this is only the indirect illumination
on the box as the two balls have been removed from the image).
Although the translating contact shadow causes this sequence to re-
quire more basis functions than the previous moving light example
(7 versus 5), our denoising time is still reasonable (68 seconds).
Using our acceleration scheme on this 150 frame sequence results
in an 11.8x speedup over the irradiance cached, 512 sample render.

Figure 1 and the third video segment show an example of our sta-



Scene Num Frames Noisy Render Denoising High Sample Render Speedup Factor
Cornell Light (Figure 2) 100 1174s 56s 9948s 8.09x
Cornell Ball (Figure 3) 150 1802s 68s 21960s 11.8x
Moving Car (Figure 1) 126 15125s 522s 345870s 22.1x

Table 1: Results of applying our statistical acceleration technique to several animated sequences. All of the high sample renders used 512
samples while the noisy renders used 32 samples (except for the Moving Car which used 16 samples). The denoising times include both the
basis function computation and the projection time.

tistical acceleration technique applied to a production quality se-
quence. This example contains both a moving camera and object,
as well as complex shaders and geometry. Additionally, this se-
quence contains a significant illumination discontinuity when the
light is turned on. Unlike a naive temporal smoothing, our basis
projection technique does not smooth the transition when the light
turns on. Using our statistical acceleration technique allows us to
render the indirect illumination for this 126 frame sequence using
only 16 samples in just over 4 hours and 20 minutes, while the 512
sample render requires over 96 hours to render. This represents a
significant benefit in turnaround time for a production pipeline.

5 Conclusions and Future Work

We have presented an easy to implement technique for accelerating
indirect illumination for animated sequences. Our technique first
computes low sample, noisy solutions and then uses temporal varia-
tion to compute a smooth sequence adapted basis. Finally, the noisy
solutions are projected onto the basis resulting in the final smooth
solution. The resulting cost of computing the indirect illumination
is therefore greatly reduced - roughly equivalent to computing the
low sample, noisy solution. Although there may be structure re-
maining in the denoised illumination sequence, it is often imper-
ceivable especially when combined with surface texture and direct
lighting contributions. Moreover, the resulting animation sequence
does not contain temporal noise such as flicker or popping. This
fact, combined with the decreased rendering times make this tech-
nique a useful tool for decreasing turnaround time in a production
pipeline.

As future work we wish to explore different basis computation
strategies (and truncation rules), as well as different error metrics,
and basis localization strategies. Additional processing of the basis
functions is also of interest. We would like to explore the effects of
different smoothings on the basis functions themselves, as well as
what it means to allow for editing of the basis functions.
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