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Course Description

Technology has always played an important part in Pixar’s movie making process, starting with
Toy Story over 20 years ago. This course will take you on a journey through that technical evolution,
focusing on how story drove our technical designs and how we utilized new technical advancements to
tell more appealing stories. Finally we’ll focus on several fundamental changes that happened recently.
Prman’s long used REYES algorithm, has been replaced by RIS, a modern raytracing engine. At
the same time, the shading language used for more than 20 years, RSL, was replaced by C++ and
OSL shaders. Pixar’s famous subdivision surface algorithm was made open-source, in order to make
it available across 3D software, and promote its development at a larger scale.

Level of Difficulty: Intermediate

Intended Audience

Practitioners from CG Animation, VFX Fields and videogames, plus researchers interested in the cur-
rent trend in the industry.

Prerequisites

A basic understanding of computer graphics, modeling, lighting and shading models.

Course Website

http://graphics.pixar.com/Library

Contact

rvillemin@pixar.com
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About the Presenters

CHRISTOPHE HERY joined Pixar in June 2010, where he holds the position of Senior Scientist. He
wrote new lighting models and rendering methods for Monsters University and The Blue Umbrella,
and continues to spearhead research in the rendering arena. An alumnus of Industrial Light & Magic,
Christophe previously served as a research and development lead, supporting the facility’s shaders
and providing rendering guidance. He was first hired by ILM in 1993 as a senior technical director.
During his career at ILM, he received two Technical Achievement Awards from the Academy of Motion
Pictures Arts and Sciences.

SONOKO KONISHI joined Pixar in 1994 as a Jr. TD after graduating from a fine arts college in the
States. She worked on Toy Story, Toy Story 2 and Toy Story 3 in various departments such as lighting,
modeling and character rigging. Over the past 20 years Sonoko has predominantly focused on feature
film production but she has also worked on the production of shorts, TV Specials and promotional
materials. She currently works for the simulation & digital tailoring department.

TAKAHITO TEJIMA is a senior software engineer at Pixar Animation Studios, focusing on real-time
GPU rendering. He previously worked at Polyphony Digital Inc. in Japan, as a lead developer of
console video game Gran Turismo series for 12 years. At Pixar, he is currently working on developing
proprietary animation software and also OpenSubdiv, the open source subdivision surface library.

RYUSUKE VILLEMIN began his career at BUF Compagnie in 2001, where he co-developed BUF’s in-
house raytracing renderer. He later moved to Japan at Square-Enix as a rendering lead to develop a
full package of physically based shaders and lights for mental ray. After working freelance for Japanese
studios like OLM Digital and Polygon Pictures, he joined Pixar in 2011 as a TD. He currently works
in the Research Rendering department.

DAVID G YU has been at Pixar since 2000 working on the Presto animation system (and its predecessor
Marionette) with a focus on advancing the use of GPU technology. Prior to that David was at Silicon
Graphics Inc (SGI) developing workstation hardware and software for OpenGL and visual simulation.
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Presentation Schedule

08:30-08:35 Introduction (Villemin)

08:35-09:40 20 years of ToyStory (Konishi)

09:40-10:15 Hydra Real-time Render Engine (Yu)

10:15-10:30 Break

10:30-11:05 OpenSubdiv 3.0 introduction (Tejima)

11:05-12:05 Prman RIS (Hery and Villemin)

12:05-12:15 Q&A
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20 years of ToyStory

by Sonoko Konishi

(a) Toy Story 3 Woody (b) Toy Story Woody Maquette

Figure 1: c©Disney/Pixar 2015

1 Storytelling with technology

In 1995 Toy Story became the first feature-length film created using computer animation but beyond
the novelty of CG animation was something deeper, a highly polished script that worked on many
levels, breathing fresh air into the world of animated features. From Andys room in Toy Story to
the inside of Rileys head in Inside Out, from current time Andy heading to college in Toy Story 3 to
post-apocalyptic future in Wall-E the story drives our technology, looking to new techniques and tools
to enrich the story but never allowing those tools to drive our story decisions. So, how did we get
there?

Our focus on story extends beyond the traditional development practices of film screenings and
reviews with our development partner Disney. From very early on Ed Catmull and John Lasseter built
an environment where employees feel safe to bring new ideas and everybody can communicate freely.
As we work on the films, the entire crew is encouraged to attend work in progress screenings and give
notes on the film. We started this sense of creative collaboration when we were a mere handful of
artists & technicians and it lives on today in a team that is over 1200 people. This approach exists
beyond story development. Within the technical departments, we treat our tools and processes the
same way we approach story telling, refining and polishing through collaboration among artists, always
looking for feedback about how to bring the highest quality we can achieve for our films. Always asking
ourselves, how can we inspire the story.

John Lasseter says The art challenges technology. Technology inspires the art. This is a core tenet
of our studio; one inspired by the early days of Disney. Snow White, for example, represents a tent
pole of cinematic & technology advancement combining realistic movement and emotion in the human
characters with caricatured dwarfs and forest animals. They also invented the multi-plane camera
which allowed artistic direction and cinematography to create a more believable world through the
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three-dimensional depth and movement within the frame. It is an important lesson, showing that
technology is not just a cold tool but an important part of our creative language.

An example of this, is how we treated camera movement in Toy Story. We tried very hard to
treat our virtual cameras as if they were real. Following traditional cutting patterns and treating the
camera movement as if it had weight and form. Always asking ourselves, how does this choice advance
the story? But we had limitations, depth of field was extremely expensive and so it was restricted to
only the shots that were significantly enhanced by it. On Toy Story 2, our ability to move the camera
was more sophisticated; as artists we had improved and our tools had been developed to allow softer
lighting and depth of field allowing us to tell the story in a more cinematic way. With Toy Story 3,
we placed a greater emphasis on drawing the audience into the toys prospective of the human world;
using rack focus to the guide the audience eyes, character POVs to tell their emotions and richer color
nuances brought by point-based global illumination.

The development of these techniques is facilitated by modern production processes. Creative
thought needs to be uninterrupted and ideas and progress need to be communicated in timely manner
to keep the creative flow going. But during Toy Story, we still had to resort to analog processes. Story
boards were drawn on paper and scanned in one at a time. The editor would then have to go frame
by frame to recreate the timing of the original pitch. Layout artist and animators could check their
sequences and animatics with playblast but in order for the shots to be delivered to editorial, we would
transfer them to 3/4 inch video, editorial would then digitize the shots and cut them into the reel. For
A Bugs Life we developed a digital delivery system allowing our editors to spend more time on the
creative aspects of editing and less time on dealing with importing shots. We are constantly tweaking
our database systems, asset control, shot deliveries and renders to cater to the production needs of 300
crews.

As our technology for creating films developed, so did the manner in which audiences experience
them in the theatre. For Toy story each frame was projected through a set of RGB filters and output
to film and development. Our production schedule had to respect reel-delivery and it was a moment
of celebration as each reel was physically carried out of the studio. By 1999 a limited number of
theaters had been equipped with Digital Light Processing (DLP) cinema and Toy Story 2 was shown
to audiences with true digital to digital quality experience. In 2010, Toy Story 3 entered world of
stereo projection allowing the audience to truly feel the scale of the toys world, something that was
especially felt in the scale of the furnace in the final scene. In our latest installment, Inside Out, high
dramatic range (HDR) laser projection to experience a richer range of light and color.

2 Animating with technology

The animation tools used for Toy Story were not created over night. Pixar had been developing the
Menv (Modeling Environment) animation system for nine years and John Lasseter was a big part of of
the UI development. Many of the fundamental design concepts developed by John Lasseter still exist
in our tools today.

A common question today is Why do you still work in a proprietary platform? It was understandable
for Toy Story because the tools didnt exist but Why now? Proprietary tools make it easier to maintain
a custom look and feel for our assets; we can automate the upgrade process and maintain older versions
of our assets for study and education. If you look at Toy Story 3, 58 animators worked on that film,
but only 17 of them worked on Toy Story 2 and only 4 of them also worked on the original Toy Story.
Yet the animation and characters have a consistent look and feel across all of the films. This is because
we could always look back to the older assets, how the moved, behaved and animated.

During that time, Toy Story characters went through three major upgrades just for their surface
construction alone. For Toy Story, the surfaces were created with stitched nurbs surfaces. During
Geris Game we created techniques for animating and rendering subdivision surfaces and the original
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cast of Toy Story was remodeled for Toy Story 2 using subdivision surfaces, allowing us to achieve
a wider range of complex facial expressions. We also pushed the appearance of human models with
new skin and hair shaders that, while still a caricatured version of reality, contained more detail and
sophistication. Eleven years after Toy Story 2 we embarked on Toy Story 3. We still wanted to
maintain the look and feel of the original characters but they had to fit into a more current time. We
added additional wear and tear to the toy characters for all those years past. Andy is now a grown
up and needed a new facial rig, including hair that is both rigged and simulated. We also introduced
subsurface scattering into the hair and skin shaders to bring a more translucent appearance. With
Brave in 2012, Menv got a major update and it also meant updating our heroes from Toy Story to
meet the requirements of the new Universal Scene Description (USD).

Figure 2: Buzz Lightyear c©Disney/Pixar 2015

All of these revisions come with increased complexity (Fig 2). Twenty year ago Woody had only
596 controls. By Toy Story 3 he had 2245. As our technology progress and animators skills became
more and more refined we keep adding more and tools for them to control and shape the characters.
But we cant forget what was achieved with those early rigs.

Toy Story 3 animation supervisor recalls how the first 2 films of Toy Story series had less animation
controls and yet still express amazing animation with a small number of controls. In Toy Story, we
had limited desktop computer performance, so many of characters had very simple geometry standins.
Animators were using simple cylinders and cubes to block in the animation and turned on the high
resolution surface called PAT for refining the performance. At that time turning on the final mesh
slowed the machine to crawl so animators learned how to work around it by concentrating on the body
language first and only switching to the detail mesh for finishing. It is this focus on acting in broad
clear gestures that defines our characters and while we add a lot of controls for our animators, we
are always looking for ways to automate animation behaviors such as foot ground contact and tire
deformation on race tracks so that animators can focus on acting.

But kinematic rigs are not the only method to achieve convincing animation. Starting after Toy
Story 2 and continuing with Toy Story 3 & Brave we focused on developing simulation tools for cloth
and hair. However, the ability to run complex simulations is not sufficient; the movement of hair and
cloth directly influences the audiences perception of a character and to integrate simulation into the
story process requires direct-able simulation.
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3 Enrichment with technology

3.1 Modeling

During Toy Story many characters started with a clay sculpt. We would then mark out the control
vertices on the sculpt and digitize them with a Polhemus, a pen-like input device which we would
touch to each point on the surface and click to register each point within the computer (Fig 1). It was
a painstaking process that could not be interrupted or you would have to start over again. Today, we
3D scan the main character maquette or model in 3D directly. The scan provides us a good sense of
overall proportion and volume which we use as a guide as we iterate with the director and adjust the
topology for rigging. Using these processes we were able to create over 300 animatable characters for
Toy Story 3 compared to the 76 that we were able to do for the original Toy Story in shorter time.

(a) Rigged wrinkles on Lotso (b) Final render with fur

Figure 3: c©Disney/Pixar 2015

Lots-o-Huggin Bear, the pink plush bear was a good example of where technology pushed the art.
Without global illumination his fur would not have looked believable. As a matter of fact, there is one
shot in the original Toy Story where Lotso made his first appearance. We also had to develop new
rigging techniques to support a character with no internal bone structure. This included rigging the
wrinkles so that animation would have precise control over how they where emphasized (Fig 3).

For Toy Story 3, we placed a lot of emphasis on improving our cloth pipeline so that it would
be accessible to more modelers. Before Up, creating clothing followed a 2D pattern tailoring system
which limited the available staff to people with drafting skills. In Toy Story 3, a 3D cloth system was
in place and the modeler can model garment much like building a standing clothes and turn them into
simulate-able cloth. The goal was that more modelers can build garments without deep understanding
of pattern drafting knowledge.

A member of Lotsos gang, Big Baby, the life like baby doll with a plastic head and limbs but with
soft stuffed body benefited a lot from this new pipeline. His face and limbs were rigged much like the
rest of the characters, however to create his stuffed bodice, the roughly rigged body core was wrapped
in cloth and ran simulation to cover animated body. John Lasseter always remind us that stay true
to the material and Big Babys appeal and articulations were achieved by hybrid of kinematic rigging
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and cloth simulation.

3.2 Shading

The shading of our characters presents a unique design challenge. We always strive to improve our
shading models and level of detail, but at the same time, at a glance the classic characters need to feel
like they came from the same family. Woodys costume for instance, as the Toy Story series progress, his
denim jeans and plaid shirt have received weave pattern, sewing seams and subtle wear as year passes.
It is this constant improvement while maintaining original feel that creates a sense of timelessness with
our characters and add characters their story.

3.3 Simulation

Toy Story and Toy Story 2 did not have character effects that have become a standard part of todays
film production. An example of something that appears to be dynamic is Slinkys spring body but
even that was a rigged system with procedural follow through. For humans, the garments and hair
was modeled and rigged as a part of the character mesh. Even Buster, whose hair was groomed using
a prototype hair grooming tool developed for Monsters Inc was animated with kinematic hair. But
Monsters inc allowed us to develop new tools for dynamic simulation. Initially put in place for Sullivans
fur and Boos t-shirt these tools soon became a standard part of our prices called character effects. Toy
Story 3 was no exception and we took advantages of these tools to refine our characters further using
fully simulated cloth and hair.

(a) Toy Story Molly Hair (b) Brave Merida Hair

Figure 4: c©Disney/Pixar 2015

After Toy Story 2, we were aiming for more ambitious cloth and hair work (Fig 4). As exemplified
in many Disney Animations the shapes and behavior of cloth and hair are as expressive as their
character and emotions. And Brave was the perfect story to apply these new approaches. Meridas
fiery personality couldnt have been expressed fully without the technical development of curly hair and
the Scottish costumes woundt be authentic without accurate multi layered cloth simulation.

4 People with technology

Throughout production we treat our success and mistakes as part of the same learning process. After
each department wraps we have a post-mortem, evaluating the currently active technologies and pro-
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cesses looking for places to improve and evolve. As a result of these reviews some technologies will be
retired or rewritten others live on. Sometimes these changes will be big, for example, 20 years after the
original Toy Story, Menv was replaced with our new animation system Presto for Brave and currently
incorporating lighting and shading workflow with Katana. Since a film runs for over 2 years, we have
to be very cautious about which tools and technology we commit to producing a film.

From the earliest days of Pixar and the industry, we have always looked to experts from different
disciplines to experiment and adopt new technologies. A practice we continue today; working with aca-
demic community and employees with research backgrounds while we open our studios to more young
people through internship and residence program. Under the Disney umbrella, now we collaborate
with Disney, Disney Research and I.L.M. and keep inspired by each other.

When Toy Story was released, Steve Jobs said it was our ’Snow White’. That we had married
technology and story to create characters that people fall in love with. It is this balance that of art
and technology that we strive to develop and not only is Toy Story a part of people’s lives but the
technologies that we created have allowed artists from all over the world to tell their own stories.
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Hydra Real-time Render Engine

by David G Yu

Figure 1: The Blue Umbrella c©Disney/Pixar 2015

Abstract

Pixar’s Hydra is a real-time render engine designed for the assets and workflows used in the pro-
duction of animated feature films. Hydra delivers high performance with the scalability to support
interactive animation of fully rigged characters as well as the pre-cached data sets used for large
crowds, detailed set dressing, and dynamic special effects. The implementation takes full advantage of
the latest GPU techniques including multi-threaded data preparation, GPU compute, and instanced,
indirect drawing. Hydra incorporates OpenSubdiv and an extensible shading system to support the
high-fidelity needed to allow production artists to work with confidence and in context.

Topics include:

• architecture details

• OpenSubdiv and Universal Scene Description (USD) integration

• GPU parallel instancing and frustum culling

• use in Presto and 3rd party DCC tools
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1 Introduction

Hydra is the real-time render engine used within Pixar to display production assets. Originally devel-
oped as part of the Universal Scene Description project, it has become a foundation component for
continued development of high-performance and high-fidelity rendering within the Studio.

Scalability and flexibility are paramount since real world film production data is typically optimized
for more traditional off-line rendering and not designed with consideration of real-time constraints.

2 Architecture

One of the key realizations is that the scenegraph and render engine inputs are correlated, but distinct,
and the final input into drawing hardware is an extremely simple stream of commands. Additionally,
we acknowledge that at the heart of hardware rendering lies a caching problem, in which GPU resources
must be tracked back to the source scenegraph for invalidation.

We introduce the notion of a RenderIndex which holds light-weight Render Prims, which in turn
fetch their data from a client scenegraph via a Client Scene Delegate. Render Prims also hold references
to GPU resources, allocated by a Resource Registry. In this way, the RenderIndex and Render Prims
form a map from the client scenegraph to the required GPU resources and can be compiled down to a
command stream.

Scene Delegate

Render Index

Drawing Commands

GPU Rendering Resources

Figure 2: Architecture Overview

3 Drawing Command Stream

To efficiently draw a client scene, it’s critical to create batches of drawing commands that share as
much state as possible. In service of this, we represent the drawing stream as a first-class object in the
engine, where elements in that stream are completely decoupled from the client scene’s semantics.

Furthermore, to avoid exposing this low level ”assembly language” to the render engine user, we
propose a system of automatically converting render prims into this stream; caching generated items;
and sorting them for highly efficient drawing.
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Scene Delegate

Render Pass Command Buffer

Draw Item

Render Index Render Prim Drawing Coordinate

Representation

GPU Resource Handles

Draw Item Instance

Render Pass Command Buffer Draw Item Instance

Figure 3: Drawing Command Buffers

4 Management, Tracking and Sharing of GPU Resources

The rendering task has complexity on the order of the number of low-level resources needed to draw
the scene. Items managed by the registry are things like loaded texture images, allocated VBOs used
for primvar data and drawing topology, compiled and linked GLSL shading programs, etc.

Resources are resolved by association with a descriptor. In the simplest case this descriptor look-up
is a kind of hashing that allows the system to exploit possible resource sharing.

Separating the resources from the RenderIndex allows great opportunities for efficiency: e.g. texture
images referenced at many points in the scene can resolve to a single loaded texture image, meshes
sharing the same topology can share the same computed (or possibly serialized) topology tables, a
single mesh might be displayed as both a smooth refined surface and an unrefined control hull, etc.

5 Drawing Coordinate and GLSL CodeGen

The ”Drawing Coordinate” in Hydra represents a location of data on both the CPU and GPU. On the
CPU side, we use it to generate GLSL shaders which stripe data through the shading pipeline. On the
GPU side, we use it as an abstraction so that the client shader can fetch the data without knowing
where the actual value is coming from. For example, HdGetColor() function could return constant
color, face color or vertex color (Table 1).

Figure 4 shows the relationship between the DrawingCoordinate and aggregated buffers. Each entry
of DrawingCoordinate points to the relative offsets within the aggregated buffers. Hydra exploits this
level of indirection in many ways: data de-duplication (topology instancing, etc) can be expressed by
sharing the same offsets, and per-instance frustum culling can be implemented by shuffling the instance
index buffer.

The other benefit of having DrawingCoordinate is that it defines tessellation well, by declaring the
shader inputs in this form.
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Table 1: Drawing Coordinate

Coordinate Interpolation Typical usages
constant primvars per object transform

visibility
handedness

instance primvars per instance transform
instance index base per instance instance indirection
element primvars per face/curve face color

material index
primitive buffer per triangle/quad/patch triangle to face mapping

patch parameter
ptex index

vertex primvars per vertex positions
normals
colors

shader parameters per shader kd, ks, transparency
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Per object primvar buffer
(interleaved)

 Per triangle/quad/patch buffer
(non-interleaved)
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Prim ID

...

Face ID Face ID ...

Patch
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Patch
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Face
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... Per face primvar buffer
(non-interleaved)

Per vertex primvar buffer
(non-interleaved)

Primitive to coarse face indirection

Instance
ID

Instance
ID ...

Instance
ID

Instance
ID

...

Frustum Culling

ffTrasnlate Trasnlate ...

Rotate Rotate ...

Instance index indirection

V0
V1
v2

V0
V1
v2

...

Index buffer
Int[3] = triangle
Int[4] = quads (lines_adjacency)
Int[16] = b-spline patch 

gl_VertexID

gl_PrimitiveID

gl_InstanceID

MDI Command
- count
- instanceCount
- firstIndex
- baseVertex
- baseInstance

Drawing Coordinate
- ConstantDC
- InstanceDC
- ElementDC
- PrimitiveDC
- InstanceIndexDC
- ShaderParamDC

Draw Dispatch Buffer

g
l_

D
ra

w
ID

Other 
Meshes

Figure 4: Buffer Aggregation and Drawing Coordinate

6 Multi Draw Indirect, Bindless Buffers

Hydra supports both immediate and indirect draws. In either case Hydra assorts drawing items into
batches to minimize chaging GL states and buffer binding and unbidning overheads. In indirect draw
mode, we construct a dispatch buffer which contains GPU draw commands and drawing coordinate
for each command interleaved.

Primvars other than vertex primvar are fetched through shader storage buffer or bindless unform
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buffer if it’s available on the runtime hardware.

7 Shading Interface

Hydra’s shading system is designed to decouple the appearance shader code from the input signals.
The client is required to provide just “surface shader” and “displacement shader” functions, and each
function can access an RenderPrim’s input signals transparently without knowing how they are defined
and interpolated, including by instancing and by OpenSubdiv’s tessellations.

Shader code

v = GetPrimvar(DrawingCoord)

Per Object

Per Instance

Per Face

Per Vertex

Texture

Primvar
abstraction

Shader fallback

Figure 5: Primvar Abstraction

Figure 5 shows various cases of how primvars are defined on objects. Hydra’s buffer aggregation
creates the buckets which correspond to each primvar definition, and GLSL code generator composes
the accessors to those primvars. The client shader code can use the same abstract interface to get
those signals and can be agnostic about how they are defined on the objects.
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Hydra shader composition model

Vertex Shader

Tess Control Shader
Tess Eval Shader
Geometry Shader

Fragment Shader

Surface Shader

Displacement Shader

Instance Primvars

Vertex Primvars

Element Primvars

Constant Primvars

Intrinsic Geometric Shader

Custom Shader

RenderPass Shader

External environment
(camera, picking, lighting)

"GetColor( )"

Textures

Shader Parameters

Auto-generated
accessors

Auto-generated
Inter-stage

Primvar plumbing

Auto-generated
Inter-stage

Primvar plumbing

Drawing
Coordinate

OpenSubdiv
shader

Figure 6: Shader CodeGen

Figure 6 describes the GLSL code generator in more detail. Hydra configures “Intrinsic Geometric
Shader” for each RenderPrims. This shader is used as a template skeleton, which owns the main
entries of each shader stage and defines GL primitives (triangles, quads, lines) as well as OpenSubdiv
tessellated patches. It also handles the display stylings, such as wireframe, backface culling, flat and
smooth shadings, etc.

To complete the pipeline configuration, the GLSL code generator scans the underlying buffer array
of the RenderPrim, and it generates corresponding accessors for each buffer resources. For example, if
a primvar is defined as a vertex primvar, the code generator generates code snippets of a vertex array
declaration for that primvar along with the accessor method. If a primvar is defined as a constant or
uniform primvar, it generates SSBO or bindless uniform declaration and its accessors. For the vertex
primvars, the code generator also generates inter-stage plumbing code so that those primvars can be
used in the following shader stages such as geometry and framgent shaders.

The external environments, like camera coordinate and lighting parameters, are given as shader
code snippet from the RenderPass shader. The surface shader takes a position, a normal vector and a
drawing coordinate and computes the resulting value with those auto-generated accessors of the input
signals and the external environment parameters. One of the nice things of this decoupling is that the
surface shader can be agnostic about not only instancing and tessellation but also an RenderPrim’s
handed-ness and display stylings such as backface culling and wireframe drawing because they are
handled by intrinsic geometric shader code.

Picking is done mostly in the same way, the code generator generates the ID rendering shader which
is given by the Renderpass shader for picking.
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MDI Command

Drawing Coordinate
...
- ShaderParamDC

MDI dispatch buffer
for a single draw call 

MDI Command

Drawing Coordinate
...
- ShaderParamDC

MDI Command

Drawing Coordinate
...
- ShaderParamDC

...

Kd texture
uint64 addr

Ks texture
uint64 addr

...

roughness = 0.5

...

Kd texture
uint64 addr

Ks texture
uint64 addr

...

roughness = 0.3

...

ShaderParameter buffer

ShaderParameter
indirection

<CodeGen  Auto-generated accessors>

vec3 GetKd() {
    return texture(shaderParam.kd, GetUV()).xyz;
}

float GetRoughness() {
    return shaderParam.roughness);
} 

SurfaceShader

"GetKd( )"
"GetRoughness( )"

SSBO Lookup
Bindless Texture

Lookup

Figure 7: MultiDrawIndirect + Bindless texture

This mechanism can be extended to incorporate OpenGL’s Multi-Draw-Indirect and bindless tex-
ture API together for further optimized rendering (Figure 7).

Shader parameters for each RenderPrim can be fetched from the shader parameter buffer using
shader DC. When a shader input signal is defined by a texture, the bindless GPU address of the
texture is stored in the shader parameter buffer. The auto-generated shader code provides an abstract
interface to fetch the texture through those addresses. As a consequence, hydra can aggregate multiple
objects into a single drawcall together, which uses more than the number of physical texture unit in
total. Note that the drawing batches are configured so that all the participating RenderPrims have
the same parameter topology (i.e. how the primvars are defined and interpolated). For the example
shown in Figure 7, Kd and Ks are defined as textures, whereas the roughness is given as a constant
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primvar. The RenderPrims which have same primvar definition can be batched together and drawn in
a single drawcall using the same auto-generated shader program, MDI and bindless.

Hydra leverages the combination of these techniques to draw massive amount of objects with
extremely low number of drawcalls.

8 Conclusion

The Hydra render engine was developed explicitly to support feature film workflows and assets. Decou-
pling the engine from the scenegraph allows for high fidelity and high performance preview in diverse
scenarios and tools, while formulating the internals in terms of the RenderMan data model allows for
direct final-frame assets to be used in real-time contexts. At a low level, this performance is made
possible by reducing driver overhead via modern graphics APIs available in desktop OpenGL, but the
architecture has also been designed with an eye toward forthcoming explicit graphics APIs, such as
Vulkan, DX12, and Metal. As the realms of offline and real-time rendering converge, we continue to
push for real-time approximations of final-frame fidelity.
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OpenSubdiv 3.0 introduction

by Takahito Tejima

Figure 1: InsideOut c©Disney/Pixar 2015

Abstract

Since OpenSubdiv 1.0 was initially released as an open source project in 2012, it has been widely
adapted into various DCC tools and applications and is becoming an industry standard. We have
gotten a huge response and feedback from many collaborators, and DreamWorks Animations is one
of the biggest contributors. With their generous cooperation, we released a major update to 3.0 this
year. OpenSubdiv 3.0 represents a landmark release, with very profound changes to the core algorithms.
While providing faster, more efficient, and more flexible subdivision code remains our principal goal,
OpenSubdiv 3.0 introduces many improvements that constitute a fairly radical departure from our
previous versions.

This release not only focuses internal data structure, but also simplifies a lot of client facing APIs
that make integration easy and very efficient. We implemented a unified patch tessellation shader
which allows us to draw entire subdivision surface geometry with a single GL draw-call, while we’re
still getting benefits from sparseness of the adaptively refined patch representation.
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Note: The latest version of this document is available online at http://graphics.pixar.com/opensubdiv/

1 Subdivision Surfaces

1.1 Introduction

The most common way to model complex smooth surfaces is by using a patchwork of bicubic patches
such as BSplines or NURBS.

Figure 2: A torus modeled by B-Spline patches

However, while they do provide a reliable smooth limit surface definition, bi-cubic patch surfaces
are limited to 2-dimensional topologies, which only describe a very small fraction of real-world shapes.
This fundamental parametric limitation requires authoring tools to implement at least the following
functionalities:

• smooth trimming

• seams stitching

Both trimming and stitching need to guarantee the smoothness of the model both spatially and
temporally as the model is animated. Attempting to meet these requirements introduces a lot of
expensive computations and complexity.

Subdivision surfaces on the other hand can represent arbitrary topologies, and therefore are not
constrained by these difficulties.

1.2 Arbitrary Topology

A subdivision surface, like a parametric surface, is described by its control mesh of points. The surface
itself can approximate or interpolate this control mesh while being piecewise smooth. But where
polygonal surfaces require large numbers of data points to approximate being smooth, a subdivision
surface is smooth - meaning that polygonal artifacts are never present, no matter how the surface
animates or how closely it is viewed.

Ordinary cubic B-spline surfaces are rectangular grids of tensor-product patches. Subdivision
surfaces generalize these to control grids with arbitrary connectivity.

21



Figure 3: subdivisions of topologically complex mesh

1.3 Uniform Subdivision and Adaptive Subdivision

Applies a uniform refinement scheme to the coarse faces of a mesh. The mesh converges closer to the
limit surface with each iteration of the algorithm.

Applies a progressive refinement strategy to isolate irregular features. The resulting vertices can
be assembled into bi-cubic patches defining the limit surface.

Feature adaptive refinement can be much more economical in terms of time and memory use, but
the best method to use depends on application needs.

The following table identifies several factors to consider:

Table 2: Uniform vs Adaptive

Uniform Feature Adaptive
Exponential geometry growth Geometry growth close to linear and occuring

only in the neighborhood of isolated topolog-
ical features

Current implementation only produces bi-
linear patches for uniform refinement

Current implementation only produces bi-
cubic patches for feature adaptive refinement

All face-varying interpolation rules supported
at refined vertex locations

Currently, only bi-linear face-varying interpo-
lation is supported for bi-cubic patches

1.4 Boundary Interpolation Rules

Boundary interpolation rules control how boundary edges and vertices are interpolated.
The following rule sets can be applied to vertex data interpolation:
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Table 3: Boundary Interpolation Rules

Mode Behavior
VTX BOUNDARY NONE No boundary edge interpolation should occur;

instead boundary faces are tagged as holes
so that the boundary edge-chain continues to
support the adjacent interior faces but is not
considered to be part of the refined surface

VTX BOUNDARY EDGE ONLY All the boundary edge-chains are sharp
creases; boundary vertices are not affected

VTX BOUNDARY EDGE AND CORNER All the boundary edge-chains are sharp
creases and boundary vertices with exactly
one incident face are sharp corners

On a grid example:

VTX_BOUNDARY_NONE VTX_BOUNDARY_EDGE_ONLY VTX_BOUNDARY_EDGE_AND_CORNER  

Figure 4: Boundary interpolation rules

1.5 Face-Varying Interpolation Rules

Face-varying data is used when discontinuities are required in the data over the surface – mostly
commonly the seams between disjoint UV regions. Face-varying data can follow the same interpolation
behavior as vertex data, or it can be constrained to interpolate linearly around selective features from
corners, boundaries, or the entire interior of the mesh.

The following rules can be applied to face-varying data interpolation – the ordering here applying
progressively more linear constraints:
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Table 4: Face-Varying interpolation rules

Mode Behavior
FVAR LINEAR NONE smooth everywhere the mesh is smooth
FVAR LINEAR CORNERS ONLY sharpen (linearly interpolate) corners only
FVAR LINEAR CORNERS PLUS1 CORNERS ONLY + sharpening of junctions

of 3 or more regions
FVAR LINEAR CORNERS PLUS2 CORNERS PLUS1 + sharpening of darts and

concave corners
FVAR LINEAR BOUNDARIES linear interpolation along all boundary edges

and corners
FVAR LINEAR ALL linear interpolation everywhere (boundaries

and interior)

These rules cannot make the interpolation of the face-varying data smoother than that of the ver-
tices. The presence of sharp features of the mesh created by sharpness values, boundary interpolation
rules, or the subdivision scheme itself (e.g. Bilinear) take precedence.

All face-varying interpolation modes illustrated in UV space using the catmark fvar bound1 regres-
sion shape – a simple 4x4 grid of quads segmented into three UV regions (their control point locations
implied by interpolation in the FVAR LINEAR ALL case):

Figure 5: facevarying rules example of catmark fvar bound1
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1.6 Semi-Sharp Creases

It is possible to modify the subdivision rules to create piecewise smooth surfaces containing infinitely
sharp features such as creases and corners. As a special case, surfaces can be made to interpolate their
boundaries by tagging their boundary edges as sharp.

However, we’ve recognized that real world surfaces never really have infinitely sharp edges, espe-
cially when viewed sufficiently close. To this end, we’ve added the notion of semi-sharp creases, i.e.
rounded creases of controllable sharpness. These allow you to create features that are more akin to
fillets and blends. As you tag edges and edge chains as creases, you also supply a sharpness value that
ranges from 0-10, with sharpness values ¿=10 treated as infinitely sharp.

It should be noted that infinitely sharp creases are really tangent discontinuities in the surface,
implying that the geometric normals are also discontinuous there. Therefore, displacing along the
normal will likely tear apart the surface along the crease. If you really want to displace a surface at a
crease, it may be better to make the crease semi-sharp.

Figure 6: A shape modeled with semi-sharp creases

1.7 Chaikin Rule

Chaikin’s curve subdivision algorithm improves the appearance of multi-edge semi-sharp creases with
varying weights. The Chaikin rule interpolates the sharpness of incident edges.

Table 5: Chaikin rule

Mode Behavior
CREASE UNIFORM Apply regular semi-sharp crease rules
CREASE CHAIKIN Apply “Chaikin” semi-sharp crease rules

Example of contiguous semi-sharp creases interpolation:
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Figure 7: Chaikin rule example

1.8 “Triangle Subdivision” Rule

The triangle subdivision rule is a rule added to the Catmull-Clark scheme that can be applied to
all triangular faces; this rule was empirically determined to make triangles subdivide more smoothly.
However, this rule breaks the nice property that two separate meshes can be joined seamlessly by
overlapping their boundaries; i.e. when there are triangles at either boundary, it is impossible to join
the meshes seamlessly

Table 6: “Triangle Subdivision” Rule

Mode Behavior
TRI SUB CATMARK Default Catmark scheme weights
TRI SUB SMOOTH “Smooth triangle” weights

Cylinder example :

Figure 8: Triangle subdivision rule
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1.9 Manifold vs Non-Manifold Geometry

Continuous limit surfaces generally require that the topology be a two-dimensional manifold for the
limit surface to be unambiguous. It is possible (and sometimes useful, if only temporarily) to model
non-manifold geometry and so create surfaces whose limit is not as well-defined.

The following examples show typical cases of non-manifold topological configurations.

1.9.1 Non-Manifold Fan

This “fan” configuration shows an edge shared by 3 distinct faces.

opposite(e) ?

   

Figure 9: Non-Manifold geometry

With this configuration, it is unclear which face should contribute to the limit surface (assuming it
is singular) as three of them share the same edge. Fan configurations are not limited to three incident
faces: any configuration where an edge is shared by more than two faces incurs the same problem.

These and other regions involving non-manifold edges are dealt with by considering regions that
are “locally manifold”. Rather than a single limit surface through this problematic edge with its many
incident faces, the edge locally partitions a single limit surface into more than one. So each of the
three faces here will have their own (locally manifold) limit surface – all of which meet at the shared
edge.

1.9.2 Non-Manifold Disconnected Vertex

A vertex is disconnected from any edge and face.

f=face(e)f0-

v
3

f
0

v
0

v
1

v
2

v
4

Figure 10: Non-Manifold disconnected vertex

This case is fairly trivial: there is a very clear limit surface for the four vertices and the face they
define, but no possible way to exact a limit surface from the disconnected vertex.

While the vertex does not contribute to any limit surface, it may not be completely irrelevant
though. Such vertices may be worth retaining during subdivision (if for no other reason than to
preserve certain vertex ordering) and simply ignored when it comes time to consider the limit surface.
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2 API Overview

API Layers
OpenSubdiv is structured as a set of layered libraries. This structure facilitates operation on a

variety of computing resources, and allows developers to only opt-in to the layers and feature sets that
they require. From a top-down point of view, OpenSubdiv is comprised of several layers, some public,
and some private.

Layers list:

Table 7: API Layer list

Sdc (Subdivision Core) The lowest level layer, implements the core subdivision details
to facilitate the generation of consistent results. Most cases
will only require the use of simple public types and constants
from Sdc.

Vtr (Vectorized Topological
Representation)

A suite of classes to provide an intermediate representation of
topology that supports efficient refinement. Vtr is intended
for internal use only.

Far (Feature Adaptive Repre-
sentation)

The central interface that processes client-supplied geometry
and turns it into a serialized data representation ready for
parallel processing in Osd. Far also provides a fully-featured
single-threaded implementation of subdivision interpolation
algorithms.

Osd (OpenSubdiv cross plat-
form)

A suite of classes to provide parallel subdivision kernels and
drawing utilities on a variety of platforms such as TBB,
CUDA, OpenCL, GLSL and DirectX.

Client mesh data enters the API through the Far layer. Typically, results will be collected from the
Osd layer. However, it is possible to use functionality from Far without introducing any dependency
on Osd.

Although there are several entry-points to provide topology and primitive variable data to Open-
Subdiv, eventually everything must pass through the private Vtr and Sdc representations for topological
analysis.
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OpenSubdiv

Far

Sdc

Vtr

Osd

Topology

StencilTable PatchTable

Evaluator
Result

PrimvarRefiner

Primvar
(x, y, z)

Result

TopologyRefiner

Primvar
(x, y, z)

OptionsScheme

Figure 11: API layers

2.1 Using the Right Tools

OpenSubdiv’s tiered interface offers a lot flexibility to make your application both fast and robust.
Because navigating through the large collection of classes and features can be challenging, here are use
cases that should help sketch the broad lines of going about using subdivisions in your application.

General client application requirements:
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Table 8: API Layer list

Surface Limit For some applications, a polygonal approximation of the
smooth surface is enough. Others require C 2 continuous
differentiable bi-cubic patches (ex: deformable displacement
mapping, smooth normals and semi-sharp creases...)

Deforming Surface Applications such as off-line image renderers often process
a single frame at a time. Others, such as interactive games
need to evaluate deforming character surface every frame.
Because we can amortize many computations if the topology
of the mesh does not change, OpenSubdiv provides ’stencil
tables’ in order to leverage subdivision refinement into a pre-
computation step.

Multi-threading OpenSubdiv also provides dedicated interfaces to leverage
parallelism on a wide variety of platforms and API standards,
including both CPUs and GPUs.

GPU Draw If the application requires interactive drawing on screen,
OpenSubdiv provides several back-end implementations, in-
cluding D3D11 and OpenGL. These back-ends provide full
support for programmable shading.

2.2 Use case 1: Simple refinement

The following example shows the most simple case to get your mesh refined uniformly.

Figure 12: Use case 1: Simple refinement
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Use case 1: simple refinement

Far

Sdc

Vtr
Topology

PrimvarRefiner

Primvar
(x, y, z)

Result

TopologyRefiner

OptionsScheme

Figure 13: Use case 1: Simple refinement

1. Define a class for the primvar you want to refine. It’s required to have Clear() and AddWith-
Weight() functions.

struct Vertex {
void Clear() { x = y = z = 0; }
void AddWithWeight(Vertex const &src, float weight) {

x += weight * src.x;
y += weight * src.y;
z += weight * src.z;

}
float x, y, z;

};

2. Instantiate a Far::TopologyRefiner from the Far::TopologyDescriptor.

Far::TopologyDescriptor desc;
desc.numVertices = <the number of vertices>
desc.numFaces = <the number of faces>
desc.numVertsPerFace = <array of the number of verts per face>
desc.vertIndicesPerFace = <array of vert indices>

Far::TopologyRefiner * refiner = Far::TopologyRefinerFactory<Descriptor>::Create(desc);

3. Call RefineUniform() to refine the topology up to ’maxlevel’.

refiner->RefineUniform(Far::TopologyRefiner::UniformOptions(maxlevel));

4. Interpolate vertex primvar data at ’level’ using Far::PrimvarRefiner

Far::PrimvarRefiner primvarRefiner(*refiner);
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Vertex const *src = <coarse vertices>
Vertex *dst = <refined vertices>

primvarRefiner.Interpolate(level, src, dst);

5. The topology at the refined level can be obtained from Far::TopologyLevel.

Far::TopologyLevel const & refLastLevel = refiner->GetLevel(maxlevel);

int nverts = refLastLevel.GetNumVertices();
int nfaces = refLastLevel.GetNumFaces();

for (int face = 0; face < nfaces; ++face) {
Far::ConstIndexArray fverts = refLastLevel.GetFaceVertices(face);

// do something with dst and fverts
}

2.3 Use case 2: GL adaptive tessellation drawing of animating mesh

The next example is showing how to draw adaptive tessellated patches in GL using OpenSubdiv. The
osd layer helps you to interact with GL and other device specific APIs. Also for an efficient refinement
of animating mesh on a static topology, we create a stencil table to refine the positions changing over
time.

The following example code uses an Osd::GLMesh utility class which composites a stencil table,
patch table, vertex buffer and evaluator in osd layer. You can also use those classes independently.

Vertex Buffer

Use case 2: GL drawing of animating mesh

Far

Sdc

Vtr

Osd

Topology

StencilTable PatchTable

Evaluator

TopologyRefiner

OptionsScheme

coarse

refined

Index Buffer
PatchParam

Shader

Tessellation
Shader

Figure 14: Use case 2: GL adaptive tessellation drawing
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1. Instantiate a Far::TopologyRefiner from the Far::TopologyDescriptor, same as usecase 1.

2. Setup Osd::Mesh. In this example we use b-spline endcap.

int numVertexElements = 3; // x, y, z

Osd::MeshBitset bits;
bits.set(Osd::MeshAdaptive, true); // set adaptive
bits.set(Osd::MeshEndCapBSplineBasis, true); // use b-spline basis patch for endcap.

Osd::GLMeshInterface *mesh = new Osd::Mesh<Osd::CpuGLVertexBuffer, Far::StencilTable,
Osd::CpuEvaluator, Osd::GLPatchTable>

(refiner, numVertexElements, 0, level, bits);

3. Update coarse vertices and refine (Osd::Mesh::Refine() calls Osd::CpuEvaluator::EvalStencils())

mesh->UpdateVertexBuffer(&vertex[0], 0, nverts);
mesh->Refine();

4. Bind index buffer, PatchParamBuffer and vertex buffer.

// index buffer
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mesh->GetPatchTable()->GetPatchIndexBuffer());

// vertex buffer
glBindBuffer(GL_ARRAY_BUFFER, mesh->BindVertexBuffer());
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, numVertexElements, GL_FLOAT, GL_FALSE,

numVertexElements*sizeof(float), 0);

// patch param buffer
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_BUFFER, mesh->GetPatchTable()->GetPatchParamTextureBuffer());

5. Draw. Since we use b-spline endcaps in this example, there is only one PatchArray in the patch
table. You may need to iterate patch arrays as you use other type of endcap. To configure GLSL
program for each patch type, see osd shader interface for more details.

Osd::PatchArray const & patch = mesh->GetPatchTable()->GetPatchArrays()[0];
Far::PatchDescriptor desc = patch.GetDescriptor();

int numVertsPerPatch = desc.GetNumControlVertices(); // 16 for B-spline patches
glUseProgram(BSplinePatchProgram);
glPatchParameteri(GL_PATCH_VERTICES, numVertsPerPatch);
glDrawElements(GL_PATCHES, patch.GetNumPatches() * numVertsPerPatch,

GL_UNSIGNED_INT, 0);

6. As the mesh animates, repeat from step 3 to update positions, refine, and draw. See glViewer
and other examples for more complete usage.
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3 Sdc Overview

3.1 Subdivision Core (Sdc)

Sdc is the lowest level layer in OpenSubdiv. Its intent is to separate the core subdivision details from
any particular representation of a mesh (it was previously bound to Hbr) to facilitate the generation
of consistent results with other mesh representations, both internal and external to OpenSubdiv.

The functionality can be divided roughly into three sections:

• types, traits and options for the supported subdivision schemes

• computations required to support semi-sharp creasing

• computations for mask weights of subdivided vertices for all schemes

For most common usage, familiarity with only the first of these is necessary – primarily the use
of public types and constants for the choice of subdivision scheme and its associated options. The
latter two provide the basis for a more comprehensive implementation of subdivision, which requires
considerably more understanding and effort.

Overall, the approach was to extract the functionality at the lowest level possible. In some cases,
the implementation is not far from being simple global functions. The intent was to start at a low
level and build any higher level functionality as needed. What exists now is functional for ongoing
development and anticipated needs within OpenSubdiv for the near future.

The intent of Sdc is to provide the building blocks for OpenSubdiv and its clients to efficiently
process the specific set of supported subdivision schemes. It is not intended to be a general framework
for defining customized subdivision schemes.

3.2 Types, Traits and Options

The most basic type is the enum Sdc::SchemeType that identifies the fixed set of subdivision schemes
supported by OpenSubdiv: Bilinear, Catmark and Loop. With this alone, we intend to avoid all
dynamic casting issues related to the scheme by simply adding members to the associated subclasses
for inspection.

In addition to the type enum itself, a class defining a fixed set of traits associated with each scheme
is provided. While these traits are available as static methods in the interface of a class supporting
more functionality for each scheme (to be described shortly), the SchemeTypeTraits provide queries
of the traits for a variable of type Sdc::SchemeType – enabling parameterization of code by the value
of a trait without templates or virtual inheritance (a simple internal table of traits is constructed and
trivially indexed).

The second contribution is the collection of all variations in one place that can be applied to the
subdivision schemes, i.e. the boundary interpolation rules, creasing method, edge subdivision choices,
etc. The fact that these are all declared in one place alone should help clients see the full set of
variations that are possible.

A simple Options struct (a set of bitfields) aggregates all of these variations into a single object
(the equivalent of an integer in this case) that are passed around to other Sdc classes and/or methods
and are expected to be used at a higher level both within OpenSubdiv and externally. By aggregating
the options and passing them around as a group, it allows us to extend the set easily in future without
the need to rewire a lot of interfaces to accommodate the new choice. Clients can enable new choices
at the highest level and be assured that they will propagate to the lowest level where they are relevant.

Unlike other ”options” structs used elsewhere to specify variations of a particular method, Sdc::Options
defines all options that affect the shape of the underlying limit surface of a subdivision mesh. Other
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operations at higher levels in the library may have options that approximate the shape and so create a
slightly different appearance, but Sdc::Options is a fundamental part of the definition of the true limit
surface.

3.3 Creasing support

Since the computations involved in the support of semi-sharp creasing are independent of the sub-
division scheme, the goal in Sdc was to encapsulate all related creasing functionality in a similarly
independent manner. Computations involving sharpness values are also much less dependent on topol-
ogy – there are vertices and edges with sharpness values, but knowledge of faces or boundary edges
is not required, – so the complexity of topological neighborhoods required for more scheme-specific
functionality is arguably not necessary here.

Creasing computations have been provided as methods defined on a Crease class that is con-
structed with a set of Options. Its methods typically take sharpness values as inputs and compute
a corresponding set of sharpness values as a result. For the ”Uniform” creasing method (previously
known as ”Normal”), the computations may be so trivial as to question whether such an interface is
worth it, but for ”Chaikin” or other schemes in the future that are non-trivial, the benefits should
be clear. Functionality is divided between both uniform and non-uniform, so clients have some con-
trol over avoiding unnecessary overhead, e.g. non-uniform computations typically require neighboring
sharpness values around a vertex, while uniform does not.

Also included as part of the Crease class is the Rule enum – this indicates if a vertex is Smooth,
Crease, Dart or Corner (referred to as the ”mask” in Hbr) and is a function of the sharpness values
at and around a vertex. Knowing the Rule for a vertex can accelerate mask queries, and the Rule can
often be inferred based on the origin of a vertex (e.g. it originated from the middle of a face, was the
child of a Smooth vertex, etc.).

Methods are defined for the Crease class to:

• subdivide edge and vertex sharpness values

• determine the Rule for a vertex based on incident sharpness values

• determine the transitional weight between two sets of sharpness values

Being all low-level and working directly on sharpness values, it is a client’s responsibility to coor-
dinate the application of any hierarchical crease edits with their computations.

Similarly, in keeping with this as a low-level interface, values are passed as primitive arrays. This
follows the trend in OpenSubdiv of dealing with data of various kinds (e.g. weights, component indices,
now sharpness values, etc.) in small contiguous sets of values. In most internal cases we can refer to a
set of values or gather what will typically be a small number of values on the stack for temporary use.

3.4 Scheme-specific support

While the SchemeTypeTraits class provides traits for each subdivision scheme supported by OpenSub-
div (i.e. Bilinear, Catmark and Loop), the Scheme class provides these more directly, Additionally,
the Scheme class provides methods for computing the various sets of weights used to compute new
vertices resulting from subdivision. The collection of weights used to compute a single vertex at a new
subdivision level is typically referred to as a ”mask”. The primary purpose of the Scheme class is to
provide such masks in a manner both general and efficient.

Each subdivision scheme has its own values for its masks, and each are provided as specializations of
the template class Scheme<SchemeType TYPE>. The intent is to minimize the amount of code specific
to each scheme.
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The computation of mask weights for subdivided vertices is the most significant contribution of
Sdc. The use of semi-sharp creasing with each non-linear subdivision scheme complicates what are
otherwise simple masks determined solely by the topology, and packaging that functionality to achieve
both the generality and efficiency desired has been a challenge.

Mask queries are defined in the Scheme class template, which has specializations for each of the
supported subdivision schemes. Mask queries are defined in terms of interfaces for two template pa-
rameters: the first defining the topological neighborhood of a vertex, and a second defining a container
in which to gather the individual weights:

template <typename FACE, typename MASK>
void ComputeFaceVertexMask(FACE const& faceNeighborhood, MASK& faceVertexMask, ...) const;

Each mask query is expected to call methods defined for the FACE, EDGE or VERTEX classes to
obtain the information they require ; typically these methods are simple queries about the topology
and associated sharpness values. Clients are free to use their own mesh representations to gather
the requested information as quickly as possible, or to cache some subset as member variables for
immediate inline retrieval.

In general, the set of weights for a subdivided vertex is dependent on the following:

• the topology around the parent component from which the vertex originates

• the type of subdivision Rule applicable to the parent component

• the type of subdivision Rule applicable to the new child vertex

• a transitional weight blending the effect between differing parent and child rules

This seems fairly straight-forward, until we look at some of the dependencies involved:

• the parent Rule requires the sharpness values at and around the parent component

• the child Rule requires the subdivided sharpness values at and around the new child vertex
(though it can sometimes be trivially inferred from the parent)

• the transitional weight between differing rules requires all parent and child sharpness values

Clearly the sharpness values are inspected multiple times and so it pays to have them available
for retrieval. Computing them on an as-needed basis may be simple for uniform creasing, but a non-
uniform creasing method requires traversing topological neighborhoods, and that in addition to the
computation itself can be costly.

The point here is that it is potentially unreasonable to expect to evaluate the mask weights com-
pletely independent of any other consideration. Expecting and encouraging the client to have subdi-
vided sharpness values first, for use in more than one place, is therefore recommended.

The complexity of the general case above is also unnecessary for most vertices. Any client using
Sdc typically has more information about the nature of the vertex being subdivided and much of this
can be avoided – particularly for the smooth interior case that often dominates. More on that in the
details of the Scheme classes.

Given that most of the complexity has been moved into the template parameters for the mask
queries, the Scheme class remains fairly simple. Like the Crease class, it is instantiated with a set
of Options to avoid them cluttering the interface. It is currently little more than a few methods for
the limit and refinement masks for each vertex type, plus the few fixed traits of the scheme as static
methods.
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The mask queries have been written in a way that greatly simplifies the specializations required
for each scheme. The generic implementation for both the edge-vertex and vertex-vertex masks take
care of all of the creasing logic, requiring only a small set of specific masks to be assigned for each
Scheme: smooth and crease masks for an edge-vertex, and smooth, crease and corner masks for a
vertex-vertex. Other than the Bilinear case, which will specialize the mask queries to trivialize them
for linear interpolation, the specializations for each Scheme should only require defining this set of
masks – and with two of them common (edge-vertex crease and vertex-vertex corner) the Catmark
scheme only needs to define three.

3.4.1 The FACE, EDGE and VERTEX interfaces

Mask queries require an interface to a topological neighborhood, currently labeled FACE, EDGE
and VERTEX. This naming potentially implies more generality than intended, as such classes are only
expected to provide the methods required of the mask queries to compute its associated weights. While
all methods must be defined, some may rarely be invoked, and the client has considerable flexibility
in the implementation of these: they can defer some evaluations lazily until required, or be pro-active
and cache information in member variables for immediate access.

An approach discussed in the past has alluded to iterator classes that clients would write to traverse
their meshes. The mask queries would then be parameterized in terms of a more general and generic
mesh component that would make use of more general traversal iterators. The advantage here is the
iterators are written once, then traversal is left to the query and only what is necessary is gathered.
The disadvantages are that clients are forced to write these to do anything, getting them correct
and efficient may not be trivial (or possible in some cases), and that the same data (e.g. subdivided
sharpness) may be gathered or computed multiple times for different purposes.

The other extreme was to gather everything possible required at once, but that is objectionable.
The approach taken here provides a reasonable compromise between the two. The mask queries ask
for exactly what they want, and the provided classes are expected to deliver it as efficiently as possible.
In some cases the client may already be storing it in a more accessible form and general topological
iteration can be avoided.

The information requested of these classes in the three mask queries is as follows:

For FACE

• the number of incident vertices

For EDGE

• the number of incident faces

• the sharpness value of the parent edge

• the sharpness values of the two child edges

• the number of vertices per incident face

For VERTEX

• the number of incident faces

• the number of incident edges

• the sharpness value of the parent vertex

• the sharpness values for each incident parent edge

• the sharpness value of the child vertex
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• the sharpness values for each incident child edge

The latter should not be surprising given the dependencies noted above. There are also a few more
to consider for future use, e.g. whether the EDGE or VERTEX is manifold or not. In most cases,
additional information can be provided to the mask queries (i.e. pre-determined Rules), and most of
the child sharpness values are not necessary. The most demanding situation is a fractional crease that
decays to zero – in which case all parent and child sharpness values in the neighborhood are required
to determine the proper transitional weight.

3.4.2 The MASK interface

Methods dealing with the collections of weights defining a mask are typically parameterized by a
MASK template parameter that contains the weights. The set of mask weights is currently divided
into vertex-weights, edge-weights and face-weights – consistent with previous usage in OpenSubdiv
and providing some useful correlation between the full set of weights and topology. The vertex-weights
refer to parent vertices incident the parent component from which a vertex originated, the edge-weights
the vertices opposite incident edges of the parent, and the face-weights the center of incident parent
faces. Note the latter is NOT in terms of vertices of the parent but potentially vertices in the child
originating from faces of the parent. This has been done historically in OpenSubdiv but is finding less
use – particularly when it comes to providing greater support for the Loop scheme – and is a point
needing attention.

So the mask queries require the following capabilities:

• assign the number of vertex, edge and/or face weights

• retrieve the number of vertex, edge and/or face weights

• assign individual vertex, edge and/or face weights by index

• retrieve individual vertex, edge and/or face weights by index

through a set of methods required of all MASK classes. Since the maximum number of weights
is typically known based on the topology, usage within Vtr, Far or Hbr is expected to simply define
buffers on the stack. Another option is to utilize pre-allocated tables, partitioned into the three sets
of weights on construction of a MASK, and populated by the mask queries.

A potentially useful side-effect of this is that the client can define their weights to be stored in either
single or double-precision. With that possibility in mind, care was taken within the mask queries to
make use of a declared type in the MASK interface (MASK::Weight) for intermediate calculations.
Having support for double-precision masks in Sdc does enable it at higher levels in OpenSubdiv if later
desired, and that support is made almost trivial with MASK being generic.

It is important to remember here that these masks are being defined consistent with existing usage
within OpenSubdiv: both Hbr and the subdivision tables generated by Far. As noted above, the “face
weights” correspond to the centers of incident faces, i.e. vertices on the same level as the vertex for
which the mask is being computed, and not relative to vertices in the parent level as with the other sets
of weights. It is true that the weights can be translated into a set in terms solely of parent vertices,
but in the general case (i.e. Catmark subdivision with non-quads in the base mesh) this requires
additional topological association. In general we would need N-3 weights for the N-3 vertices between
the two incident edges, where N is the number of vertices of each face (typically 4 even at level 0).
Perhaps such a translation method could be provided on the mask class, with an optional indication
of the incident face topology for the irregular cases. The Loop scheme does not have “face weights”,
for a vertex-vertex mask, but for an edge-vertex mask it does require weights associated with the faces
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incident the edge – either the vertex opposite the edge for each triangle, or its center (which has no
other use for Loop).

4 Vtr Overview

4.1 Vectorized Topology Representation (Vtr)

Vtr consists of a suite of classes that collectively provide an intermediate representation of topology
that supports efficient refinement.

Vtr is intended for internal use only and is currently accessed through the Far layer by the
Far::TopologyRefiner, which assembles these Vtr classes to meet the topological and refinement
needs of the Far layer. What follows is therefore more intended to provide insite into the underly-
ing architecture than to describe particular usage. For documentation more relevant to direct usage,
proceed to the Far section previously noted.

Vtr is vectorized in that its topological data is stored more as a collection of vectors of primitive
elements rather than as the faces, vertices and edges that make up many other topological represen-
tations. It is essentially a structure-of-arrays (SOA) approach to topology in contrast to the more
common array-of-structures pattern found in many other topological representations. Vtr’s use of vec-
tors allows it to be fairly efficient in its use of memory and similarly efficient to refine, but the topology
is fixed once defined.

Vtr classes are purely topological. They are even more independent of the representation of vertices,
faces, etc. than Hbr in that they are not even parameterized by an interface to such components. So
the same set of Vtr objects can eventually be used to serve more than one representation of these
components. The primary requirement is that a mesh be expressable as an indexable set (i.e. a vector
or array) of vertices, edges and faces. The index of a component uniquely identifies it and properties
are retrieved by referring to it by index.

It’s worth qualifying the term “topological” here and elsewhere – we generally refer to “topology”
as “subdivision topology” rather than “mesh topology”. A subdivision hierarchy is impacted by the
presence of semi-sharp creasing, as the subdivision rules change in response to that creasing. So
subdivision topology includes the sharpness values assigned to edges and vertices that affect the semi-
sharp creasing.

The two primary classes in Vtr consist of:

• Vtr::Level - a class representing complete vertex topology for a level

• Vtr::Refinement - a class mapping a parent Vtr::Level to a child level

Others exist to represent the following:

• selection and appropriate tagging of components for sparse refinement

• divergence of face-varying topology from the vertex topology

• mapping between face-varying topology at successive levels

• common low-level utilities, e.g. simple array classes

4.2 Vtr::Level

Vtr::Level is a complete topological description of a subdivision level, with the topological relations,
sharpness values and component tags all stored in vectors (literally std::vectors, but easily changed via
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typedefs). There are no classes or objects for the mesh component types (i.e. faces, edges and vertices)
but simply an integer index to identify each. It can be viewed as a structure-of-arrays representation
of the topology: any property related to a particular component is stored in an array and accessible
using the index identifying that component. So with no classes the for the components, its difficult to
say what constitutes a “vertex” or a “face”: they are each the sum of all the fields scattered amongst
the many vectors included.

Level represents a single level of a potential hierarchy and is capable of representing the complete
base mesh. There are no members that relate data in one level to any other, either below or above. As
such, any Level can be used as the base level for a new subdivision hierarchy (potentially more than
one). All relationships between separate levels are maintained in the Vtr::Refinement class.

4.2.1 Topological Relationships

Level requires the definition of and associations between a fixed set of indexable components for all
three component types, i.e. an explicit edge list in addition to the expected set of vertices and faces.
There are no explicit component objects in the representation, only an integer index (Vtr::Index)
identifying each component within the set and data associated with that component in the various
vectors.

The topology is stored as six sets of incident relations between the components: two each for the
two other component types incident each component type, i.e.:

• for each face, its incident vertices and incident edges

• for each edge, its incident vertices and incident faces

• for each vertex, its incident edges and incident faces

The collection of incidence relations is a vectorized variation of AIF (the “Adjacency and Incidence
Framework”). The set of these six incidence relations is not minimal (only four are required, but that
set excludes the most desired face-vertex relation) but all six are kept and maintained to facilitate
faster refinement. While the sizes of several vectors are directly proportional to the number of vertices,
edges or faces to which the data is associated, the sizes of some of the vectors for these relations is more
cumulative and so additional vectors of offsets is required (typical of the face-vertex list commonly used
as the minimal definition of mesh topology).

Vectors for the sharpness values associated with crease edges and corner vertices are included (and
so sized according to the number of edges and vertices), along with additional tags for the components
that may be helpful to refinement (i.e. the type of subdivision Rule associated with each vertex).

A Level is really just a container for data in a subdivision level, and so its public methods are
primarily to access that data. Modification of the data is protected and only made available to classes
that are intended to construct Levels: currently the Far factory class that is responsible for building
the base level, and the Vtr::Refinement class that constructs subsequent levels during refinement.

4.2.2 Memory Efficiency

One of the advantages in storing data in what is essentially a structure-of-arrays, rather than the array-
of-structures more typical of topological representations, is that we can be more selective about memory
usage in some cases. Particularly in the case of uniform refinement, when the data in subsequent levels
is typically 4x its predecessor, we can minimize what we either generate or keep around at each level.
For instance, if only a face-list is required at the finest level, we only need to generate one of the six
topological relations: the vertices incident each face. When we do keep Levels around in memory (as
is the case with the Far::TopologyRefiner) we do have do have the opportunity to prune what is
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not strictly necessary after the refinement. Just as with construction, whatever classes are privileged
to construct a Level are likely those that will be privileged to prune its contents when needed.

The current implementation of Level is far from optimal though – there are opportunities for
improvement. After one level of subdivision, the faces in a Level will be either all quads or tris.
Having specializations for these cases and using the more general case in support of N-sided faces for
the base level only is one possibility. Levels also allocate dozens of vectors in which to store all data.
Since these vectors are of fixed size once created, they could be aggregated by partitioning one or a
smaller number of larger block of memory into the desired pieces. The desire to make some of these
improvements is part of why Vtr is not directly exposed for public use and instead exposed via Far.

4.3 Vtr::Refinement

While Vtr::Level contains the topology for each subdivision level, Vtr::Refinement is responsible for
creating a new level via refinement of an existing one, and for maintaining the relationships between
the components in the parent and child levels. So a simplified view of a subdivision hierarchy with Vtr
is a set of Levels with a Refinement between each successive pair.

VtrRefinement 0

VtrLevel 0

VtrLevel 1

VtrLevel 2

VtrRefinement 1

parent

child

parent

child

...   
Figure 15: Vtr::Refinement

Refinement is a friend of Level and will populate a child level from a parent given a set of refine-
ment parameters. Aside from parameters related to data or depth, there are two kinds of refinement
supported: uniform and sparse. The latter sparse refinement requires selection of an arbitrary set of
components – any dependent or “neighboring” components that are required for the limit will be auto-
matically included. So feature-adaptive refinement is just one form of this selective sparse refinement,
the criteria being the topological features of interest (creases and extra-ordinary vertices). The intent
is to eventually provide more flexibility to facilitate the refinement of particular regions of interest or
more dynamic/adaptive needs.

Refinement has also been subclassed according to the type of topological split being performed,
i.e. splitting all faces into quads or tris via the QuadRefinement and TriRefinement subclasses. As
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noted with Vtr::Level, there is further room for improvement in memory and/or performance here
by combining more optimal specializations for both Refinement and Level – with consideration of
separating the uniform and sparse cases.

4.3.1 Parent-child and child-parent relationships

While Refinement populates a new child Level as part of its refinement operation, it also accumulates
the relationships between the parent and child level (and as with Level, this data is stored in vectors
indexable by the components).

The associations between components in the two levels was initially only uni-directional: child
components were associated with incident components of a parent component based on the parent
components topology, so we had a parent-to-child mapping (one to many). Storing the reverse child-
to-parent mapping was avoided to reduce memory (particularly in the case of uniform refinement) as
it often was not necessary, but a growing need for it, particularly in the case of sparse feature-adaptive
refinement, lead to it being included.

4.3.2 Data flexibility

One of the advantages of the structure-of-arrays representation in both Level and Refinement is that
we can make more dynamic choices about what type of data we choose to allocate and use based on
needs. For instance, we can choose between maintaining the parent-child or child-parent mapping in
Refinement, or both if needed, and we can remove one if no longer necessary. An active example of
this is uniform refinement: if we only require the face-vertex list at the finest subdivision level, there
is no need to generate a complete topological description of that level (as would be required of more
traditional representations), and given that level is 4x the magnitude of its parent, the savings are
considerable.

Currently there is nothing specific to a subdivision scheme in the refinement other than the type of
topological splitting to apply. The refinement does subdivide sharpness values for creasing, but that
too is independent of scheme. Tags were added to the base level that are propagated through the
refinement and these too are dependent on the scheme, but are applied externally.

5 Far Overview

5.1 Feature Adaptive Representation (Far)

Far is the primary API layer for processing client-supplied mesh data into subdivided surfaces. The Far
interface may be used directly and also may be used to prepare mesh data for further processing by Osd.
The two main aspects of the subdivision process are Topology Refinement and Primvar Refinement.

5.1.1 Topology Refinement

Topology refinement is the process of splitting the mesh topology according to the specified subdivison
rules to generate new topological vertices, edges, and faces. This process is purely topological and
does not depend on the speciific values of any primvar data (point positions, etc). Topology refine-
ment can be either uniform or adaptive, where extraordinary features are automatically isolated (see
feature adaptive subdivision). The Far topology classes present a public interface for the refinement
functionality provided in Vtr, The main classes in Far related to topology refinement are:
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Table 9: Topology refinement classes

TopologyRefiner A class encapsulating mesh refinement.
TopologyLevel A class representing one level of refinement within a

TopologyRefiner.
TopologyRefinerFactory<MESH> A factory class template specialized in terms of the

application’s mesh representation used to construct
TopologyRefiner instances.

5.1.2 Primvar Refinement

Primvar refinement is the process of computing values for primvar data (points, colors, normals, texture
coordinates, etc) by applying weights determined by the specified subdivision rules. There are many
advantages gained by distinguishing between topology refinement and primvar interpolation including
the ability to apply a single static topological refinement to multiple primvar instances or to different
animated primvar time samples. Far supports methods to refine primvar data at the locations of
topological vertices and at arbitrary locations on the subdivision limit surface. The main classes in
Far related to primvar refinement are:

Table 10: Primvar refinement classes

PrimvarRefiner A class implementing refinement of primvar data at the loca-
tions of topological vertices.

PatchTable A representation of the refined surface topology that can be
used for efficient evaluation of primvar data at arbitrary lo-
cations.

StencilTable A representation of refinement weights suitable for efficient
parallel processing of primvar refinement.

LimitStencilTable A representation of refinement weights suitable for efficient
parallel processing of primvar refinement at arbitrary limit
surface locations.

5.2 Far::TopologyRefiner

TopologyRefiner is the building block for many other useful classes in Far. It performs refinement
of an arbitrary mesh and provides access to the refined mesh topology. It can be used for primvar
refinement directly using PrimvarRefiner or indirectly by being used to create a stencil table, or a
patch table, etc.

TopologyRefiner provides the public refinement methods RefineUniform() and RefineAdapative()
which perform refinement operations using Vtr. TopologyRefiner provides access to the refined
topology via TopologyLevel instances.

43



FarTopologyRefinerFactory

Create
FarTopologyRefiner

VtrRefinement 0

VtrLevel 0

VtrLevel 1

VtrLevel 2

VtrRefinement 1

...

FarTopologyRefiner

VtrLevel 0

Refine

 
Figure 16: Vtr::TopologyRefiner

5.3 Far::TopologyRefinerFactory

Consistent with other classes in Far, instances of TopologyRefiner are created by a factory class – in
this case Far::TopologyRefinerFactory.

Here we outline several approaches for converting mesh topology into the required Far::TopologyRefiner.
Additional documentation is provided with the Far::TopologyRefinerFactory<MESH> class template
used by all, and each has a concrete example provided in one of the tutorials or in the Far code itself.

There are three ways to create TopologyRefiners

• use the existing TopologyRefinerFactory<TopologyDescriptor> with a populated instance of
TopologyDescriptor

• specialize TopologyRefinerFactory<class MESH> for more efficient conversion, using only face-
vertex information

• fully specialize TopologyRefinerFactor<class MESH> for most control over conversion

5.3.1 Use the Far::TopologyDescriptor

Far::TopologyDescriptor is a simple struct that can be initialized to refer to raw mesh topology in-
formation – primarily a face-vertex list – and then passed to a provided factory class to create a
TopologyRefiner from each. Topologically, the minimal requirement consists of:

• the number of vertices and faces of the mesh

• an array containing the number of vertices per face

• an array containing the vertices assigned to each face
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These last two define one of the six topological relations that are needed internally by Vtr, but this
one relation is sufficient to construct the rest. Additional members are available to assign sharpness
values per edge and/or vertex, hole tags to faces, or to define multiple sets (channels) of face-varying
data.

Almost all of the Far tutorials (i.e. tutorials/far/tutorial *) illustrate use of the TopologyDescriptor
and its factory for creating TopologyRefiners, i.e. TopologyRefinerFactory<TopologyDescriptor>.

For situations when users have raw mesh data and have not yet constructed a boundary represen-
tation of their own, it is hoped that this will suffice. Options have even been provided to indicate that
raw topology information has been defined in a left-hand winding order and the factory will handle the
conversion to right-hand (counter-clockwise) winding on-the-fly to avoid unnecessary data duplication.

5.3.2 Custom Factory for Face Vertices

If the nature of the TopologyDescriptor’s data expectations is not helpful, and so conversion to large
temporary arrays would be necessary to properly make use of it, it may be worth writing a custom
factory.

Specialization of TopologyRefinerFactory<class MESH> should be done with care as the goal here
is to maximize the performance of the conversion and so minimize overhead due to runtime validation.
The template provides the high-level construction of the required topology vectors of the underlying
Vtr.

There are two ways to write such a factory: provide only the face-vertex information for topology
and let the factory infer all edges and other relationships, or provide the complete edge list and all
other topological relationships directly. The latter is considerably more involved and described in a
following section.

The definition of TopologyRefinerFactory<TopologyDescriptor> provides a clear and complete
example of constructing a TopologyRefiner with minimal topology information, i.e. the face-vertex
list. The class template TopologyRefinerFactory<MESH> documents the needs here and the Topolo-
gyDescriptor instantiation and specialization should illustrate that.

5.3.3 Custom Factory for Direct Conversion

Fully specializing a factory for direct conversion is needed only for those requiring ultimate control and
is not generally recommended. It is recommended that one of the previous two methods initially be
used to convert your mesh topology into a TopologyRefiner. If the conversion performance is critical,
or significant enough to warrant improvement, then it is worth writing a factory for full topological
conversion.

Writing a custom factory requires the specification/specialization of two methods with the following
purpose:

• specify the sizes of topological data so that vectors can be pre-allocated

• assign the topological data to the newly allocated vectors

As noted above, the assumption here is that the client’s boundary-rep knows best how to retrieve the
data that we require most efficiently. After the factory class gathers sizing information and allocates
appropriate memory, the factory provides the client with locations of the appropriate tables to be
populated (using the same Array classes and interface used to access the tables). The client is expected
to load a complete topological description along with additional optional data, i.e.:

• the six topological relations required by Vtr, oriented when manifold
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• sharpness values for edges and/or vertices (optional)

• additional tags related to the components, e.g. holes (optional)

• values-per-face for face-varying channels (optional) e

This approach requires dealing directly with edges, unlike the other two. In order to convert edges
into a TopologyRefiner’s representation, the edges need to be expressed as a collection of known size
N – each of which is referred to directly by indices [0,N-1]. This can be awkward for representations
such as half-edge or quad-edge that do not treat the instance of an edge uniquely.

Particular care is also necessary when representing non-manifold features. The previous two ap-
proaches will construct non-manifold features as required from the face-vertex list – dealing with degen-
erate edges and other non-manifold features as encountered. When directly translating full topology
it is necessary to tag non-manifold features, and also to ensure that certain edge relationships are
satisfied in their presence. More details are available with the assembly methods of the factory class
template.

While there is plenty of opportunity for user error here, that is no different from any other conversion
process. Given that Far controls the construction process through the Factory class, we do have ample
opportunity to insert runtime validation, and to vary that level of validation at any time on an instance
of the Factory. The factory does provide run-time validation on the topology constructed that can be
used for debugging purposes.

A common base class has been created for the factory class, i.e.:

template <class MESH>
class TopologyRefinerFactory : public TopologyRefinerFactoryBase

both to provide common code independent of <MESH> and also potentially to protect core code from
unwanted specialization.

5.4 Far::PrimvarRefiner

PrimvarRefiner supports refinement of arbitrary primvar data at the locations of topological vertices.
A PrimvarRefiner accesses topology data directly from a TopologyRefiner.

Different methods are provided to support three different classes of primvar interpolation. These
methods may be used to refine primvar data to a specified refinement level.

Interpolate(...) Interpolate using vertex weights
InterpolateVarying(...) Interpolate using linear weights
InterpolateFaceVarying(...) Interpolate using face-varying weights

Additional methods allow primvar data to be interpolated to the final limit surface including the
calculation of first derivative tangents.

Limit(dst) Interpolate to the limit surface using vertex weights
Limit(dst, dstTan1, dstTan2) Interpolate including first derivatives to the limit surface us-

ing vertex weights
LimitFaceVarying(...) Interpolate to the limit surface using face-varying weights

PrimarRefiner provides a straightforward interface for refining primvar data, but depending on the
application use case, it can be more efficient to create and use a StencilTable, or PatchTable, to refine
primvar data.
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5.5 Far::PatchTable

The patch table is a serialized topology representation. This container is generated using Far::PatchTableFactory
from an instance Far::TopologyRefiner after a refinement has been applied. The Far::PatchTableFactory
traverses the data-structures of the TopologyRefiner and serializes the sub-faces into collections of
bi-linear and bi-cubic patches as dictated by the refinement mode (uniform or adaptive). The patches
are then sorted into arrays based on their types.

5.5.1 Patch Arrays

The patch table is a collection of control vertex indices. Meshes are decomposed into a collection
of patches, which can be of different types. Each type has different requirements for the internal
organization of its control-vertices. A PatchArray contains a sequence of multiple patches that share
a common set of attributes.

While all patches in a PatchArray will have the same type, each patch in the array is associated
with a distinct PatchParam which specifies additional information about the individual patch.

Each PatchArray contains a patch Descriptor that provides the fundamental description of the
patches in the array.

The PatchArray ArrayRange provides the indices necessary to track the records of individual
patches in the table.

PatchArray 0
Descriptor

Range

Patch 0 Patch 1 Patch 2

PatchArray 1
Descriptor

Range

Patch 0 Patch 1 Patch 2 Patch 3

PatchArray n
Descriptor

Range

...

...

CV indices array

 

Figure 17: Far::PatchTables

5.5.2 Patch Types

The following are the different patch types that can be represented in the PatchTable:

Patch Type #CVs Description
NON PATCH n/a “Undefined” patch type
POINTS 1 Points : useful for cage drawing
LINES 2 Lines : useful for cage drawing
QUADS 4 Bi-linear quads-only patches
TRIANGLES 3 Bi-linear triangles-only mesh
LOOP n/a Loop patch (currently unsupported)
REGULAR 16 B-spline Basis patches
GREGORY 4 Legacy Gregory patches
GREGORY BOUNDARY 4 Legacy Gregory Boundary patches
GREGORY BASIS 20 Gregory Basis patche
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The type of a patch dictates the number of control vertices expected in the table as well as the
method used to evaluate values.

5.5.3 Patch Parameterization

Each patch represents a specific portion of the parametric space of the coarse topological face identi-
fied by the PatchParam FaceId. As topological refinement progresses through successive levels, each
resulting patch corresponds to a smaller and smaller subdomain of the face. The PatchParam UV
origin describes the mapping from the uv domain of the patch to the uv subdomain of the topological
face. We encode this uv origin using log2 integer values for compactness and efficiency.

It is important to note that this uv parameterization is the intrinsic parameterization within a
given patch or coarse face and is distinct from any client specified face-varying channel data.

Patches which result from irregular coarse faces (non-quad faces in the Catmark scheme, or non-
trianglular faces in the Loop scheme) are offset by the one additional level needed to ”quadrangulate”
or ”triangulate” the irregular face.

Figure 18: Far patch parameter

A patch along an interpolated boundary edge is supported by an incomplete sets of control vertices.
For consistency, patches in the PatchTable always have a full set of control vertex indices and the
PatchParam Boundary bitmask identifies which control vertices are incomplete (the incomplete control
vertex indices are assigned values which duplicate the first valid index). Each bit in the boundary
bitmask corresponds to one edge of the patch starting from the edge from the first vertex and continuing
around the patch. With feature adaptive refinement, regular B-spline basis patches along interpolated
boundaries will fall into one of the eight cases (four boundary and four corner) illustrated below:
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Figure 19: Far patch boundary

Transition edges occur during feature adaptive refinement where a patch at one level of refinement
is adjacent to pairs of patches at the next level of refinement. These T-junctions do not pose a problem
when evaluating primvar data on patches, but they must be taken into consideration when tessellating
patches (e.g. while drawing) in order to avoid cracks. The PatchParam Transition bitmask identifies
the transition edges of a patch. Each bit in the bitmask corresponds to one edge of the patch just like
the encoding of boundary edges.

After refining an arbitrary mesh, any of the 16 possible transition edge configurations might occur.
The method of handling transition edges is delegated to patch drawing code.

Figure 20: Far patch transition

5.5.4 Single-Crease patches

Using single-crease patches allows a mesh with creases to be represented with many fewer patches than
would be needed otherwise. A single-crease patch is a variation of a regular BSpline patch with one
additional crease sharpness parameter.
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5.5.5 Local Points

The control vertices represented by a PatchTable are primarily refined points, i.e. points which result
from applying the subdivision scheme uniformly or adaptively to the points of the coarse mesh. How-
ever, the final patches generated from irregular faces, e.g. patches incident on an extraordinary vertex
might have a representation which requires additional local points.

5.5.6 Legacy Gregory Patches

Using Gregory patches to approximate the surface at the final patches generated from irregular faces
is an alternative representation which does not require any additional local points to be computed.
Instead, when Legacy Gregory patches are used, the PatchTable must also have an alternative repre-
sentation of the mesh topology encoded as a vertex valence table and a quad offsets table.

5.6 Far::StencilTable

The base container for stencil data is the StencilTable class. As with most other Far entities, it has an
associated StencilTableFactory that requires a TopologyRefiner.

5.6.1 Advantages

Stencils are used to factorize the interpolation calculations that subdivision schema apply to vertices
of smooth surfaces. If the topology being subdivided remains constant, factorizing the subdivision
weights into stencils during a pre-compute pass yields substantial amortizations at run-time when
re-posing the control cage.

Factorizing the subdivision weights also allows to express each subdivided vertex as a weighted sum
of vertices from the control cage. This step effectively removes any data inter-dependency between
subdivided vertices : the computations of subdivision interpolation can be applied to each vertex in
parallel without any barriers or constraint. The Osd classes leverage these properties by exploiting
CPU and GPU parallelism.

Far

Osd

Subdivision Mesh

Topology Points

Stencil
Table

Evaluator

Vertex
Data

Subdivided
Vertex Data

Far

Subdivision Mesh

Topology Points

Stencil
Table

Subdivided
Vertex Data

Figure 21: Far stencil table

5.6.2 Principles

Iterative subdivision algorithms converge towards the limit surface by successively refining the ver-
tices of the coarse control cage. Each successive iteration interpolates the new vertices by applying
polynomial weights to a basis of supporting vertices.
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The interpolation calculations for any given vertex can be broken down into sequences of multiply-
add operations applied to the supporting vertices. Stencil table encodes a factorization of these
weighted sums : each stencils is created by combining the list of control vertices from the 1-ring.

With iterative subdivision, each refinement step is dependent upon the previous subdivision step
being completed, and a substantial number of steps may be required in order approximate the limit :
each subdivision step incurs an O(4n) growing amount of computations.

Instead, once the weights of the contributing coarse control vertices for a given refined vertex have
been factorized, it is possible to apply the stencil and directly obtain the interpolated vertex data
without having to process the data for the intermediate refinement levels.

level 0 level 1 level 2 level 3vertex data

apply stencils

subdivide

level 0 level 3

level 3

subdividesubdivide

vertex data
     

Figure 22: Far stencil table

5.6.3 Cascading Stencils

Client-code can control the amount of factorization of the stencils : the tables can be generated with
contributions all the way from a basis of coarse vertices, or reduced only to contributions from vertices
from the previous level of refinement.

The latter mode allows client-code to access and insert modifications to the vertex data at set
refinement levels (see hierarchical vertex edits). Once the edits have been applied by the client-code,
another set of stencils can be used to smoothe the vertex data to a higher level of refinement.

apply stencils

vertex data level 0 level 2 Level 2'

apply edits apply stencils

level 4 ...
Figure 23: Far stencil table

See implementation details, see the Far cascading stencil tutorial.

5.7 Limit Stencils

Stencil tables can be trivially extended from discrete subdivided vertices to arbitrary locations on the
limit surface. Aside from extraordinary points, every location on the limit surface can be expressed as
a closed-form weighted average of a set of coarse control vertices from the 1-ring surrounding the face.

The weight accumulation process is similar : the control cage is adaptively subdivided around
extraordinary locations. A stencil is then generated for each limit location simply by factorizing the
bi-cubic Bspline patch weights over those of the contributing basis of control-vertices.
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The use of bi-cubic patches also allows the accumulation of analytical derivatives, so limit stencils
carry a set of weights for tangent vectors.

F

P
(f,u,v)

P
limit limit

P 
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 → P
limit

Figure 24: Far limit stencil

Once the stencil table has been generated, limit stencils are the most direct and efficient method of
evaluation of specific locations on the limit of a subdivision surface, starting from the coarse vertices
of the control cage.

Also: just as discrete stencils, limit stencils that are factorized from coarse control vertices do not
have inter-dependencies and can be evaluated in parallel.

For implementation details, see the glStencilViewer code example.

5.7.1 Sample Location On Extraordinary Faces

Each stencil is associated with a singular parametric location on the coarse mesh. The parametric
location is defined as face location and local [0.0 - 1.0] (u,v) triplet:

In the case of face that are not quads, a parametric sub-face quadrant needs to be identified. This
can be done either explicitly or implicitly by using the unique ptex face indices for instance.
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5.7.2 Code Example

When the control vertices (controlPoints) move in space, the limit locations can be very efficiently
recomputed simply by applying the blending weights to the series of coarse control vertices:
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class StencilType {
public:

void Clear() {
memset( &x, 0, sizeof(StencilType));

}

void AddWithWeight( StencilType const & cv, float weight ) {
x += cv.x * weight;
y += cv.y * weight;
z += cv.z * weight;

}

float x,y,z;
};

std::vector<StencilType> controlPoints,
points,
utan,
vtan;

// Update points by applying stencils
controlStencils.UpdateValues<StencilType>( &controlPoints[0], &points[0] );

// Update tangents by applying derivative stencils
controlStencils.UpdateDerivs<StencilType>( &controlPoints[0], &utan[0], &vtan[0] );

6 Osd overview

6.1 OpenSubdiv cross platform (Osd)

Osd contains device dependent code that makes Far structures available on various backends such as
TBB, CUDA, OpenCL, GLSL, etc. The main roles of Osd are:

Refinement
Compute stencil-based uniform/adaptive subdivision on CPU/GPU backends

Limit Stencil Evaluation
Compute limit surfaces by limit stencils on CPU/GPU backends

Limit Evaluation with PatchTable
Compute limit surfaces by patch evaluation on CPU/GPU backends

OpenGL/DX11 Drawing with hardware tessellation
Provide GLSL/HLSL tessellation functions for patch table

Interleaved/Batched buffer configuration
Provide consistent buffer descriptor to deal with arbitrary buffer layout.

Cross-Platform Implementation
Provide convenient classes to interop between compute and draw APIs

These are independently used by clients. For example, a client can use only the limit stencil
evaluation, or a client can refine subdivision surfaces and draw them with the PatchTable and Osd
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tessellation shaders. All device specific evaluation kernels are implemented in the Evaluator classes.
Since Evaluators don’t own vertex buffers, clients should provide their own buffers as a source and
destination. There are some interop classes defined in Osd for convenience.

OpenSubdiv utilizes a series of regression tests to compare and enforce identical results across
different computational devices.

6.2 Refinement

Osd supports both uniform subdivision and adaptive subdivision.
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Stencil
Table

Stencil
Table

Evaluator
Refined
Points

Figure 25: Osd refinement

Once clients create a Far::StencilTable for the topology, they can convert it into device-specific
stencil tables if necessary. The following table shows which evaluator classes and stencil table interfaces
can be used together. Note that while Osd provides these stencil table classes which can be easily
constructed from Far::StencilTable, clients aren’t required to use these table classes. Clients may
have their own entities as a stencil tables as long as Evaluator::EvalStencils() can access the necessary
interfaces.
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Backend Evaluator class Compatible stencil table
CPU (CPU single-threaded) CpuEvaluator Far::StencilTable
TBB (CPU multi-threaded) TbbEvaluator Far::StencilTable
OpenMP (CPU multi-threaded) OmpEvaluator Far::StencilTable
CUDA (GPU) CudaEvaluator CudaStencilTable
OpenCL (CPU/GPU) CLEvaluator CLStencilTable
GL ComputeShader (GPU) GLComputeEvaluator GLStencilTableSSBO
GL Transform Feedback (GPU) GLXFBEvaluator GLStencilTableTBO
DX11 ComputeShader (GPU) D3D11ComputeEvaluator D3D11StencilTable

6.3 Limit Stencil Evaluation

Limit stencil evaluation is quite similar to refinement in Osd. At first clients create Far::LimitStencilTable
for the locations to evaluate the limit surfaces, then convert it into an evaluator compatible stencil
table and call Evaluator::EvalStencils().
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Figure 26: Osd limit stencil evaluation

6.4 Limit Evaluation with PatchTable

Another way to evaluate the limit surfaces is to use the PatchTable. Once all control vertices and
local points are resolved by the stencil evaluation, Osd can evaluate the limit surfaces through the
PatchTable.
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Osd

FarSubdivision Mesh

Topology

Coarse
Points

Stencil
Table

Patch
Table

Stencil
Table

Patch
Table

Evaluator
Refined
Points

Evaluator

Patch
Coords

Limit
Points

Figure 27: Osd limit evaluation with PatchTable

Backend Evaluator class Compatible patch table
CPU (CPU single-threaded) CpuEvaluator CpuPatchTable
TBB (CPU multi-threaded) TbbEvaluator CpuPatchTable
OpenMP (CPU multi-threaded) OmpEvaluator CpuPatchTable
CUDA (GPU) CudaEvaluator CudaPatchTable
OpenCL (CPU/GPU) CLEvaluator CLPatchTable
GL ComputeShader (GPU) GLComputeEvaluator GLPatchTable
GL Transform Feedback (GPU) GLXFBEvaluator GLPatchTable
DX11 ComputeShader (GPU) D3D11ComputeEvaluator D3D11PatchTable

(*)not yet supported

6.5 OpenGL/DX11 Drawing with Hardware Tessellation

One of the most interesting use cases of the Osd layer is realtime drawing of subdivision surfaces using
hardware tessellation. This is somewhat similar to limit evaluation with PatchTable described above.
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Drawing differs from limit evaluation in that Osd provides shader snippets for patch evaluation and
clients will inject them into their own shader source.
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Figure 28: Osd tessellation

See shader interface section for a more detailed discussion of the shader interface.

6.6 Interleaved/Batched Buffer Configuration

All Osd layer APIs assume that each primitive variables to be computed (points, colors, uvs ...) are
contiguous arrays of 32bit floating point values. The Osd API refers to such an array as a “buffer”. A
buffer can exist on CPU memory or GPU memory. Osd Evaluators typically take one source buffer and
one destination buffer, or three destination buffers if derivatives are being computed. Osd Evaluators
also take BufferDescriptors, that are used to specify the layout of the source and destination buffers.
A BufferDescriptor is a struct of 3 integers which specify an offset, length and stride.

For example:

Vertex 0 Vertex 1 ...
X Y Z X Y Z ...
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The layout of this buffer can be described as

Osd::BufferDescriptor desc(/*offset = */ 0, /*length = */ 3, /*stride = */ 3);

BufferDescriptor can also be used for an interleaved buffer.

Vertex 0 Vertex 1 ...
X Y Z R G B A X Y Z R G B A ...

Osd::BufferDescriptor xyzDesc(0, 3, 7);
Osd::BufferDescriptor rgbaDesc(3, 4, 7);

Although the source and destination buffers don’t need to be the same buffer for EvalStencils(),
adaptive patch tables are constructed to first index the coarse vertices and the refined vertices imme-
diately afterward. In this case, the BufferDescriptor for the destination should include the offset as
the number of coarse vertices to be skipped.

Coarse vertices (n) : Src Refined vertices : Dst
Vertex 0 Vertex 1 ... Vertex n Vertex n+1 ...
X Y Z X Y Z ... X Y Z X Y Z ...

Osd::BufferDescriptor srcDesc(0, 3, 3);
Osd::BufferDescriptor dstDesc(n*3, 3, 3);

Also note that the source descriptor doesn’t have to start with offset = 0. This is useful when a
client has a big buffer with multiple objects batched together.

6.7 Cross-Platform Implementation

One of the key goals of OpenSubdiv is to achieve as much cross-platform flexibility as possible and
leverage all optimized hardware paths where available. This can be very challenging as there is a very
large variety of plaftorms and APIs available, with very distinct capabilities.

In Osd, Evaluators don’t care about interops between those APIs. All Evaluators have two kinds
of APIs for both EvalStencils() and EvalPatches().

• Explicit signatures which directly take device-specific buffer representation (e.g., pointer for
CpuEvaluator, GLuint buffer for GLComputeEvaluator, etc.)

• Generic signatures which take arbitrary buffer classes. The buffer class is required to have a
certain method to return the device-specific buffer representation.

The later interface is useful if the client supports multiple backends at the same time. The methods
that need to be implemented for the Evaluators are:
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Evaluator class object method
CpuEvaluator pointer to cpu memory BindCpuBuffer()
TbbEvaluator
OmpEvaluator
CudaEvaluator pointer to cuda memory BindCudaBuffer()
CLEvaluator cl mem BindCLBuffer()
GLComputeEvaluator GL buffer object BindVBO()
GLXFBEvaluator
D3D11ComputeEvaluator D3D11 UAV BindD3D11UAV()

The buffers can use these methods as a trigger of interop. Osd provides a default implementation
of interop buffer for most of the backend combinations. For example, if the client wants to use CUDA
as a computation backend and use OpenGL as the drawing API, Osd::CudaGLVertexBuffer fits the
case since it implements BindCudaBuffer() and BindVBO(). Again, clients can implement their own
buffer class and pass it to the Evaluators.

7 Osd Tessllation shader interface

7.1 Basic

Starting with 3.0, Osd tessellation shaders can be used as a set of functions from client shader code. In
order to tessellate Osd patches, client shader code should perform the following steps (regular B-spline
patch case):

In a tessellation control shader

• fetch a PatchParam for the current patch

• call OsdComputePerPatchVertexBSpline() to compute OsdPerPatchVertexBezier.

• compute tessellation level. To prevent cracks on transition patches, two vec4 parameters
(tessOuterHi, tessOuterLo) will be needed in addition to built-in gl TessLevelInner/Outers.

In a tessellation evaluation shader

• call OsdGetTessParameterization() to remap gl TessCoord to a patch parameter at which
to evaluate.

• call OsdEvalPatchBezier()/OsdEvalPatchGregory() to evaluate the current patch.

The following is a minimal example of GLSL code explaining how client shader code uses Open-
Subdiv shader functions to tessellate patches of a patch table.

7.1.1 Tessellation Control Shader Example (for BSpline patches)

layout (vertices = 16) out;
in vec3 position[];
patch out vec4 tessOuterLo, tessOuterHi;
out OsdPerPatchVertexBezier v;

void main()
{

// Get a patch param from texture buffer.
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ivec3 patchParam = OsdGetPatchParam(gl_PrimitiveID);

// Compute per-patch vertices.
OsdComputePerPatchVertexBSpline(patchParam, gl_InvocationID, position, v);

// Compute tessellation factors.
if (gl_InvocationID == 0) {

vec4 tessLevelOuter = vec4(0);
vec2 tessLevelInner = vec2(0);
OsdGetTessLevelsUniform(patchParam,

tessLevelOuter, tessLevelInner,
tessOuterLo, tessOuterHi);

gl_TessLevelOuter[0] = tessLevelOuter[0];
gl_TessLevelOuter[1] = tessLevelOuter[1];
gl_TessLevelOuter[2] = tessLevelOuter[2];
gl_TessLevelOuter[3] = tessLevelOuter[3];

gl_TessLevelInner[0] = tessLevelInner[0];
gl_TessLevelInner[1] = tessLevelInner[1];

}
}

7.1.2 Tessellation Evaluation Shader Example (for BSpline patches)

layout(quads) in;
patch in vec4 tessOuterLo, tessOuterHi;
in OsdPerPatchVertexBezier v[];
uniform mat4 mvpMatrix;

void main()
{

// Compute tesscoord.
vec2 UV = OsdGetTessParameterization(gl_TessCoord.xy, tessOuterLo, tessOuterHi);

vec3 P = vec3(0), dPu = vec3(0), dPv = vec3(0);
vec3 N = vec3(0), dNu = vec3(0), dNv = vec3(0);
ivec3 patchParam = inpt[0].v.patchParam;

// Evaluate patch at the tess coord UV
OsdEvalPatchBezier(patchParam, UV, v, P, dPu, dPv, N, dNu, dNv);

// Apply model-view-projection matrix.
gl_Position = mvpMatrix * vec4(P, 1);

}

7.2 Basis conversion

7.2.1 B-Spline Patch

The following diagram shows how the Osd shaders process b-spline patches.
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OsdComputePerPatchVertexBSpline()

OsdPerPatchVertexBezier

Refined positions

Regular B-spline Patch

PatchParam

OsdEvalPatchBezier()

evaluate                    

Tessellation control

Tessellation evaluation

Figure 29: Osd BSpline shader

While regular patches are expressed as b-spline patches in Far::PatchTable, the Osd shader converts
them into Bezier basis patches for simplicity and efficiency. This conversion is performed in the
tessellation control stage. The boundary edge evaluation and single crease matrix evaluation are also
resolved during this conversion. OsdComputePerPatchVertexBSpline() can be used for this process.
The resulting Bezier control vertices are stored in OsdPerPatchVertexBezier struct.

void OsdComputePerPatchVertexBSpline(
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ivec3 patchParam, int ID, vec3 cv[16], out OsdPerPatchVertexBezier result);

The tessellation evaluation shader takes an array of OsdPerPatchVertexBezier struct, and then
evaluates the patch using the OsdEvalPatchBezier() function.

void OsdEvalPatchBezier(ivec3 patchParam, vec2 UV,
OsdPerPatchVertexBezier cv[16],
out vec3 P, out vec3 dPu, out vec3 dPv,
out vec3 N, out vec3 dNu, out vec3 dNv)

7.2.2 Gregory Basis Patch

In a similar way, Gregory basis patches are processed as follows:

OsdPerPatchVertexGregoryBasis

GregoryBasis Patch

OsdComputePerPatchVertexGregoryBasis()

LocalPoints PatchParam

OsdEvalPatchGregory()

evaluate                  

Tessellation control

Tessellation evaluation

Figure 30: Osd Gregory shader
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OsdComputePerPatchVertexGregoryBasis() can be used for the Gregory patches (although no basis
conversion involved for the Gregory patches) and the resulting vertices are stored in a OsdPerPatchVer-
texGreogryBasis struct.

void OsdComputePerPatchVertexGregoryBasis(
ivec3 patchParam, int ID, vec3 cv, out OsdPerPatchVertexGregoryBasis result)

The tessellation evaluation shader takes an array of OsdPerPatchVertexGregoryBasis struct, and
then evaluates the patch using the OsdEvalPatchGregory() function.

void
OsdEvalPatchGregory(ivec3 patchParam, vec2 UV, vec3 cv[20],

out vec3 P, out vec3 dPu, out vec3 dPv,
out vec3 N, out vec3 dNu, out vec3 dNv)

7.2.3 Legacy Gregory Patch (2.x compatibility)

OpenSubdiv 3.0 also supports 2.x style Gregory patch evaluation (see Far overview). In order to
evaluate a legacy Gregory patch, client needs to bind extra buffers and to perform extra steps in the
vertex shader as shown in the following diagram:
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Figure 31: Osd Legacy gregory shader

7.3 Tessellation levels

Osd provides both uniform and screen-space adaptive tessellation level computation.
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Uniform tessellation OsdGetTessLevelsUniform()
Screen-space adaptive tessellation OsdGetTessLevelsAdaptiveLimitPoints()

Because of the nature of feature adaptive subdivision, we need to pay extra attention for a patch’s
outer tessellation level for the screen-space adaptive case so that cracks don’t appear.

An edge of the patch marked as a transition edge is split into two segments (Hi and Lo).
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Figure 32: Osd shader patch configuration

The Osd shaders uses these two segments to ensure the same tessellation along the edge between
different levels of subdivision. In the following example, suppose the left hand side patch has determined
the tessellation level of its right edge to be 5. gl TessLevelOuter is set to 5 for the edge, and at the
same time we also pass 2 and 3 to the tessellation evaluation shader as separate levels for the two
segments of the edge split at the middle.
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Figure 33: Osd shader transition patch

Then the tessellation evaluation shader takes gl TessCoord and those two values, and remaps
gl TessCoord using OsdGetTessParameterization() to ensure the parameters are consistent across ad-
jacent patches.

gl_TessCoord remapping

0.0 1.0

TessOuterLo = 2 TessOuterHi = 3

gl_TessOuterLevel = 5

OsdGetTessParameterization()

Figure 34: Osd shader patch parameter remapping

vec2 OsdGetTessParameterization(vec2 uv, vec4 tessOuterLo, vec4 tessOuterHi)

These tessellation levels can be computed by OsdGetTessLevelsAdaptiveLimitPoints() in the tes-
sellation control shader. Note that this function requires all 16 bezier control points, you need to call
barrier() to ensure the conversion is done for all invocations. See osd/glslPatchBSpline.glsl for more
details.

void OsdGetTessLevelsAdaptiveLimitPoints(OsdPerPatchVertexBezier cpBezier[16],
ivec3 patchParam,
out vec4 tessLevelOuter, out vec2 tessLevelInner,
out vec4 tessOuterLo, out vec4 tessOuterHi)

8 References

For more references, please visit http://graphics.pixar.com/opensubdiv/
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RenderMan RIS

by Christophe Hery and Ryusuke Villemin

Figure 1: Photorealistic RenderMan 20 c©Disney/Pixar 2015

1 Introduction

For Finding Dory, the rendering pipeline at Pixar was completely rewritten to use RenderMan’s new
rendering engine RIS (Fig 1), in place of the old REYES renderer. Although ray-tracing and physically
based shading were already used at Pixar, beginning with Monsters University and The Blue Umbrella,
rendering was still done using the classical hybrid renderer (REYES+raytracing) with RSL coshaders1.
The system was complex to maintain and couldn’t achieve optimal performance because of this hybrid
nature that needed to accommodate both rendering algorithms. With RIS, the switch to raytracing
is now complete, and we have a modern, performant renderer, running fast C++ shaders, and can
do efficient progressive rendering. More than ever, the setup complexity is handled by the computer,
allowing the lighting artist to concentrate on the artistic side.

1A coshader is a specialized object construct in Pixar’s RenderMan: for more information, refer
to [The RenderMan Team 2009]
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2 REYES/raytracing

Although the first use of raytracing for Pixar’s productions goes back to A bug’s Life, raytracing only
became a main part of rendering (Fig 2) at Pixar since Cars, as outlined in [Christensen et al. 2006].
Lately it took a bigger step with the introduction of physically based shaders by [Hery and Villemin 2013]
for Monsters University and The Blue Umbrella. However RenderMan remained a REYES renderer
with some raytracing on top of it. Shading was primarily done using RSL, via a few extensions from
its original inception in [Cook 1984]. As an interpreted language, RSL amortized its running cost by
batching multiple points of a grid in parallel, and shading was completely detached from the visibility
computation process. The advantage was that, we could have a different metric for the shading rate,
and the visibility rate, and process rendering in independent small pieces, which was crucial decades
ago when memory was a very limited resource. This shading method combined with subdivision sur-
faces from [DeRose et al. 1998] is the foundation of the REYES (Render Everything You Ever Saw)
algorithm.

Figure 2: ”A bug’s life” 1998, ”Cars” 2006, ”Monsters University” 2012 c©Disney/Pixar 2015

Unfortunately now with raytracing, we have to shade where we hit, there is a very tight coupling
between visibility and shading computation. Running RSL shaders for every ray hit (although some
coherency can be achieved by spatially batching rays) proved to be too expensive. To solve this issue,
the radiosity cache described in [Christensen et al. 2012] was introduced (Fig 3). The idea was to
shade a whole grid of points at the first ray hit, and then reuse those results for subsequent hits. We
basically had the grid shading back in raytracing, making the use of RSL possible again! The biggest
caveat is that contrary to the primary hits all originating from the same direction, the render camera,
indirect rays can hit the grid from any direction. Care is needed when storing data into the radiosity
cache, basically only view-independent computations are valid, but they represent only a fraction of
all possible computations. For many years, we lived with that limitation, by only using diffuse effects,
and by keeping the use of specular effects in indirect hits only when absolutely necessary.
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Figure 3: Multi level radiosity cache

The consequence of that hybrid system and its caching approach was an increased complexity in
the shaders, which needed to run multiple tests and branching at every invocation, (Are we a primary
hit? A secondary? Can we cache the current computation? See code example in Fig 4). The pain also
extended to the users who had to decide when to cache, what to cache, at what resolution, making
debugging harder when problems arose. And since there was no centralized management of all that
intricacy, it was up to every shader to do the right thing, one bad shader in the scene potentially
sending the whole render time to the roof, or worse producing incoherent results.

Figure 4: shader branching example

Because of the shading cost at every shader invocation, it was also very difficult to do photon
and caustic tracing. They both require a full shader evaluation at every hit, which happens to be
impractical in RSL. The compromise RenderMan took was a set of predefined models for shading
photons (see [The RenderMan Team 2013]), namely refractive, chrome, matte and transparent, with
very basic controls such as albedo and ior. This solved the speed, but basically required having
two materials, the main one and the specialized simplified one for photons. The latter was not rich
enough to match the complex shaders built in production, and, on top of that, required a manual
synchronization with the main material.
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3 Background

After a four year long transition period, the shift to raytracing is complete with the advent of a new
renderer inside RenderMan, RIS. RIS is a modern, fully raytraced renderer. It runs fast C++ and
OSL compiled shaders at every hit point, the grids are gone. Since there is no radiosity cache involved,
we can implement standard raytracing techniques such as russian roulette, bidirectional tracing, etc.
One of the main differences in RIS compared to REYES is that it requires a global integrator.

The main focus is the same as before, solve the rendering equation2:

L(x, ωo) =
∫

Ω
f(x, ωi, ωo)L(x, ωi)cos(θ)dω + Le(x, ωo)

In this equation, there are two components: the Bxdfs f and the lights L, that are linked by the
central conductor, the global integrator. A third implicit component is the visibility, and is now
handled entirely by raytracing.

Typically, instead of trying to solve this equation in the general case, each surface shader was in
charge of doing its own local integration. Now the global integrator will take care of this task, and
thanks to its global view of the light paths, it can achieve more complex integration techniques, than
each surface could do locally.

Previously each part of this integral was handled by a specific shader class, a coshader.

L(x, ωo) =
∫

Ω
(fdiffuse(x, ωi, ωo) + fspecular(x, ωi, ωo)) (Ldirect(x, ωi) + Lindirect(x, ωi)) cos(θ)dω + Le(x, ωo)

L(x, ωo) =
∫

Ω
f(x, ωi, ωo)Ldirect(x, ωi)cos(θ)dω + Le(x, ωo)

+
∫

Ω
fdiffuse(x, ωi, ωo)Lindirect(x, ωi)cos(θ)dω

+
∫

Ω
fspecular(x, ωi, ωo)Lindirect(x, ωi)cos(θ)dω

that is :
L(x, ωo) = Ldirect + Lemission + LindirectDiffuse + LindirectSpecular

L(x, ωo) radiance from x in the ωo direction [Wm−2sr−1]
L(x, ωi) radiance to x in the ωi direction [Wm−2sr−1]
Le(x, ωo) radiance emitted from x in the ωo direction [Wm−2sr−1]
fs(x, ωi, ωo) surface BRDF at x from direction ωi to direction ωo [sr−1]
θ angle between the surface normal N and ωi [r]

Table 11: Notations

Ldirect was resolved by the directLighting integrator (lightPath = E{D,S}L, using [Heckbert 1990]’s
path notation3). LindirectDiffuse was resolved by the indirectDiffuse integrator (lightPath = ED{D,S}*L),
LindirectSpecular by the reflection integrator (lightPath = ES{D,S}*L). Splitting the computation, each
having a specialized integrator was the key to get acceptable performance, but also a curse because
each required a special setup, and it was very difficult to get enough flexibility to use all of them in
combination.

2In its simplified form here.
3Eye(E), Specular(S), Diffuse(D), Light(L)
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In RIS, we don’t have this splitting required anymore, but computing the rendering equation in
the general form is quite a challenge. One of the main problems is that if we do not decompose the
equation like before, L ends up in both sides of the equation. To make this easier to solve, let’s rewrite
the equation as a Neumann expansion series using the integral operator notation T :

< Tg > (x, ωo) =
∫

Ω
f(x, ωi, ωo)g(x, ωi)cos(θ)dω

then:
L = TL+ Le

If we recursively expand it:

L = T (Le + T (Le + T (Le + T...TLe...)))

or

L =
∞∑
n=0

TnLe

The global integrator can use the appropriate notation to solve the equation. In RIS, the integrator
is a completely customizable plugin, so almost any integrator could be implemented, although Render-
Man provides by default a performant pathtracer, and a more advanced UPS [Hachisuka et al. 2012]
/VCM [Georgiev et al. 2012] one.

4 RIS

4.1 Overview

The rendering computation can be decomposed into four main parts (Fig 5):

• RixPattern: The patterns don’t directly contribute to the lighting integration but they are re-
sponsible for feeding spatially varying signals (like textures) to the Bxdfs. They are written in
C++ or OSL (more info at [Gritz 2009]).

• RixLightingServices: The LightingServices will abstract all the lights in the scene and provide
light samples to the global Integrator. It is currently handled by RenderMan and is not cus-
tomizable except in specific places using LightFilters.

• RixBxdf: The Bxdfs shaders are responsible for providing all the surface samples with respect
to their sampling strategies. The same way the lighting services have to provide a number of
samples independent of the number of lights in the scene, each Bxdf needs to be capable of
providing one sample per call independently of the number of lobes it contains.

• RixIntegrator: The integrator handles the light path construction from the camera to the light
sources, querying and evaluating the lighting services and the Bxdfs.

All the above classes are customizable as inherited classes from the base classes by overloading
specific virtual functions.

One remarkable point is that although RenderMan does not shade grids anymore, the tracing engine
will bundle rays, and also hit points, so that multiple rays hitting the same object will call the material
in batches making vectorization particularly easy (see Fig 6). The terminology is kept the same as in
REYES, varying for variables dependent on the hit point, uniform for independent variables. At Pixar,
we take advantage of that parallelization by using ISPC from [Pharr and Mark 2012] when writing our
plugins.
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Figure 5: Separation between patterns, Bxdfs and integrator

The shading context, RixShadingContext (defined in Listing 1) is the element that is passed from
the integrator to the lighting services, Bxdfs, light filters and patterns, and contains all the information
about the current hits (P, Nn, curvature, ...).

Listing 1: RixShadingContext

class RixShadingContext : public RixContext
{
public :

enum Bui l t inVar
{

k P=0,
k PRadius ,
k Po , // und i sp laced P
k Nn , // normal ized shading normal
k Ngn , // normal ized geometr ic normal
k Non , // und i sp laced N
k Tn , // normal ized shading tangent
k Vn , // normal ized view vector , po in t s away from shading po in t s
k VLen , // l en g t h o f V: from the P to prev ious P
k curvature , // l o c a l su r f a c e curva ture
. . .

}

virtual void GetBui lt inVar ( Bui lt inVar , RtInt const∗∗ var ) const = 0 ;
virtual void GetBui lt inVar ( Bui lt inVar , RtFloat const∗∗ var ) const = 0 ;
virtual void GetBui lt inVar ( Bui lt inVar , RtFloat3 const∗∗ var ) const = 0 ;

. . .
} ;

Figure 6: A five ray batch generating two shader calls on two shading contexts A and B
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4.2 RixPattern

A pattern shader’s main function is ComputeOutputParams and returns one or multiple results, which
can be in turn varying or uniform. In the Listing 2 example, ColorMix only returns a single output
which is a varying array of colors. Patterns can be chained and connected through a DAG4. The
evaluation of incoming connections is done through EvalParam. This function will automatically
trigger the evaluation of any upstream pattern shaders, or just return a constant value if directly
specified in the RIB file (and a default value if not). The output array is allocated using RenderMan’s
stack allocator which will be optimized to not do any heap allocation during rendering, and also have
an automatic deallocation at the end of the shading context lifetime. This also serves as a cache for the
lifetime of the shading context, so if multiple patterns are connected to the same one, the evaluation
will happen only once.

Listing 2: Color Mix Pattern

RtInt ComputeOutputParams ( RixShadingContext const ∗ shadingCtx ,
RtInt ∗nOutputs , OutputSpec ∗∗ outputs ,
RtConstPointer instanceData ,
RixSCParamInfo const ∗ pInfo )

{
RtInt numPts = shadingCtx−>numPts ;
const RtColorRGB ∗ColorA = 0x0 ;
shadingCtx−>EvalParam ( k ColorA , −1, &ColorA , & ColorA , true ) ;

const RtColorRGB ∗ColorB = 0x0 ;
shadingCtx−>EvalParam ( k ColorB , −1, &ColorB , & ColorB , true ) ;

const RtFloat ∗mixer = 0x0 ;
shadingCtx−>EvalParam ( k mixer , −1, &mixer , & mixer , true ) ;

// a l l o c a t e and bind our ou tpu t s
RixShadingContext : : A l l o ca to r pool ( shadingCtx ) ;
OutputSpec ∗o = pool . Al locForPattern<OutputSpec >(1) ;
∗ outputs = o ;
∗noutputs = 1 ;

RtColorRGB ∗ResultC = pool . Al locForPattern<RtColorRGB>(numPts ) ;

o [ 0 ] . paramId = k ResultC ;
o [ 0 ] . d e t a i l = k RixSCVarying ;
o [ 0 ] . va lue = ( RtPointer ) ResultC ;

for ( RtInt po int Id = 0 ; po int Id < numPts ; ++po int Id )
{

RtFloat bAmt = mixer [ po int Id ] ;
RtFloat aAmt = 1 . f − bAmt ;
ResultC [ po int Id ] = aAmt ∗ ColorA [ po int Id ] + bAmt ∗ ColorB [ po int Id ] ;

}

return 0 ;
}

4Directed Acyclic Graph
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Figure 7: Procedural pattern

Figure 8: Procedural pattern network connected to a Bxdf

4.3 RixBxdf

There is one and only one Bxdf attached to each object in the scene. The Bxdf is the connection
between the object and the integrator and it needs to provide two functions to the integrator. For a
given input and output direction, provide the value and corresponding pdfs, but also needs to be able
to generate a new direction based on the current incoming direction. The corresponding two functions
are GenerateSample and EvaluateSample. Any required data from the shading context are queried via
GetBuiltinVar. The inputs are given by a pattern or a graph of patterns shaders through EvalParam.
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Listing 3: Lambertian Bxdf Sample

void GenerateSample ( RixBXTransportTrait t ranspor tTra i t ,
RixBXLobeTraits const ∗ lobesWanted ,
RixRNG ∗ rng ,
RixBXLobeSampled ∗ lobeSampled ,
RtVector ∗Ln ,
RixBXLobeWeights &W,
RtFloat ∗ fPdf , RtFloat ∗ rPdf )

{
//Get shading con t ex t v a r i a b l e s
RtInt numPts = shadingCtx−>numPts ;

const RtNormal∗ Nn = 0x0 ;
shadingCtx−>GetBui lt inVar ( RixShadingContext : : k Nn , &Nn ) ;
const RtVector∗ Vn = 0x0 ;
shadingCtx−>GetBui lt inVar ( RixShadingContext : : k Vn , &Vn ) ;
const RtVector∗ Tn = 0x0 ;
shadingCtx−>GetBui lt inVar ( RixShadingContext : : k Tn , &Tn ) ;

// a l l o c a t e and i n i t the r e s u l t array
RtColorRGB ∗ d i f f u s e = W. AddActiveLobe ( d i f f u s e L o b e ) ;

//Draw random numbers
RtFloatTwo x i [ nPts ] ;
rng−>DrawSamples2D ( nPts , x i ) ;

for ( RtInt po int Id = 0 ; po int Id < numPts ; ++po int Id )
{

i f ( lobeWanted [ po int Id ] & lambertLobeTra i t s )
{

RtFloat VdotN = Dot ( Vn[ po int Id ] , Nn [ po int Id ] ) ;
i f ( VdotN > 0 . f )
{

// cos ine based d i s t r i b u t i o n
RtFloat LdotN ;
R ixCosD i r e c t i ona lD i s t r i bu t i on ( x i [ po int Id ] , Nn [ po int Id ] , On[ po int Id ] , LdotN ) ;

fPdf [ po int Id ] = LdotN ∗ F INVPI ;
rPdf [ po int Id ] = VdotN ∗ F INVPI ;
d i f f u s e [ po int Id ] = LdotN ∗ F INVPI ∗ a lbedo [ po int Id ] ;
lobeSampled [ po int Id ] = lambertLobe ;

}
else
{

lobeSampled [ po int Id ] . SetVal id ( fa l se ) ;
}

}
else
{

lobeSampled [ po int Id ] . SetVal id ( fa l se ) ;
}

}
}
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Listing 4: Lambertian Bxdf Evaluate

void EvaluateSample ( RixBXTransportTrait t ranspor tTra i t ,
RixBXLobeTraits const ∗ lobesWanted ,
RixBXLobeTraits ∗ lobesEvaluated ,
const RtVector ∗Ln ,
RixBXLobeWeights &W,
RtFloat ∗ fPdf , RtFloat ∗ rPdf )

{
// ge t shading con t ex t v a r i a b l e s
RtInt numPts = shadingCtx−>numPts ;

const RtNormal∗ Nn = 0x0 ;
shadingCtx−>GetBui lt inVar ( RixShadingContext : : k Nn , &Nn ) ;
const RtVector∗ Vn = 0x0 ;
shadingCtx−>GetBui lt inVar ( RixShadingContext : : k Vn , &Vn ) ;

// a l l o c a t e and i n i t the r e s u l t array
RtColorRGB ∗ d i f f u s e = W. AddActiveLobe ( d i f f u s e L o b e ) ;

for ( RtInt po int Id = 0 ; po int Id < numPts ; ++po int Id )
{

i f ( lobeWanted [ po int Id ] & lambertLobeTra i t s )
{

RtFloat VdotN = Dot ( Vn[ po int Id ] , Nn [ po int Id ] ) ;
RtFloat LdotN = Dot ( Ln [ po int Id ] , Nn [ po int Id ] ) ;
i f ( VdotN > 0 . f && LdotN > 0 . f )
{

fPdf [ po int Id ] = LdotN ∗ F INVPI ;
rPdf [ po int Id ] = VdotN ∗ F INVPI ;
d i f f u s e [ po int Id ] = LdotN ∗ F INVPI ∗ a lbedo [ po int Id ] ;
lobesEva luated [ po int Id ] = lambertLobeTra i t s ;

}
else
{

l obesEva luated [ po int Id ] . SetNone ( ) ;
}

}
else
{

l obesEva luated [ po int Id ] . SetNone ( ) ;
}

}
}

76



Figure 9: Various Bxdfs

Although the integrator will see only one Bxdf, it doesn’t mean that this Bxdf needs to be simple.
In production, a Bxdf shader tends to be an aggregate of multiple ”lobes”, the standard one illustrated
in Fig 10 used at the studio contains:

• 1 diffuse

• 3 speculars

• 1 fuzz

• 1 glow

• 1 subsurface

• 1 singlescatter

This uber Bxdf contains additional logic to efficiently sample between all the lobes. We achieve that
by using one sample MIS [Veach and Guibas 1995] between them. For instance, when sampling the
specular lobe of a Bxdf, we also evaluate the diffuse part of it, which results in the variance reduction
shown in Fig 11.
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Figure 10: PbsSurface

(a) no MIS (b) One sample MIS between lobes

Figure 11: Multi-lobe MIS
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4.4 RixLightFilter

LightFilters are linked to individual lights, and because of their nature, they operate a little differently
than Bxdfs and Patterns. Instead of working directly on a RixShadingContext, they will operate on
a specialized RixLightFilterContext that corresponds to a compacted version of the shading context,
containing only the points that are querying the same light. The example we give here is a simple
spatial rod filter that will modify and tint all the diffuse and specular contributions of the light it is
attached to.

Listing 5: Light Filter Rod

void F i l t e r ( RixL ightF i l t e rContext const ∗ l fCtx ,
RtConstPointer instanceData ,
RtInt const numSamples ,
RtInt const ∗ shadingCtxIndex ,
RtVector3 const ∗ toLight ,
RtFloat const ∗ d i s t ,
RtFloat const ∗ l i gh tPd f I l l um ,
RixBXLobeWeights ∗ c o n t r i b u t i o n )

{
i f ( d e n s i t y != 0 . f )
{

RtPoint∗ xformedP = TransformPIntoLocalSpace ( l fCtx , numSamples , shadingCtxIndex ) ;

RtInt nbDi f f s = cont r ibut ion−>GetNumDiffuseLobes ( ) ;
RtInt nbSpecs = cont r ibut ion−>GetNumSpecularLobes ( ) ;

for ( RtInt sampleId = 0 ; sampleId < numSamples ; ++sampleId )
{

const RtPoint& point = xformedP [ sampleId ] ;
RtFloat cont r ib = 0 . f ;
RtColorRGB t i n t ( 1 . f ) ;

rod . run ( point , contr ib , t i n t ) ;

// app ly the c on t r i b u t i on
RtColorRGB d i f f u s e ( 1 . f ) ;
RtColorRGB specu l a r ( 1 . f ) ;

i f ( con t r i b > 0 . f )
{

d i f f u s e ∗= RixMix ( 1 . f , d i f fMu l t , c on t r i b ) ;
sp e cu l a r ∗= RixMix ( 1 . f , specMult , c on t r i b ) ;

}

d i f f u s e ∗= RixMix ( RixConstants : : k OneRGB , t in t , d e n s i t y ) ;
sp e cu l a r ∗= RixMix ( RixConstants : : k OneRGB , t in t , d e n s i t y ) ;

}
}

}
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Figure 12: Rod Preview in Katana

(a) no Rod (b) Rod Filter Attenuation

Figure 13: Rod Light Filter
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4.5 RixIntegrator

The integrator is the central part of the rendering. Its job begins at the primary shading contexts.

Figure 14: RixIntegrator

The simplest integrator could be a recursive raytracer that traces one ray at a time, every hit calling
recursively the next trace call, but this wouldn’t be very efficient. Instead RIS offers the possibility of
tracing multiple rays at once, as waves of rays, leading to faster tracing, as well as less shader calls.
The downside is that processing batches of points usually requires more memory than single point,
but this increased memory can be reduced by writing an iterative raytracer that will flush out local
memory every bounces. To illustrate, Fig 15a represents the diagram of operations if we recursively
want to compute the 3rd bounce recusively (notation: L = T (T (TLe)))). On the other hand, we can
do it iteratively, in the manner of Fig 15b. In the first case, we need to keep around all the bounces
before we can multiply by Le, in the latter when we arrive at Le we already have the correct thruput
T 3.

(a) Recursive Raytracing (b) Iterative Raytracing

Figure 15: Iterative/Recursive raytracing
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RenderMan passes information needed through the bounces using the RtRayGeometry class. If
an integrator needs additional data, it can keep a custom payload per ray (see Fig 16), contaning
for example the current thruput of the ray, that can be used to do russian roulette or termination
threshold.

Figure 16: Custom Ray Payload

Depending on the integration method, some light paths are not correctly sampled and can create
high variance (SDS or even standard caustic paths). There are two ways of solving this, use a more
complex integrator, or just detect and ignore those contributions. Both methods are available though
the default integrators (Fig 17b and 17c) and produce better results than the old REYES render.
Notice the missing reflection, refractions because the use of the radiosity cache (Fig 17a), and the nice
reflected caustics in the RIS bidirectional render.

If we decide to remove the high variance contributions during render, we usually apply a simple
clamp to reduce the fireflies. We also can leave them for the post process denoiser to remove. In any
case, we try to introduce as little specialized code as possible in the integrator, to leave the door open
to new integration techniques that may not be compatible with those special cases.

(a) Reyes, radiosity cache raytracing (b) unidirectional path tracing (c) bidirectional path tracing

Figure 17: REYES vs RIS raytracing
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4.6 A quick note about bi-directionality

As we have seen, the visual effects and animation rendering practionners have, for many years, employed
various tricks to produce images. With the advent of physically based illumination, a lot more structure
was introduced in how Bxdfs and lights are defined. Even then, we are only now entering, in production,
the era of bi-directional integration. This comes with yet additional constraints.

Let’s take an example. In [Hery and Villemin 2013], at paragraph 3, we described the main specular
model 5 that we designed for Monsters University and pretty much used universally at Pixar until now,
even for the upcoming movie The Good Dinosaur. For reference, here is its equation:

fµ(l,v) =
F (l,h)Db(h) (n · h)

4 (n · l) (v · h)
,with Db being the Beckmann distribution.

Our main concern at the time was about limiting computation (because of relatively slow RSL
execution), easy sampling ensuring convergence with MIS under direct lighting as well as tracing
for specular reflections, and energy conservation. This last item was crutial to satisfy the intu-
ition of the lighting and shading artists, who were used to ad-hoc enviromnent mapping as described
in [Blinn and Newell 1976], where a white uniform latlong image was expected to produce a uniform
response from the reflection environment look-up. Remember that the hybrid Reyes/ray-trace mode of
RenderMan mainly corresponds to a forward distributed ray-tracing approach, where events are solved
only from the camera onwards. As a consequence, we never cared about reciprocity.

So we gave up reciprocity alltogether in favor of absolute energy conservation. You can see that
from the equation above, where l and v cannot be interchanged to produce the same result. Another
thing we did, because of not directly sampling the half-way vector space, some sampled directions
would end up under the horizon, where they would be wasted and potentially would result in a slight
loss of energy. To overcome that, we did not normalize to the full number of samples in the integrator,
only to the valid ones. Note that this made our model even less reciprocal (at the same time it enforced
energy conservation).

With RIS and in particular bi-directional integration, special care needs to be applied to non
reciprocal models as in [Veach 1996], or better, we should strive to employ only reciprocal models.
At this stage, even with the recent strategies in visible normal sampling laid out in [Heitz 2014], we
cannot satisfy absolute energy conservation in known microfacet models, especially with large input
roughnesses. [To be frank, now that artists are used to physically based rendering and do not refer
anymore to their old habits, this is not even an issue.] Recently, [Jakob 2015] observed this phenomenon
and proposed an approximate rectification factor. See comparison in Fig 18.

(a) Monsters University model (b) Physically based model

Figure 18: Furnace test with roughness 1. Note the slight loss of energy on the reciprocal model.

5Some people have named this simple model ”the LEAN mapping BRDF”.
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One other point that can be difficult to assimilate is the change in the concept of shadows. Previ-
ously shadows were seen as a multiplier on the lighting response. Especially for people coming from the
REYES algorithm, where historically (see [Reeves et al. 1987]) shadows were a separately computed
map, that was multiplied on top on the ”non-shadowed” lighting result. This is not true anymore in
bidirectional pathtracing or photon tracing, where shadows are just the natural result of the absence
of light. Explicit shadow linking becomes impossible.

(a) Light rays are blocked by the sphere (b) The sphere is invisible to the light rays

Figure 19: Unlinking shadows.

(a) Photons accumulate on the ground and the
sphere and a shadow forms naturally under the
sphere.

(b) Photons do not see the sphere, this removes
the shadow, but at the same the illumination on
the sphere!

Figure 20: Classical shadow linking failure in photon.

A large amount of the old tricks are not available in bidirectional anymore. Some of them are not
needed because of the interactive rendering that allows the lighter set up lighting more easily than
before. Nonetheless, we are currently looking into new forms of controls we can give the lighters, for
instance through making use of LPEs 6.

6Light Path Expressions
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5 Katana pipeline integration

At the same time rendering switched from REYES to RIS, the lighting tool shifted from our internal
tool Lumos to Katana. The main benefits from that move are:

• shading is now also done in Katana, so artists can now shade in context. The shading network
is completely accessible in Katana (Fig 21), and we don’t have to jump to another software to
shade and to light.

• lighting can now use Katana’s interactive rendering (Fig 22). The lighters can change parameters
on the lights, position and orientation, but also even shader parameters and camera. Once the
live render is on, every edit happening on the scene will automatically show up in the render in
realtime without having to pay for an expensive and manual restart.

Figure 21: Complex shading network in Katana

Figure 22: LiveRendering in Katana

Since RIS is using raytracing from the primary rays starting at the camera, and the render is
progressive, it is now possible to have a different number of samples per pixel. This is called adaptive
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rendering. RenderMan internally keeps a buffer containing the current variance and error for each
pixel, and uses that to stop or continue to shoot rays within that pixel. The user can control the
quality by specifying a target error threshold or a target rendertime. In the Fig 23 example, we can see
that most of the computation went in the splashes, that require more reflection and refraction events
to converge, but the rest of the image (the still water) stopped much faster. At the end of the render,
RenderMan reports the average and number of active pixels per iteration.Various image buffers can
be incorporated in the final variance computation. For example, by using custom AOVs, we can force
the renderer to shoot more rays on specific objects or regions.

(a) Adaptive Rendering (b) Adaptive Heatmap

Figure 23: Adaptive Rendering

Another benefit of the progressive nature of the rendering is checkpointing. Controlled by either a
number of iterations or just render time intervals, we can tell RenderMan to write intermediate images
on disk, so we can now have very quickly an estimate of what the final images are going to look like
(Fig 24). This means that we can detect if anything is wrong in the image (”I forgot a light!”) without
waiting for the full rendertime, and we can look at a full sequence even if all the images have not fully
finished yet.

Checkpointing can be restarted. So, if an image ends up too noisy, we can resume with additional
iterations and let the render converge from there.

(a) After 1 hour (b) After 10 hours

Figure 24: Render Checkpoints
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6 Conclusion

Moving to RIS overall improved the lighting efficiency by enabling faster iterations, which translated
in more creative exploration and refinements. Although we have a completely new renderer, the
RenderMan spirit is still alive, by providing a complete, open API, where every user can customize the
renderer as she wishes.

From a developer point of view, the advantages are multiple. Because there is no real limitation
on the API, it is now much easier to implement and test the latest Siggraph papers on rendering. The
move to C++ also makes porting to and from other renderers easier, even cross platform, for example
in Optix and CUDA, a very C like language.

We want to thank the full RenderMan team, who we worked with more closely than ever to stress the
new RIS API, and with which we are currently collaborating to ship the studio shaders externally. We
also want to acknowledge here the work of all the shading, lighting and rendering TDs in the RUKUS
project on Finding Dory, whose mission was to bring RIS and Katana into the studio pipeline.
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