
Art and Technology at Pixar
SIGGRAPH ASIA 2018 Course Notes

Course Organizer

Ryusuke Villemin
Pixar Animation Studios

Presenters

Chia-Chi Hu
Pixar Animation Studios

Sonoko Konishi
Pixar Animation Studios

Hiroaki Narita
Pixar Animation Studios

Magnus Wrenninge
Pixar Animation Studios

David G Yu
Pixar Animation Studios

1



Course Description

As described by this now famous quote ”The art challenges technology, and the technology inspires
art”, technology has always played an important part in Pixar’s movie making process. This course
will show how we develop and utilize new technical advancements to tell more appealing stories, using
real-world examples from our latest movie Incredibles 2. This is a direct refresher of the previous course
from Siggraph Asia 2015. Since that time, Pixar’s pipeline has been heavily restructured, switching
its main rendering algorithm to pathtracing. We will describe how that technology has now matured,
and how we were able to reintroduce complete artistic control in this new physically based world. At
the same time, the pipeline kept evolving and we introduced a new stage that didn’t exist before, in
the form of deep compositing. Finally we’ll focus on USD, OpenSubdiv and the Hydra render engine,
to showcase how the whole pipeline is moving toward real-time feedback, not only for rendering, but
also for many other departments such as animation, simulation and crowds.

Level of Difficulty: Intermediate

Intended Audience

Practitioners from CG animation, VFX and videogames, plus researchers interested in the current
trends in the industry.

Prerequisites

A basic understanding of computer graphics, modeling, simulation, lighting and compositing.

Course Website

http://graphics.pixar.com/Library

Contact

rvillemin@pixar.com

2

http://graphics.pixar.com/Library
mailto:rvillemin@pixar.com


About the Presenters

CHIA-CHI HU studied cinematography at Université de Paris - Saint Denis, and worked as as commer-
cials director before moving to the visual effects industry. Before joining Pixar, she worked as a Senior
and Lead Compositor at Dubois and Macguff in Paris, Moving Picture Company in London, Digital
Domain in Los Angeles and Industrial Light and Magic in San Francisco. Some of her film credits
include The Last Jedi, Rogue One, Jurassic World and Tron Legacy. She is currently Compositing
Technical Director in Pixar’s lighting department.

SONOKO KONISHI joined Pixar in 1994 as a Jr. TD after graduating from a fine arts college in the
States. She worked on Toy Story, Toy Story 2 and Toy Story 3 in various departments such as lighting,
modeling and character rigging. Over the past 20 years Sonoko has predominantly focused on feature
film production but she has also worked on the production of shorts, TV specials and promotional
materials. She currently works for the simulation & digital tailoring department.

HIROAKI NARITA is currently an Effects Technical Director at Pixar Animation Studios. He worked
as a CG artist for an architecture design company and a medical software company before moving
into the film industry. He has been working on both animation and live-action films such as Oz: The
Great and Powerful, Edge of Tomorrow, The Amazing Spiderman 2, Big Hero 6, Zootopia, Moana and
Incredibles 2. He got nominated for Animated Effects in an Animated Production in Annie Awards
2017.

RYUSUKE VILLEMIN began his career at BUF Compagnie in 2001, where he co-developed BUF’s in-
house raytracing renderer. He later moved to Japan at Square-Enix as a rendering lead to develop a
full package of physically based shaders and lights for mental ray. After working freelance for Japanese
studios like OLM Digital and Polygon Pictures, he joined Pixar in 2011 as a TD. He currently works
in the Research Rendering department.

MAGNUS WRENNINGE is the author of the book Production Volume Rendering and the SciTech
awarded open source project Field3D. He started his career writing fluid simulation and environment
rendering software at Digital Domain, and in 2005 he joined Sony Imageworks where he worked both
as a Senior Software Developer and Lead Technical Director on films such as Alice in Wonderland and
Oz: The Great and Powerful. Since 2013 he has worked as a Principal Engineer at Pixar Animation
Studios, where he focuses on all things related to rendering.

DAVID G YU has been at Pixar since 2000 working on the Presto animation system (and its prede-
cessor Marionette) with a focus on advancing the use of GPU technology. Prior to that David was
at Silicon Graphics Inc (SGI) developing workstation hardware and software for OpenGL and visual
simulation.

3



Presentation Schedule

08:30-08:35 Introduction (Villemin)

08:35-09:40 Simulation & FX (Konishi, Narita)

09:40-09:50 Break

09:50-10:55 Rendering & Compositing (Villemin, Wrenninge, Hu)

10:55-11:05 Break

11:05-12:00 Real-time Tools (Yu)

12:00-12:15 Q&A

4



The Incredibles 2 Simulation

by Sonoko Konishi

In 2004, Brad Bird joined Pixar to develop the Incredibles. Besides a great story, he brought a
passion for 2D animation and stylized character design to our studio. Applying this passion to our
films brought us to a new level of visual design; one with an increased focus on the nuances of character
silhouette and cartoon physics. As a member of the first Incredibles character team it was exciting to
reunite with the esthetically and technically advanced Parr Family.

In the 14 years since the first Incredibles, we have continued to advance our cloth and hair technology
resulting in a more visually sophisticated look. In turn, this has made us more willing to pursue
technical innovations; the end result is that that the Incredibles 2 is our most expansive film to date.

1 Department Structure

The simulation department is responsible for shot simulation of hair & cloth for all characters, flesh
& skin simulations on selected characters, vegetation and motion dressing, props that interacts with
characters such as beverages, pillows, telephone cords and rigid body simulations. The crowds group is
also part of our team and is responsible for the tech to generate vehicles and humans with a mixture of
procedural setups, clip choreography and motion capture while collaborating with crowds animators.
This structure allows us to interchange tasks fluidly and was key to pushing trough the large quantity
of shots with layers of character interactions.

At the peak of production, our simulation department was 20 TDs and approximately 40% of the
staff members were new to the studio. The broad range of technical backgrounds and experience with
in-house & third party tools allowed us to forge visually complex shots in a compressed schedule. In
the end, 2200 shots included simulation, which is 25% more than any of our other films, 400 crowds
shots, about 20% of film, 300 vegetation shots and 60 prop sims that characters interact with. Some
of the shot simulation TDs also were responsible for CG tailoring and grooming during asset creation.
Having artists in the shot production group with knowledge of the assets and its simulation setup
helped streamline production and ensure that the intended look and feel of garments and hairs was
maintained throughout shot production.

2 Approaching the pipeline

But how did we organize the sheer quantity of shots in limited directors review time? We had two
simulation supervisors that split the tactical and strategic management. Artists met at simulation
dailies to show in progress shots and everybody was welcome to make feedback and share tips for
improvements peer-to-peer till they are ready for cross-department review with leads from animation,
character and art departments. To put it simply, we were communicating and collaborating with all
departments at the peer level as well as on the supervisory level; this was key to keeping everybody
on the same page. Once the shots are approved by simulation supervisors we bring them to Phase1
review.

Traditionally, the production pipeline at Pixar was very linear, but as our films become more
complex and our timelines tighter we adjusted our pipeline to a more layered and parallelpipeline.
This is great for the optimization of work but can make it very difficult for the creatives to get a
strong sense of how the pieces are coming together before they get too expensive to change. To address
this we broke our review process into three phases. Phase1is an early merge of final animation, sim,

5



crowds, lighting blocking and FX blocking together in an early but high quality render for preliminary
approval. The primary goal of this phase was for Brad to approve final animation, simulation and
crowds before the complexity of final lighting and FX kicked in. But it also allowed him to give key
lightingand FX notes while it was still easy to change them.

Following this process early and frequently also allowed Brad to get more comfortable with the
process and the skills of the teams which made it easier to show work at looser, thumbnail type stages
for quick direction checks.

In Phase2 we focused on refinement and polish. Because we had the phase one reviews and he could
see the animation and simulation was going to work with the final work he didn’t give as many notes
that would have required us to back to the head of the pipelineand we could focus on getting to The
Final Phase.

Our last stage is Digital Dailies. In Digital Dailies we are focused on the final quality control check
of all elements. At this stage, any performances changes would be extremely expensive since it would
require that all departments revisit and potentially redo their work. By being very clear with our
director and producers up front about where changes would become costly and carefully and regularly
reviewing in context during phase 1 & 2 we had a record low number of performance fixes called out
during digital dailies.

3 Cloth & Hair Tools that helped shot simulation

In the early stages of production we focused on setting up cloth and hair rigs at the asset level so
that shot production would be very streamlined. In the Incredibles 2 we had a much larger number of
characters wearing multiple layered garments with a wide range of hairstyles interacting with themselves
and their environments in extreme conditions and we needed to minimize the amount or per shot setup
required. In the first film we had 150 unique garments for all the characters but in the Incredibles 2 we
had over 130 unique garments for the background characters alone. In 2004, simulation on super suits
was simulated through a comprehensive training set to capture wrinkles and baked garments and today
their super suits still have landmark details such as iconic logo on the chest, belts and briefs, geometric
printed patterns and strong tailored outlines. This time our tailoring technology provided a natural
way to form wrinkles on stylized character by a technique called Dynamic Alterations (Kutt et al.
(2018)). The tool set dynamically adjusts by region, the fit of the pattern where character deforms
the most. As an optimization, the dynamic alteration was driven by a lower density cage mesh that
deforms the higher density body mesh. Having a cloth rig installed as a component of the asset allowed
us to achieve a consistent style throughout the film. The cloth rig exposed many simulation parameters
which would then allow us to create per shot adjustments so that we could easily tweak the behavior
of the cloth on a shot by shot level. To keep the form of core design elements , we used patch-based
surface relaxation (de Goes et al. (2018)) which, especially visible on chest logos, removes undesirable
wrinkles without distorting texture and removes unappealing folds resulting in clean lines.

In the Incredibles, amplified and stylized animation was the rule and we were able to emphasis this
in our simulations by keying the primary animation and using simulation to accentuate the secondary
motion. In this way, simulation became an extension of the visual language of the characters and the
story telling. Understanding cartoon physics between both TDs and animators was crucial to making
this work so we kept close communication and planning about how to approach the shots coming into
production. Cloth and hair controls were exposed to animators and TDs to author simulation setup
on top of keyframed animation.

For instance, Helens parachute transformation has an animated parabola shape including the wav-
ing edges timed to the action and silhouette. Her belt and logo stretches but dynamic alterations allow
us to specify stretch and compression by region. Keeping the logo from stretching by only stretching
the surrounding region and restricting the belt to scale width but not height are examples of how we

6



supported dynamic motion while staying true to design. The simulation on hair emphasizes the force
of the action and simulation with dynamic alteration region preserve the shape and design of detail
elements such as the the belt, logo and textures during extreme actions (Figure1)(Singleton et al.
(2018)).

Figure 1: Example of Dynamic Alterations on supersuit

Figure 2: Example of multiple hair pose blending

Another example of extreme body deformation is Helen flattening on the top of the train and her
transition back to normal shape (Figure2). Hair simulation had specific shape notes from the director
when her scalp was flat to the roof and separate hair simulation was blended as her head returns to
normal volume. In previous shows, we would handle action sequence like whipping hair by sculpting
key hairs and rendering offline to see the precise results, This time tools provided us full-fidelity hair
representation of hair (Butts et al. (2018)) that we can manipulate in real time resulting in an increase
of artist productivity. Hair parameters are set by the groomers for different hairstyles, environment
and actions and those parameters are exposed to TDs for further tweaking. With new technology we

7



were able to use hair operators such as length, scraggle, clump and curl in real time and some shots
took advantage of changing the look of the hair just to heighten the character reaction (Figure3).

Figure 3: Screen shot from full-fidelity hair manipulation

Our simulation philosophy is to enhance storytelling and we have total control how we reorganize
the world in Presto. Many characters were riding on vehicles and to support the cinematic effect they
are moving faster than real world speed which would have resulted in unstable simulations. Instead,
we simulated the characters stationary or only transferred a percentage of the actual movement to
the simulator. In fact most of vehicles are moving so fast that character simulations would have been
impossible. For example, with Helen on the motorcycle we often removed all translation from her
animation prior to simulation and instead keyed wind speeds to match the perceived motion. This
resulted in a controllable but effective impression of hair moving at high speeds. The hydro liner peak
speed is 450 mph and simply activating cloth and hair simulation on characters under this force is
unstable. Also the action spans a large area from inside of the car to the ocean so we had to be careful
crafting the world space vs. local space relationships to prevent unexpected precision errors during
simulation. Usually those artifacts appear as a form of cloth and hair jittering when characters are
still.

Because our director is an animator, we get many motion notes based on animation assisted sim-
ulation (Figure4). For example, in a fit of teenage angst Violet throws her super suit into the food
disposer and onto the wall. This comical sequence was achieved by animation providing key shapes
on the costume that emphasis her emotional state. When the gloves swirl in the food disposer or the
dangling cloth peels back from from the wall the key poses carry the classic cartoon style of exaggerated
poses and timing, Simulation was then used to enhance this with with dynamic secondary motion. The
result was animation that simultaneously is very stylized and controlled but also feels physical and
natural. But not all simulation is complex; sometimes it only appears to be. A good example of this
is when Violet stretched her super suit arms in full force (Figure5). The cartoony timing and shapes
were achieved by threading her arm meshes into torus collision objects to compress the mesh as her
hands travels over the fabric. The resulting simulation looks like complex dynamic reactions to the
motion of her hands implying force applied to the super suit but the reality behind the scenes is a very
simple collision operation. (Cameron et al. (2007))

To support this type of stylized simulation our system allows us to blend fully animated poses with
hand keyed poses and to dynamically shift between hand keyed animation driving the positions of
objects and simulation. When Violet and Dash land on the high speed hydroliner the precise path and

8



Figure 4: Animation keyframed pose (left) and simulation applied (right)

Figure 5: Use of simple primitive collision object for effective comic action

timing of the backpack was important to the impact of the shot. At the head of the shot, animation
hand keyed the path and timing of the backpack and simulation provided secondary motion, then as
Dash grabbed the strap and swings the backpack onto his back we blend the primary driving force from
keyframed animation to simulation driving the primary motion of the backpack as well as providing
the secondary motion. Even with a robust system such as ours it can be complex to manage the
simulation of calculated and animated poses but the results are a stylized reality that we feel gives a
strong sense of design to our film.

Volumetric simulation: Today, you can see volumetric shifts and movement in everything from
the action of high impact punches (De Goes and James (2018)) through ordinary movement as Bob
jostles down the stairs (Irving et al. (2008), Kautzman et al. (2016)). We did this to increase the sense
of naturalism but also because combining natural physical volumetric movement with exaggerated
character design enhances their sense of super reality. When a giant Jack-Jack falls off from the duct
and uncontrollably cries with his entire body. You feel his confusion and fear in his action and the
volumetric simulation accentuates the feeling of angst. It is this mixture of keyframed comical timing
on his body emphasized by volumetric simulation that enhances the moment (Figure6) (Wong et al.
(2018)). Also, because the volumetric sim insures that his cheek to shoulder interaction and chubby
arms to chest collide with correct volume distribution there is enough space between reacting skin
surfaces to prevent unstable cloth simulation caused by snagging.

Robust Skin Simulation (Kautzman et al. (2018)): We use skin simulation on our characters to
loosen up the movement of the bodies also making them feel more physically believable in action.
However, you may not realize that we have been running skin simulation on our fur covered characters.

9



Figure 6: Volumetric simulation tetrahedral mesh and final pose c©Disney/Pixar 2018

Characters such as a horse, a bear or even a raccoon fighting with Jack-Jack all benefit from running
skin simulation and is an important part of the cartoon physics. The simulation relaxes the skin
making the motion feel coherent across the whole surface. We further tweak these settings based upon
the character distance from camera. Loosing up the skin sim parameter when the character is further
away allows the subtle motion to read at a distance and tightening it when the character is closer to
camera keeps the simulation from moving the hair too dramatically which would distract our attention
from the performance.

In the first Incredibles we did not simulate vegetation instead we applied noise fields to create
the appearance of simulated plants and for large interactions between characters and vegetation we
animated it by hand. On The Good Dinosaur (Soares et al. (2016)) we built a system to allow us to
dress and simulate motion at a large scale by making a large series of cycled clips correspond to the
wind levels. On the Incredibles 2 we extended that work even further to allow the easy combination
of simulation and noise. While the vegetation was generally calm, having the ability to simulate large
regions of vegetation allowed us to create reactions to large forces such as shock waves and collateral
damage. This really amped up the impact of these scenes.

Even apparently simple prop simulation can present challenges. For example, in one shot we had
over 150 people holding wine glasses while moving on a boat. By removing all world space translation,
and applying the local translation and rotation of the each glass to the fluids gravity field we were able
to make the simulation process an order of magnitude faster.

Simulation on this film faced many new challenges but this is the studios management style. We
focus on relying on the quality of our leadership and their ability to adjust and streamline the approval
process to face these challenges even under a compressed schedule. Over years the studio has cultivate
artistic eyes, cross department collaboration and transparency including the communication with our
tools department to invite innovations while also increasing our productivity. Simulation in the first
incredibles was in the infancy stage and on the Incredibles 2 simulation department has reached the
maturity.

10



Designing Effects

by Hiroaki Narita

Figure 1: Incredibles 2 c©Disney/Pixar 2018

1 Seeking for Storytelling

The effects department at Pixar is getting more involved in the early stage of production. For Incredibles
2, we collaborated early with departments such as storyboard, layout and animation to boost our
storytelling. To be more precise about the collaboration, we worked with layout and animation in the
early stage to provide rough effects based on storyboards and artwork. Look development is also active
collaboration among the effects, lighting, and the art department.

All artists in Pixar are highly encouraged to see the screenings of current story development. The
screenings are usually edited with storyboards and rough layout. The production gathers feedback
from everyone and refine the story for better storytelling. It also helps artist to understand the whole
picture of the film and gives opportunities to explore how to support the story with their creativity.

The effects department usually holds an internal sequence review with the whole team before
beginning a new sequence that involves heavy effects work. The artists on the FX team are encouraged
to review the unassigned FX work on the film by looking at the current reels and asking for the shots
they would like to be cast on.The leadership then can try and cast them on this work. This is a great
part of Pixars FX culture that creates great moral and allows artists to have a say in the work they
get to do.

11



2 General Effects Workflow

2.1 Generating effects data

The effects team at Pixar uses SideFXs Houdini as the main program to create effects work in the past
several films. We basically use vanilla Houdini same as everyone else use outside the studio. There are
some custom Houdini digital assets but they are mainly for input and output data in our pipeline. It
helps artists to move from one project to the other smoothly. It is like having same canvas and brushes
when you start painting. Since artists are also technical directors, we come up with new tools or new
methods to improve our workflow but they are designed to be compatible with Houdinis fundamental
workflow. Most of the shot work starts from importing USD assets into a Houdini session. The USD
contains assets such as animated characters, sets, props and camera. We create effects based on the
assets in Houdini and write out fx data as an effect USD file which is referenced into the main USD file
for the shot. The output data types from effects are point clouds, mesh, F3D volume data or levelset
data. The point clouds are used for lighting and shading signals in the render and the levelset data is
used for ocean effects by our proprietary water tools we call Gin. We also overlay assets in the main
USD file. For example we would use an overlay for fracturing building assets or street assets from the
sets department.

2.2 Sharing knowledge in the team

Effects artists at Pixar are very collaborative with each other. We can see everyones current work in
not only the reviews but also in our intranet video site or on a large TV looping our latest shot works
in the effects department. Whenever we see someone else working on something that can benefit our
current or future work, we can just ask the artist to share his or her setup. We have 3 ways, Copy &
Paste, Template Container and Library, to share the setup with the team.

Method Copy & Paste Template Containers Library

Purpose Quick sharing
Show specific sharing

Multi-shots population
Cross show sharing

Archive

The Copy & Paste is literally a method that allows artists to copy and paste their specific part
of setup among the team through the intranet. It also keeps record of the copy, so that artist have
access to it later. The Template Containers are packaged templates mostly for show specific effects
to generate the base setup in multiple shots. Artists worked on early development usually prepare
the template setups and share with other artists when they start working on the same effects. The
Library is where artists publish their effects setups or cached data for references or reuse purposes. It
holds variety of example files that are designed for cross-show sharing. It keeps metadata such as the
version, author, history and categories for searching.

2.3 Rendering and Comp

Once we have all effects data ready, we start setting up shaders and rendering in Foundrys Katana.
Katana is very customised for our production pipeline. We share only one Katana master file for all
shots and each department works in containers called live group in this master file. All effects related
rendering setups are created in the live groups assigned to effects department. There are 3 kinds of
Effects live groups, shot, sequence and show. Most of effects are rendered together with all assets but
volumes are rendered as separate pass for efficiency and post flexibility. Pixar Renderman is our main
renderer and it is well integrated in Katana so that we do all our setup in Katana. We sometimes
touch up our effects with compositing in Foundrys Nuke. In Incredibles 2, we used the Nuke precomp
system within a master Nuke file.

12



3 Artistic Approach and Technical Approach in Incredible 2 Effects

Figure 2: Final Image (left) and Storyboard (right)

3.1 Direction and Observation

Almost all effects are created by some artistic decisions. No matter how accurate and realistic the
computer might be able to simulate an effect, it is very rare to see the pure result as final image on
the screen. Therefore, effects need to be designed by a flexible and navigable workflow satisfying both
realistic and stylized look. As an example of a technical solution to achieve a stylied look, I would
like to describe the creative process of Jack-Jacks fire retardant foam effect in Incredibles 2 (Figure2).
Jack-Jack is a baby that has many superpowers in Incredibles 2. The fire retardant foam is one of
safety functions which his supersuit can activate when he ignites fire on his body. The foam is emitted
inside his suit and spills out from the suit. Art direction for the effects in this shot are listed below
(Figure3).

Direction

• The foam is very fine viscous foam, not bubble foam.

• It comes out from the neck and sleeves opening on his supersuits and covers up his whole body
at some point.

• Jack-Jack plays with it.

Figure 3: Storyboard for Jack-Jacks retardant foam

13



Blend Shape FLIP Simulation

Shape Easy to get desired ending shape
Not Easy to cover the character body

and get desired ending shape

Movement
Not Easy to avoid linear motion

Not so believable motion
Easy to achieve variety of motion

with interaction

Details
Easy to add and keep detail
and feature of foam surface

Not Easy to keep detail
and feature of foam surface

Table 1: Comparison chart for Blend Shape and FLIP Simulation

I found shaving cream as a reference of the very fine viscous foam and started observing its char-
acteristics. Below is the list of features I observed.

Observation

• Light mass.

• Deforming very easily by interaction but hold the shape by itself.

• Sticking on the surface.

Another element I observed for the effect was the character animation. Brett Coderre, an animator
of Jack-Jack, and I started a conversation in the early phase of work on this shot. We exchanged ideas
how the character could play with the foam many times. It was very efficient to share the vision and
understand the purpose of each motion before receiving final animation. I could design the effects
setup without guessing cases character actions that might break the effect. It also helped me support
the moments that the animator wanted to attract the audience with the effects.

3.2 Artistic Decision and Solution

Firstly, I needed to come up with a solution to make the foam expand along the characters surface and
build the shape of foam pile in a controllable way. I tested two approaches, blend shapes and a FLIP
simulation in Houdini. Both approaches had a advantages and disadvantages (Table1).

Based on these results, I tried to find a hybrid method to combine the advantages from the both
method. My solution was replacing the mesh used for blending shape with point cloud and referencing
the point cloud applied the blend shape animation as a goal for points in the FLIP simulation. Basically
this allowed me to make result first and then use the simulation to fill the in-between animation from
emitting position to goal position. Firstly, I prepared point cloud with the goal shape. Then I place
them to the emitting position (starting position) and used it as source points for a FLIP simulation.
I also prepared final shaped point cloud that was deformed with character animation for every frame.
In the FLIP simulation, points feeded as source look for the current goal position and get small guide
force towards there. To avoid having unnatural motion, I applied several conditions to stop the force
and let points completely depend on the simulation (Figure4).

The solution worked as I expected except preserving surface details. FLIP simulation with viscosity
tends to smooth out the surface as the simulation goes. It is a natural behavior of viscous fluid since
velocity gets smoothed out with the velocity of fluid around it and I needed the behavior in the effect.
Since I didnt want to change the behavior, I decided to apply post-simulation treatment by assigning
a rest position attribute to the point cloud and carrying it through the simulation. The rest position
attribute was used to add detail noise after the simulation (Figure5).

14



(a) Sculpt desired shape (b) Convert to point cloud (c) Move the points to emitting posi-
tion

Figure 4: Preparation for guided FLIP simulation

(a) Simulation result (b) Apply noise based on rest position (c) Rasterize points to mesh

Figure 5: Detail restoration in post-simulation

Those two solutions enabled me to have a lot of artistic control with the simulation and to repose
to new art-direction quickly.

3.3 Technical Decision and Solution

There was another challenge on the effect which was found when an animator and I were working on
test animation in the early stage. The challenge was that the FLIP simulation had a hard time to
sticking with a quick deforming character. Increasing substeps for the simulation helped but the foam
still peeled off from the character surface time to time. It needed a more robust solution to change its
sticking behavior without losing dynamic motion.

My solution was constraining FLIP simulation points to the character surface by looking at their
states on the previous simulation frame. I kept the nearest surface information and the distance on
each simulation point from the previous frame and used that information to get the nearest surface
transformation to calculate a constraint velocity. Then blended the constraint velocity with current
velocity by the distance between the points and surface (Figure6).

To control the constraint weight, I used two factors (Figure7).

15



Figure 6: Constraint on the model with anticlockwise rotation and deformation

• Distance between the simulation points and the character surface

• Assign weight attribute on the character surface by painting directly

(a) SDF Constraint Weight (b) Painted Constraint Weight

Figure 7: Two factors to control Constraint Weight

4 Conclusion

The technology we used advanced significantly from the first Incredibles in 2004 to the Incredibles 2
in 2018. We have more machine power, newer algorithms and better tools in effects now than ever.
Thereunder, our work gets more complicated and requires fine balance between artistic quality and
technical adaption. On the top of it, we are always seeking that fine line between stylized look and
realistic look. The final quality of effects is still up to artists decision and it is the artists responsibility
to design how art and technology contribute to storytelling from effects point of view.

16



Production Rendering

by Magnus Wrenninge and Ryusuke Villemin

Figure 1: Incredibles 2 c©Disney/Pixar 2018

1 Introduction

Beginning with Finding Dory, the rendering pipeline at Pixar completely switched to raytracing replac-
ing the traditional REYES architecture from Cook et al. (1987) that was used for more than 20 years.
Although the move to raytracing enabled us to render realistic and convincing water and glass effects
for that particular movie, the lighting tools in this new world were pretty barebone at the beginning,
compared to the toolkit that was available to lighters during the REYES era. Thus for Cars 3, Coco
and recently Incredibles 2 (Figure2), we focused on improving artistic control in this new raytraced
world. When introducing new technologies, we must first ensure the technology works, but also that it
is intuitively controllable by our artists (as well as fitting inside the existing production workflow and
pipeline).

Although pathtracing1 became our main rendering algorithm, ad-hoc solutions were still used to
achieve special effects like subsurface or hair shading, and specialized renders were still necessary to
efficiently render volumetric effects. In this presentation, we will show how we improved unpon those
approaches towards a pipeline where subsurface, hair, volumes are just another part of the general
rendering process, not requiring any special attention.

1Quick word on pathtracing vs raytracing. We call path tracing trying to preserve one unique path from camera
to light. This is not rigorously true in production (Fascione et al. (2018)), but close enough to enable progressive and
interactive rendering.

17



Figure 2: Cars 3 2017, Coco 2017, Incredibles 2 2018 c©Disney/Pixar 2018

2 Pathtraced subsurface

For a long time, efficient rendering of subsurface relied on diffusion models (Jensen et al. (2001)).
The model itself went through various improvements and extensions (Christensen (2015), Chiang et al.
(2016)), and in parallel, sampling methods were also improved. In particular, while early days methods
required preprocessing like creation of a point cloud, or cached data (Jensen and Buhler (2002), Hery
(2005)), recent methods used raytracing to generate that same data on the fly, alleviating the need
for any pre-rendering computation. That computation itself was improved multiple times, making the
method more and more robust (King et al. (2013), Villemin et al. (2016)). But throughout all those
modifications and improvements, the core idea stayed the same, and the computation ultimately stayed
an approximation of the real phenomena.

In order to get to a more physically correct handling of subsurface effects, we are now executing
subsurface rendering in a pathtraced way, effectively stochastically simulating light bouncing in the
volume until it escapes it. This is made possible with the advent of faster and optimized raytracing
engines (Christensen et al. (2018)) as well as available computational processing power.

Moving to pathtracing allows us to handle additional object properties that were problematic for
the earlier approximations techniques:

• Correctly handle internal objects and surface geometry variation, through volume path tracing.

• Change phase functions (isotropic, anisotropic), and experiment with different free flight models
(which we discuss in greater detail in section).

2.1 Sampling internal volumetric paths

Raytracing was already used in diffusion methods, but only to find exit points, around the entry
point (the current shading point) (Figure3). Various methods have been used to dynamically generate
those exit points, the most popular of which is multiple importance sampling (MIS) between planar and
spherical distribution around the shading point, with recent improvements using resampled importance
sampling (Villemin et al. (2016)). Although those methods make use of raytracing, they do not reflect

18



the actual path that the light is taking throughout the medium. This means that internal objects, as
well as displacement of the surface itself is not taken into account correctly (Figure4).

Figure 3: Diffusion SSS.

Figure 4: Diffusion SSS failing on concave geometry.

Moving to pathtraced subsurface scattering (PT SSS), we actually follow the path of a ray when
entering an object (Figure5). If there is any internal object, we will hit it while marching through
the medium, or if there is any surface variation, it will naturally be taken care of (Figure6). This
is effectively equivalent to performing proper pathtraced volumetric rendering, and we are using the
same techniques such as in Kutz et al. (2017), in order to reduce variance. In practice, although the
math behind it is the same, the implementation is a little more lightweight than a real volumetric
render, as we are handling all the internal bounces in one shader call, instead of going back to the
main integration loop. For more implementation details, please refer to Wrenninge et al. (2017).

In practice, this means that any geometric surface variation will now be rendered correctly, without
having to rely on any additional manual control to counteract the undesirable effects. Comparing the
diffusion model with the pathtraced version in the closeup face render (Figure7), the bright concave
area around the nose appear more natural, and while keeping the subsurface effect, we retain the
displacement and micro bump details of the surface. These details are often difficult to retain with
diffusion models, because they assume flat semi-infinite objects. In practice, artists had to counteract
the loss of detail via excessive blur by exaggerating all the surface details,. This was a time consuming
and very laborious process involving trial and error.

19



Figure 5: PT SSS.

Figure 6: PT SSS correctly handling concave geometry.

2.2 Phase Functions, and free flight models

An additional benefit of running a full volumetric solution, is that we can control the phase function
used at each internal bounce. Using a strong forward scattering phase function, that is closer to real
skin behaviour, allows us to a even more realistic result (Figure8). We use the popular phase function
from Henyey and Greenstein (1941), but any other phase function is trivial as an in place replacement.

One request we repeatedly received over the years, is a way to make the subsurface effect stronger
without having to increase the mean free path (MFP) too much, which has an indesirable side effect
of making everything blurry, and looking gummy.

Looking at the xxx litterature, we found an expression of non-exponential free flight in Davis
and Xu (2014) that is suitable in rendering too. The details of the implementation can be found in
Wrenninge et al. (2017), but the main idea is to have a second control on how particles are absorbed
in the medium that is orthogonal to the usual mean free path. The Davis model was a good candidate
as it has a parameterization suitable for artistic control in the form of an easily understandable tail
exponent parameter (Figure9).

While using volumetric controls improved directability and quality, shading artists (especially sur-
facing artists) are used to painting albedo colors, which is very different than setting scattering and
extinction coefficients on an object. In order for them to continue to work in that way, we introduced an
automatic albedo inversion step, which takes the inputs (MFP tint, albedo colors) and converts them
into volumetric components (scattering, extinction, absorption coefficients). Unfortunately, contrary
to previous models like the better dipole (Hery (2005), Hery (2012)), there is no closed form inversion
formulation. Additionally our model, now has more controls, like the phase function directionality,

20



Figure 7: Left: Diffusion SSS, Right: PT SSS

Figure 8: Phase Function, Left: Isotropic, Right: Anisotropic

our inversion process is a little more complex, but we use the same idea described in Chiang et al.
(2016). We perform inverse rendering, by wedging albedo of an infinite plane under neutral lighting,
varying the inputs and reading the output colors, then doing a fitting of all the observed points onto
an analytic curve (Figure10).

3 Path traced hair rendering

Hair rendering has always been a difficult problem. While technically a surface rendering problem,
in practice we found ourselves hafway between surfaces and volumes, because we never really render
hair fibers individually, but almost always as an aggregate of them. Previous methods are indeed
using volumetric techniques to render hair (Kajiya and Kay (1989)), or a mix of surface and volume
techniques (Petrovic et al. (2005)).

Independently of what technique is used, in order to render hair correctly, we need to solve 3 main
problems:

• Find a good hair Bidirectional Scattering Distribution Function (BSDF) model.

21



Figure 9: Non-exponential free flight, Left:tailExp=3, Right:tailExp=1

Figure 10: PT SSS inversion curve for (albedo=0.2, g=0.5)

• Efficiently compute hair shadowing and indirect lighting.

• Have a predictible and easy to control hair shading model.

Before going fully raytraced, the final look of the hair would depend on the combination of the 3
points, which would make it very difficult to control.

3.1 Hair BSDF Model

The most common and simple model is the one from Kajiya and Kay (1989). While being very
easy to sample and evaluate, it has a very simplistic formulation. It consists of 2 components, one
diffuse and one specular, and both assume a perfect cylindrical curve section. Later Marschner et al.
(2003) improved the model by actually studying the geometry of a hair fiber, analyzing its response
and decomposing it into 3 components based on the number of light interactions with the hair fiber:
one reflection R, 2 transmission TT, 2 transmissions and 1 reflection TRT. R is a monochromatic
reflection, TRT tinted reflection from light traveling inside the fiber, TT colored transmission (formerly
approximated by tinted shadows in earlier models). A special mode of TRT interactions necessitates
a special computation, and is taken care of by a separate GLINTS lobe, which is really just a sub part
of the TRT lobe. Further interactions with more than 1 reflection are ignored.

While being physically more correct than the Kajiya model, it was found to be a little less artist
friendly. as a result, a few years later a new model from Disney Animation, the artist friendly model

22



appeared, that focused on artist usability (Sadeghi et al. (2010)). Roughly it is based roughly on a
Marschner model but with no real normalization, and fully decoupled lobes for ease of use. Later
d’Eon et al. (2011) introduced a model that went further than Marschner’s by accounting for TRRRT.
Unfortunately this model was not easily importance sampled. At Pixar, we use an improved Marschner
with an adhoc deep bounce model TRR..T (which we call residual) and is fully importance sampled
(Pekelis et al. (2015)) including glints and eccentricity. This allow us to hit realistic hairs, but also
completely artist driven looks while maintaining energy conservation and other properties that makes
it suitable for a pathtracer (Figure11, Figure12).

3.2 Hair Shadowing and Lighting

Shadowing used to be addressed using shadow maps, or some volumetric representation. Both are
susceptible to bias in the result if the resolution is too low, or not representing the actual hair geometry
close enough. One important limitation is that they were also specialized for shadows, so indirect
lighting would need to work with completely a different representation.

But with any recent renderer, it is now reasonable to ray trace visibility rays through millions of
curves. And by using a physically based hair BSDF model, we don’t need to fake tinted transparent
shadows anymore, which brings down the cost of calculating shadows.

Indirect lighting is essentially a problem for light hair. For dark or black hair, indirect bounces
between hair does not account for much lighting. However for lighter hair like blonde hair, most of
the color is actually coming from all the indirect bounces. It is common for light to bounce more
than 20 times in hair and still contribute a non negligable amount to the final look (Fascione et al.
(2018)). That is why using an optimized russian roulette algorithm is preferred to having a hard limit
on the number of bounces, to avoid any bias and loss of energy in the final render. At pixar we used to
use point based subsurface to mimic light diffusion through out the hair volume, other techniques like
dual-scattering simplification were used in some cases (Zinke et al. (2008)), photon spherical harmonics
Moon et al. (2008), but all those models were pretty crude approximations, and didn’t produce realistic
blonde hair. The existance of all those methods was to avoid pathtracing in the first place, a limitation
that is less relevant nowadays. We now trace all the indirect bounces with no limit on the path depth.
In order to still improve performance, we use a few tricks described in Fascione et al. (2018), but for
the most part we just let the renderer converge to the right color.

Figure 11: Blonde Hair with all components

23



Figure 12: TopLeft: R, TopRight: TT, BottomLeft: TRT, BottomRight: GLINTS

3.3 Hair Shading

Our last topic is somewhat similar to volume rendering with single scatter albedo. Specifying the color
of a single hair fiber does not predict what the full hair color will be. This is because the final color we
see is the result of the accumulation of all possible light bounces in the hair and not a single interaction
with one fiber (Figure13).

Unfortunately, there is no easy way to predict the final color for every possible scenarios, so we
use empirical models. Disney started using inversion tables (Chiang et al. (2015)), rendering a cube of
hair and looking at the resulting colors. We do the same except we use generic groomed models since
they gave results closer to their artist expectations.

The albedo needs to be boosted to match the target color (Figure14). For the actual inversion
calculation process, we tried different hair grooms but ended up with something similar to the hair
balls shown in Figure15.

Figure16 represents the result of only direct lighting only with no shadow, in a white furnace.
What we see is directly the sum of all the components building our hair model (R, TT, TRT, GLINTS,
Residual). Figure17 shows the same models, but this time with normal render settings, with shadows
and unlimited indirect bounces. It is easy to see that the end result, after shadowing and indirect, is
darker than the artist intended color. Comparing to the simple spheres on the row below, which retain
the original color, hair is getting darker as the color we see is the aggregate color hair and not the fiber
color. Figure18 shows the result after applying our correction curve to the inputs of the hair shader.

24



Figure 13: Hair/Light Interactions.

0 0.25 0.5 0.75 1

0.25

0.5

0.75

1

Figure 14: Hair Albedo Inversion Curve

The result is much closer to the simple spheres, which let our artists shade hair as any other surface.
The second row shows the same renders applied to a production asset, the raccoon from Incredibles

2.
Rendering fully raytraced hairs, with a physically based hair response coupled with advanced albedo

inversion techniques, enabled us to hit both realistic hair, but also strong art directability, to render
believable but very artistic hair.

Figure 15: Hair examples used for inversion.

25



Figure 16: Input Colors.

Figure 17: Raw Albedo Renders.

Figure 18: Corrected Albedo Renders.

26



Figure 19: Effects animation and 3D clouds from Incredibles 2. c© Disney/Pixar 2018

4 Volume Authoring and Rendering at Pixar

Like many other animation and visual effects studios, Pixars volume authoring and rendering pipeline
has grown and evolved over a period of time. A particularly large shift occurred around the time of
Finding Dory, as RenderMan shifted from rasterization-based volume rendering to a path tracing-based
framework (RIS). This shift required a new approach not only to rendering, but also to the supporting
pipeline and the authoring tools used by artists and technical directors in several departments.

This part of the course gives an overview of the current authoring pipeline as well as a view into
how the tools are used by some of the most volumetrically active departments.

4.1 Foundation

The current incarnation of Pixar’s pipeline for creating volumetric effects was designed with two pri-
mary goals in mind: First, it had to be flexible so that artists could utilize a wide range of tools for
authoring. And secondly, it had to ensure that the data created would be optimally structured for
robust and fast rendering.

27



Figure 20: Field3D primitive in Houdini. The volume references a high-resolution voxel buffer on disk
but is visualized with a light-weight representation by leveraging a pre-computed MIP.

At Pixar, several departments create volumetric elements. The Effects Animation department has
the longest history, but starting with The Good Dinosaur, the Matte Painting department has created
3D clouds for several films, and more recently volumetric workflows have made their way into the Sets
and Character departments as well. Next, we cover the common pipeline that supports all of this work,
and also look at the workflows within some of the different departments.

4.1.1 Houdini

SideFx’s Houdini is the foundation that nearly all of Pixar’s volume authoring tools are built on.
Houdini itself includes a wide range of tools for this purpose, from fluid simulations in DOPs to the
OpenVDB toolset and many other ancillary tools. Artists regularly utilize these built-in tools but also
build many custom tools in order to create their volumetric datasets.

4.1.2 Field3D

Although Pixar’s authoring pipeline supports all of the formats and data structures used in Houdini
as inputs, the only file formats used downstream of Houdini is USD and Field3D. Field3D stores the
volumetric data itself, and USD is used to represent the rendering structure and placement of this
volumetric data in the scene (see below.)

A set of custom primitive types allows Field3D volumes to be represented natively in Houdini.
These primitive types allows both live, in-memory storage (GEO PrimF3D), but also referenced volumes
on disk (GEO PrimPackedF3D). Live (i.e. mutable) Field3D volumes are created by a set of custom
Field3D plugins that extend Houdini’s built-in capabilities, and include both SOP, ROP and DOP
nodes. The packed reference primitive (immutable volumes) is used extensively for visualization of
high-resolution data, and in dressing- and instancing-based workflows such as the clouds pipeline.

4.1.3 USD

While both Field3D and OpenVDB provide industry-standard ways of storing volumetric data on disk,
they do not provide the necessary features that clearly describe a volumetric element to the renderer.
Modern path tracers need to know which sub-volumes need to be bounded (density/extinction), which
ones define , and although it is possible to store these as generic metadata in both OpenVDB and

28



Files Volumes per file Primvar bindings Use case

Single Single Single Basic density field.
Single Multiple Single Density composed of multiple volumes.
Single Multiple Multiple Pyro or smoke simulation with motion vectors.

Multiple Single Single Clustered smoke simulation generated in parallel.
Multiple Multiple Multiple Clustered pyro simulation generated in parallel.

Table 2: Expressing the composition of a render element.

Field3D, it is desirable to have a more strict definition of these important settings. Additionally,
shaders, shader assignments and shader primer bindings can be quite complex and can involve volumes
composed of data from multiple files.

Table 2 shows some of the combinations that are commonly encountered in a production pipeline:
To solve this problem, Pixar uses two custom USD schema to encapsulate the description of a

volume as it is seen by the renderer. PxVolume represents the volume as seen by the renderer, and
each PxVolume can have N number of PxField3D children, which define the fields to load from one or
more Field3D files:

• PxVolume

– densityMult (float)

– extinctionAttributes (string array)

– motionBlurLength (float)

– velocityAttributes (string array)

• PxField3D

– filename (string)

– name (string)

– attribute (string)

– index (int)

4.1.4 MIP Volumes

As authoring tools have improved and hardware specs have grown, volumetric data has become in-
creasingly complex and high-resolution, sometimes ranging into multiple thousands of voxels, cubed.
While this has been beneficial to image quality, it can make authoring and rendering more complex.
Each time the resolution of a volume doubles, the memory footprint increases eight times, and if a
volumetric element is authored at higher resolution than needed for a given shot, memory is wasted. At
the same time, having additional resolution available means that e.g. the camera angle can be adjusted
late during production without having to worry that an element will wind up having insufficient detail.

Rather than task artists with having to decide exactly what resolution to make each individual
volumetric elements, Pixar’s pipeline uses MIP representations for all volumes. A MIP volume works
similarly to a MIP texture: a single file stores the high resolution data (e.g. a 20003 volume), as well as
multiple lower resolution representations (10003, 5003, 2503, etc.). By making multiple representations
available, the lighting package or renderer can automatically choose an appropriate resolution based
on factors such as the distance to the element, the field of view of the lens, etc. This frees artists up
to put as much detail as is needed into a given element, without having to worry about subsequent
render-time memory use.

29



Figure 21: Multiple MIP levels from the same underlying high-resolution volume.

Field3D implements a generic MIP volume class that allows MIP versions of dense, sparse and
temporal volumes to be stored natively. All of the different data structures support deferred loading,
so that only MIP levels that are used by the renderer get loaded from disk.

In order to ensure that MIP volumes are available throughout the volume pipeline, they are auto-
matically generated whenever a volume asset is created.

4.1.5 Min/Max Volumes

As mentioned previously, one of the key design goals for the pipeline is to ensure that the volumes can be
rendered efficiently. In the days when raymarching was the primary rendering method, communicating
the sparsity of the volume was key, for example using the inherent block structure of Field3D or
OpenVDB volumes. However, modern, path tracing-based renderers need additional information about
the volume in order to render as efficiently as possible.

Figure 22: Visualizing the majorant density.

The most important information that needs to be communicated is where and how much of the
volume is present. That is, not only the sparsity (i.e. placement), but also the magnitude of the
volumetric properties.

Most modern path tracers use some form of tracking to render volumetric elements. These generally
need to know the maximum density (a.k.a the majorant) present in the scene. The renderer then uses
this information to optimize the placement of samples during integration. In order to best optimize
sample placement, the majorant must be queryable for smaller sub-regions, so that the integrators
sampling can be adapted to thin and thick regions as needed. Volume integration is a complex topic,
and Novk et al. (2018) provides a very good overview of the current state-of-the-art.

In order to provide the majorant (and minoring) information, Field3D provides built-in support for

30



Figure 23: Motion blur using microvoxels versus temporal volumes.

generating what’s called min/max representations of any volume element. The min and max properties
are created by replacing the standard reconstruction filter in the MIP creation process with a min() or
max() operation. The min/max MIP pyramid thus becomes a conservative bound on any region, and
makes it fast to query min/max even for large regions, as they can simply look at the lower-resolution
MIP levels. Figure 22 shows a base density volume and its majorant version at multiple resolutions.

The process of generating this meta-information is entirely automated and runs at the same time
as the MIP creation during volume export time.

4.1.6 Motion blur and temporal volumes

Another challenge in production volume rendering is the handling of motion blur. In theory, motion
blur is not much of artistic choice but rather something that either is or isn’t present. In practice
however, artists need to be aware of how motion blur will be generated for a given element, and
Pixar’s pipeline provides multiple ways of handling the process.

Volumetric motion blur is computationally complex to achieve in the path tracing regime, as velocity
vectors effectively act as a displacement shader, pushing densities outside the carefully constructed
min/max bounds discussed in the previous section.

In order to address these inefficiencies, temporal volumes were introduced by Wrenninge Wrenninge
(2016), which encode the motion of the volume as a 4D signal, removing the need to account for dis-
placement during rendering. Temporal volumes have since been integrated into the core of RenderMan,
and provides a general and flexible solution to the motion blur problem. Figure 23 shows a image and
render time comparison between temporal volumes and microvoxel rendering.

For most elements, any motion blur effects are baked into temporal volumes at the authoring
stage, but in some cases, it is preferable to generate the motion blur effect using other times and other
methods. The following is a description of all the options available in the Pixar pipeline:

1. Simulated temporal motion blur. For volumes that are the result of a Houdini DOPs
simulation, one of Pixar’s custom DOP plugins can optionally create temporal volumes as the
simulation progresses, which accurately captures sub-frame motion and produces the highest
quality motion blur.

2. Post-process temporal motion blur. For procedurally generated (i.e. non-simulated) vol-
umes, a custom SOP plugin will generate temporal volumes given a volume to blur (density)
as well as a velocity field. Temporal motion blur is computed for the full duration from the
start of frame to the following frame, which allows arbitrary shutter length and shutter curves

31



to be used without having to re-compute any data. This method still provides the advantage of
pre-computing motion blur, enabling quick time-to-first-bucket during rendering.

3. Render-time temporal motion blur. Optionally, in cases where it is impractical to pre-
compute motion blur (for example if the velocity field is generated at a later stage than the
density field), RenderMan can perform the same static-to-temporal conversion at render-time.
This has the downside of increasing the startup time for any render that uses the volume, as it
requires re-computation in each render.

4. Advection or Eulerian motion blur. With the introduction of volume aggregates (see below),
it is practically feasible (although not as efficient or accurate as temporal volumes) to compute
motion blur on-the-fly during rendering. In this case, the impl f3d plugin (described below) will
compute the necessary offset padding when bounding the volume, and will subsequently offset
each sample point by the velocity vector field, yielding motion blur in the process.

5. No motion blur. Some volumes are either static or slow-moving to the point where motion
blur would be unnoticeable. In these cases motion blur is simply ignored.

Additional details on rendering of volumetric motion blur can be found in the SIGGRAPH course
by Fong et al. Fong et al. (2017).

4.2 Effects Animation

Much of the current volumetric pipeline at Pixar has its roots in the effects animation department,
and going back as far as Wall-E, Field3D has been the primary volume interchange and rendering file
format. Integration with the scene construction pipeline was handled through TIDScene (a predecessor
to USD) and through RenderMan’s native RIB files.

When USD was introduced at the studio, a new set of Houdini plugins were written to handle
import and export, and the entire pipeline was made USD-native. In this incarnation, Field3D is still
used to carry the individual volumes (voxel buffers) and their associated metadata, but the integration
into the scene graph is handled entirely using USD.

4.2.1 USD specifics

USD is used extensively in the effects animation department and the Houdini USD plugins provide
full round-trip import/export capabilities that allow everything from additions to deletions and mod-
ifications to the existing scene, at any level of the scene hierarchy. This functionality is used for tasks
ranging from applying deformations, to authoring procedural surface shading signals to rigid body
simulations and fracturing/destruction.

On the volumetrics side, the USD Volume Asset node is used to create new volumetric data and
inserting it either at the show, sequence or shot-level, as well as for creating various types of library
elements that can later be re-used to easily dress elements into specific shots. By leveraging the light-
weight Field3D reference primitives, all of Houdinis procedural tools can be used to build up complex
effects from these pre-canned elements, saving valuable artist time and shortening iteration intervals.

4.2.2 Clustering

One particularly common workflow in effects animation is clustering, which refers to the process of
parallelizing simulation and geometry generation into independent pieces. An example would be the
generation of foot interaction dust on a sandy surface: rather than simulate the entire motion of a
character in a single space, each foot hit can be simulated independently and in parallel, which is

32



Figure 24: Clouds from Cars 3. c© Disney/Pixar 2018

both faster and more flexible. The pipeline tools give artists several choices for how the resulting
volumes are exposed to RenderMan: as a single, large volume, with the individual pieces hidden under
a single scene graph location, or individually, such that e.g. lighting artists can modify the density
of individual elements at render time. The pipeline takes care of optimizing each case, letting artists
focus on the look and the control thats needed, rather then on how a particular volumes structure
should be communicated to the renderer.

4.2.3 Temporal tools & Reves

With temporal volumes serving an important role in efficient rendering, it was important to provide
the artists with tools that made the creation process flexible. During DOPs simulation, a custom
DOP node can be added to the simulation chain, which acts as a temporal memory during execution.
Using this node, the output of the simulation is a native temporal volume, and the full motion of
the simulation, down to individual subsets, is captured. For volumes that are created procedurally, a
Create Temporal Volume SOP takes ordinary volumes (e.g. density) as well as a velocity vector field,
and outputs a temporal volume ready for rendering.

4.3 3D Clouds and Hybrid Matte Paintings

Skies and clouds have been present in Pixar films since the original Toy Story, but they were tradi-
tionally done using classic matte painting techniques, sometimes with individual clouds on 3D cards
for added parallax effects. On The Good Dinosaur, Director Pete Sohn and Director of Photography
Sharon Calahan wanted the environment to be alive, from grass and branches close to our protagonist,
all the way to the distant clouds. With the existing Houdini-based volumetric pipeline in place for
effects animation, the clouds team saw an opportunity to leverage these tools to create fully rendered
3D cloud scapes Webb et al. (2016). The outcome was successful and the workflow was later evolved
and used on Finding Dory, with rendering handled by the (at the time) new RIS version of RenderMan.

While the fully 3D approach meant that lighting artists had the greatest degree of control possible,
render times were significant, and the clouds team started looking for alternative approaches that could
provide both the benefits of fully rendered clouds with the detailed control and fast turn-around that
is possible with a painting-based approach. These constraints, along with the particular production

33



Figure 25: 3D rendered clouds on 2D cards from Cars 3. c© Disney/Pixar 2018

design requirements in Cars 3, led to the development of a hybrid 2D/3D workflow that started with
3D renders of clouds, but also incorporated paint work on top of what had been rendered. Finally, on
Incredibles 2, this hybrid method incorporated a Nuke-based compositing workflow that made for a
flexible and efficient approach to cloud creation Murphy et al. (2018).

5 Acknowledgments

Thanks to the whole team, Christophe Hery, Jeremy Newlin and Junyi Ling. We would also like to
thank Beth Albright, Kiki Poh and Markus Kranzler for their work and feedback on hair shading; Alex
Marino, Chuck Waite, Robin Huntingdale and Ben Porter for providing assets and groom models;
Reid Sandros and Tom Nettleship for rendering all those curves, as well as all the shading, lighting
and rendering TDs especially on Incredibles 2. We also want to thank the full RenderMan team, who
we worked with more closely than ever to make this raytracing world possible.

6 Conclusion

Overall moving to raytracing improved the out of the box renders, which translated into more creative
exploration and refinement. At the same time, the uniformization of the rendering process means that
we have a simplified pipeline process and less diversity in the techniques we have to maintain and
support, which in turn makes it easier to concentrate our work and optimization efforts. 3 years after
Finding Dory, our first movie using the new RIS raytracing architecture, we can now say that we are
fully raytraced!

34



Compositing workflows on Incredibles 2

by Chia-Chi Hu

Figure 1: Incredibles 2 c©Disney/Pixar 2018

1 Introduction

During Incredibles 2, Pixars compositing pipeline was re-worked and extended in order to better
support the shows technical requirements, a new lighting workflow, and a very tight schedule. While
initially driven by the the movies large amount of effects integration, in the end the compositing
workflow became an integral part of the films production methodology, making it possible for artists
to individually handle both lighting and compositing on a large number of shots concurrently.

On Incredibles 2, most of the compositing shot work was done by the sequence lighting artist, but
the show also had a team of three dedicated compositing artists who were responsible for creating show
setups and templates, and also for tackling particularly complex compositing shots.

There are some unique challenges in the way that compositing is used for feature animation. Every
element is computer-generated, so there are no live-action plates to consider, however images are often
broken down into individual elements, and elements are sometimes generated in different renderers. The
shot count is often as large as any visual effects-driven feature film, and the lighting and compositing
teams are often small and need to work in parallel with other departments. All of this made it clear
that a new, more efficient compositing workflow was needed. In the end, the shows shot count reached
over 2000, which was completed with only 36 lighting artists at its peak.

The lighting workflow on Incredibles 2 was different than that of most previous shows. A single
lighter would generally be assigned an entire sequence of shots, and would carry those shots from initial
rough lighting through to final shot lighting polish. This change meant that the compositing workflow
had to change as well, making it possible to manage a large set of shots in parallel.

Compositing was often leveraged to provide fast feedback and iteration time during production.
Many tasks that could be addressed equally well in both the lighting and compositing stages would
generally be handled in compositing, but the changes were subsequently pushed back into the lighting
scripts. In particular, adjustments to light intensities could quickly be dialed in compositing, but in
order to minimize unexpected changes in noise levels, these changes would usually be pushed back into

35



the lighting setup, so that the renderer could optimize sample distribution accordingly.
Director of Photography (DP) Erik Smitt and compositing lead Esdras Varagnolo along with Shawn

Neely, Greg Finch and Joachin De Deken from the Software & Tools Department developed a set of
new tools to accommodate this workflow.

2 Sequence-level Nuke Scripts

Pixar has long had a lighting workflow that allows top-down control of lighting across many shots at
once. For example, when a sequence is started, a Master Lighter will develop a lighting configuration
that works for the majority of shots, establishing the broad strokes of the sequences look. Shot Lighters
will then refine this setup for individual shots, finalizing the look. However, by leveraging custom tools,
the choices made during master lighting are still live, and if a DP wants to apply a lighting change
consistently across multiple shots at a later stage, this can be done directly, without every shot lighter
having to make corresponding adjustments on shots that they are already in progress on. This is quite
different from compositing workflows in live action, where a compositing supervisor may establish a
template for a sequence, but once the sequence is actively being worked on, there is only one script in
play, and sequence-wide adjustments require careful coordination between artists. Figure2 shows an
example of these templates.

Figure 2

In order to support a compositing workflow where a single artist could work on all the shots in a
sequence in parallel, it was clear that a different approach was needed.

3 Shot Board

When working with an entire sequence at once, it is important to provide the artist with a clear
overview, and to make context switching quick and effortless. To this end, a custom Nuke panel
called the Shot Board was developed. It gave the artist a thumbnail overview of all the shots in the
sequence, and by clicking one of these thumbnails, the Nuke script would switch the active shot. This
allowed artists to work actively on manipulating the comp script within the context of one shot, but

36



to immediately see the effect the change would have on a second shot. Figure3 shows an active shot
template with shot board on the right.

Figure 3

4 Switch Shot & Shot Enable Group

Being able to execute the same node graph for multiple shots in a sequence would not be particularly
useful if every shot had to follow the exact same node graph. Instead, two types of nodes were developed
that gave artists the option to enable or disable parts of the graph based on which shot (or set of shots)
was currently active. Depending on the particular template, a Switch node would enable a portion
of a graph in the script, or a Shot Enable Group (SEG) would activate an entire sub-graph. Figure4
shows how wildcard patterns and exclusions could be used to apply changes to all shots except one.

Figure 4

Between these two workflow nodes, artists were able to quickly make exceptions from the template
graph, without having to leave the single-graph workflow. They served as the foundation for making
packet-based (group of shots) or individual shot tweaks on the entire film.

37



5 Precomps

Not only did lighting artists work on entire sequences of shots in parallel, they also had to do so
while multiple other departments were actively making changes to each of the individual shots in
particular, the effects department leveraged compositing extensively to assemble final looks from indi-
vidual elements. In these cases, the other departments needed to make adjustments to the compositing
script without disrupting the lighting artists workflow. Attempting to lock and version the script file
would be impractical, as multiple departments often needed to keep the files active and perform edits
concurrently.

As a solution, a pre-comp workflow was put in place where other departments had their own
dedicated compositing scripts. When rendering these scripts, the output would automatically be routed
through the main compositing script, which gave artists from multiple departments the necessary
control, while still providing necessary context to show what their work would look like in its final
stage.

6 Nuke plugins

Deep compositing was leveraged heavily on the show in order to make spatially dependent adjust-
ments to the image. Many elements were rendered as separate deep EXR layers and combined using
Nukes deep compositing toolkit. Pixar also has a wide range of in-house deep compositing tools, from
the SkyGen tool that was used to generate in-composite atmosphere and background skies, to two
particularly prevalent tools called Deep Rod and Deep ID.

Figure 5

38



Rods are a common tool at Pixar for shaping lights, with multiple years of development and
refinement. The same Rod concept was brought into the compositing workflow and exposed to the
user as a set of parameters and a set of 3D interactive handles. Using the Deep Rod node, artists could
quickly isolate areas in an image and make adjustments with detailed control over inner/outer regions
and falloffs. Additionally, a USD importer made it quick and easy for artists to track these regions to
moving geometry, such as a characters limb or a moving car. Figure5 shows the Deep Rod UI.

Figure 6: Incredibles 2 c©Disney/Pixar 2018

The Deep ID node was originally developed at Industrial Light & Magic, and allows users to
click-select geometry in an image and have an accurate, anti-aliased mask created instantly. Pixar
augmented the node by tying the ID information in the image to the USD scene graph, making it
possible for artists to perform pick walking, which lets a user select e.g. a characters eyeball, then
go up-hierarchy to the head, again to the neck, to the entire body, and eventually up to the entire
character scope. Regular expressions were also supported and could be matched to any part of the
USD scope, for example *Helen*, *crowd* or /world/geo/sets/*. This made is straightforward to
create mattes of even complex geometry, independently of how the individual gprims were organized
at render-time. Figure6 shows the creation of a rod with falloff being used to isolate Dashs face.

39



7 Conclusion

In the end, the new compositing workflow and tools helped advance the way lighting was executed on
the show. As an example, eye highlight refinement was traditionally a tedious process that required
constant re-rendering to visualize the effect of the adjustments. In the new workflow, this was sped
up considerably by utilizing material lobe AOVs and deep ID mattes, making refinement a fast and
interactive process. Figure7 shows the Deep ID UI along with its in-viewer visualization.

Figure 7

40



Real-time Tools for Film Production

by David G Yu

1 Introduction

The process of making an animated feature film involves massive amounts of data in a production
pipeline being manipulated by many artists making creative decisions. In this section we will describe
some of the tools that Pixar has developed to help organize and work with this production data. A
particular focus is on expressive and efficient specification of the data needed to describe scenes and
models in order to support robust interchange of assets across applications in the pipeline, and to
support real-time feedback helping artist to work in context.

Specifically, we will present:

• Universal Scene Description (USD)

• Hydra Render Engine

• OpenSubdiv

2 Universal Scene Description (USD)

The data used to describe a 3D scene is refered to as scene description. Universal Scene Description
(USD) has been designed with consideration of the complex requirements of film production and other
digital content creation based on years of experience at Pixar and our other partners. USD is the
foundation of the development of real-time tools at Pixar since it helps ensure that all of our 3D scene
description can be represented fully and efficiently and robustly throughout our pipeline.

2.1 Composed Scene Description

One of the most challenging aspects of working with 3D scene description in a large production is
determining how to support individuals and departments iterating to refine distinct parts of the scene
while still preserving a coherent view of the whole. USD is a composed scene desceription format,
meaning that the representation supports the expression of intent to compose different opinions in a
way that can be resolved consistently in the context of the task at hand whether that task is working
on an individual asset in isolation or working with many assets in a larger context.

41



Figure 1: Composition of Scene Layers and References

2.2 Namespace, Prims, and Properties

USD organizes data into hierarchical namespaces of Prims (short for ”primitive”). In addition to child
prims, each prim can contain Attributes and Relationships, collectively known as Properties. Attributes
have typed values that can vary over time; Relationships are multi-target ”pointers” to other objects
in a hierarchy, and USD takes care of remapping the targets automatically when referencing causes
namespaces to change. Both prims and properties can also have (non-time-varying) metadata. Prims
and their contents are organized into a file abstraction known as a Layer.

Built on top of this low-level, generic scene description, USD provides a set of schemas that establish
a standard encoding and client API for common 3D CG concepts like:

• Geometry. The UsdGeom schemas define (OpenSubdiv-compliant) meshes, transforms, curves,
points, nurbs patches, and several intrinsic solids. It also defines: the concept of arbitrary
primvars as attributes that can interpolate across a geometric surface; geometric extents and
aggregate, computed bounding boxes; pruning visibility; and an attribute called purpose that
expresses a (non-animatable) conditional visibility useful for deploying level-of-detail proxies and
guides.

• Shading. The UsdShade schemas define primitive shader nodes that can be connected into
networks and packaged into materials, on which one can create a public interface of attributes
that will drive parameters in the contained shader networks. Although the UsdShade schemas
are used in the USD plugins for transmitting renderman shading from Maya to Katana, please
be aware that these schemas are in flux until the 1.0 USD release.

• Model and Asset . USD’s composition operators allow you to construct arbitrarily large,
complex scenes. As an aid to processing, analyzing, and decomposing such scenes, USD formalizes
the concepts of model and asset. The ”model” prim classification allows scenegraphs to be

42



partitioned into logical, manageable chunks for traversal, working-set management, and data
coalescing/caching. The concept of ”asset” shows up in USD at two levels: as a core datatype
for referring unambiguously to an external file, which identifies which data needs to participate
in asset/path resolution; and in the AssetInfo schema for depositing a record of what assets have
been referenced into a scene, which survives even if the scene is flattened.

2.3 References

For more references, please visit http://graphics.pixar.com/usd/

3 Hydra Render Engine

Hydra is Pixar’s real-time rendering architecture. Hydra is designed to be able to complement the
scalability of USD while also being flexible and extensible to support USD within the Digital Content
Creation applications that are an important part of a production pipeline. Hydra is the renderer inside
of the ”usdview” viewport but also supports high performance rendering within other applications and
rendering engines.

3.1 Hydra Architecture

The main role of a renderer is to render an image of a scene.
In order to accomplish this, the renderer must process the input scene description data and prepare

it into the form that is needed by the rendering algorithm.
In an interactive context, this processing must be done for each new frame whenever the scene is

updated. In order for this update to be done efficiently, it is useful to track changes to the scene data
so that additional renderer preparation can be limited to only data which has changed.

The fundamental organization of the Hydra renderer architecture is to distinguish these separate
responsibilites. The SceneDelegate is responsible for discovering scene objects affecting the rendered
image and observing any changes to those objects, the RenderDelegate is responsible for fetching and
preparing data for those scene objects for rendering, and the RenderIndex is the data structure which
maintains the correspondence between scene object and the resulting rendering resource objects as well
has providing an interface to record and track changes.

Scene 

Rendering Resources
GB's of data

GB's of data

RenderIndex

SceneDelegate

RenderDelegate

RenderIndex

Sync

Commit

Figure 2: Hydra Architecture

43



In code the SceneDelegate and RenderDelegate are represented by abstract interfaces which can
be implemented for specific scene description and rendering resource representations respectively. For
instance, in order to use OpenGL to rasterize an image of a UsdStage, Hydra can be configured with
a UsdImaging SceneDelegate and an OpenGL stream RenderDelegate.

One benefit of this organization is that the RenderIndex representation can serve as a common
bridge between different SceneDelegate ”front-end” implementations and different RenderDelegate
”back-end” implementations.

If we think of the different SceneDelegate instances as ”heads” and the different RenderDelegate
instances as ”tails” then we can see how our Hydra render engine (like the Hydra of Mythology) can
have multiple heads and multiple tails.

This is not just an abstract concept and it is something that we use every day in our applications,
e.g. our Presto Animation System can be configured to populate a RenderIndex from both native USD
scene description and custom Presto rigging data and render to either a rasterized OpenGL viewport
or a path traced RenderMan viewport.

RenderMan
RenderDelegate

RenderIndex

OpenGL
RenderDelegate

USD
SceneDelegate

Presto
SceneDelegate

Figure 3: Hydra Heads and Tails

Pixar and others have implemented a growing set of SceneDelegate and RenderDelegate implemen-
tations, e.g. SceneDelegates which can read directly from Katana and Maya scene representations and
RenderDelegates which can render using Metal, Vulkan, Embree, NVIDIA’s Optix, and other path
tracers.

An important emergent aspect of this is that it allows a way to organize hybrid rendering situations,
e.g. to allow a full scene to be rendered in a single render pass even if the RenderIndex for that scene
was populated by multiple different kinds of SceneDelegates.

3.2 Flattening and Instancing and Identity

As described in the section presenting USD, the input scene data is typically organized in a hierarchical
name space in order to match the conceptual and practical requirements for organizing of scene data
in a production context.

This is typically not the ideal representation for this data within a renderer, e.g. a GPU rasterizer
may benefit from aggregating similar data together in order to vectorize execution of GPU shaders and
draw calls while a path tracer may want to organize data spacialy in order to accellerate ray traversal.

We generalize this abstraction by saying that the RenderIndex is a ”flattened” representation of
the scene, e.g. it is possible to directly iterate through all of the geometry needed to render a frame
without going back and walking through the whole scene graph name space (and reference hierarchy,
etc).

It is important to note that this ”flattened” representation can and should take advantage of
efficiencies afforded by instancing and other data deduplication.

Each item populated into the RenderIndex has an identity, and Hydra uses an SdfPath to represent
this identity. There is a correspondence between these paths an the actual scene paths in the input

44



scene description, and Hydra has optimized hierarchical namespace gather operations so that it is
possible to quickly identify and operate on RenderIndex objects corresponding to subtrees in the input
scene namespace. Hydra also augments this path namespace in order to identify special objects in the
RenderIndex. But most operations treat these SdfPaths as simple identifies to support the benefits of
”flattening”.

An important quality of the RenderIndex is that it is not required to retain a copy of scene de-
scription data. If it is necessary to copy any bulky data from the input scene description to rendering
resource data buffers then that should occur only when absolutely necessary as directed by the Ren-
derDelegate implementation.

3.2.1 Rprim, Sprim, Bprim, Task

There are currently four kinds of objects that are populated into the RenderIndex. These base classes
are futher classified into specific subclasses. The following class hierarchy is not exhaustive, and the
system is designed to be extended.

• HdRprim – render prim corresponding to rendered geometry

– HdBasisCurves – linear and parametric curves

– HdMesh – polygonal and subdivision surface meshes

– HdPoints – points

– HdVolume – volumetric data

– ...

• HdBprim – buffer prim corresponding to things like texture memory

– HdTexture – UV, UDIM, Ptex image textures

– HdRenderBuffer – rendered AOV attachment

– HdField – volumetric data

– ...

• HdSprim – state prim corresponding to state like lights and materials which affects rendering

– HdCamera – camera

– HdComputation – computation applied to data, e.g. skinning

– HdLight – light

– HdMaterial – GLSL or OSL material shading networks

– HdField – volume data

– ...

• HdTask – tasks which organized the rendering of a frame

– HdxRenderTask – rendering passes

– ...

45



3.3 Tasks and RenderPasses and Collections

The simplest case for a renderer is to render an image in a single pass consisting of all of the renderable
items in the scene. Typically it is more complicated. For example, consider the case of supporting
shadow maps in a forward rasterizer. In order to render the image, first a shadow map must be created
by rendering only objects which should cast shadows into shadow buffer, then the a second pass can
render only objects which should be visible and receive shadows. The situation can be even more
complicated in interative applications considering additional passes that might be needed to support
specific behaviors for rendering visual affordances like manipulators, guides, selection highlighting, etc.

Hydra supports both simple and more complex cases via a system of Tasks, RenderPasses, and
Collections. Rendering execution proceeds by traversing a set of tasks. A task which produces ren-
dered outputs can execute a RenderPass which operates on a portion of the items in the RenderIndex
identified by a Collection.

4 OpenSubdiv

Subdivision surfaces are a fundamental geometric primitive at Pixar. Their expressive and economical
representation is well suited to the characters and other models that we work with in film production.

With OpenSubdiv, Pixar provides a high performance and full-featured implementation of subdi-
vision surface refinement, evaluation, and drawing.

As an open source project, OpenSubdiv provides a foundation for consistent representation of
subdivision surface geometry across the industry including the real-time tools we use at Pixar.

4.1 Overview

As the name suggests, subdivision surfaces are fundamentally surfaces.

Figure 4: Subdivision Surface

More specifically, subdivision surfaces are piecewise parametric surfaces defined over meshes of
arbitrary topology – both concepts that will be described in the sections that follow.

Subdivision is both an operation that can be applied to a polygonal mesh to refine it, and a
mathematical tool that defines the underlying smooth surface to which repeated subdivision of the
mesh converges. Explicit subdivision is simple to apply some number of times to provide a smoother
mesh, and that simplicity has historically lead to many tools representing the shape this way. In
contrast, deriving the smooth surface that ultimately defines the shape – its ”limit surface” – is
considerably more complex but provides greater accuracy and flexibility. These differences have led to
confusion in how some tools expose subdivision surfaces.

The ultimate goal is to have all tools use subdivision surfaces as true surface primitives. The
focus here is therefore less on subdivision and more on the nature of the surface that results from it.
In addition to providing a consistent implementation of subdivision – one that includes a number of

46



widely used feature extensions – a significant value of OpenSubdiv is that it makes the limit surface
more accessible.

Since its introduction, OpenSubdiv has received interest from users and developers with a wide
variety of skills, interests and backgrounds. This document is intended to present subdivision surfaces
from a perspective helpful in making use of OpenSubdiv. One purpose it serves is to provide a high
level overview for those with less experience with the algorithms or mathematics of subdivision. The
other is to provide an overview of the feature set available with OpenSubdiv, and to introduce those
capabilities with the terminology used by OpenSubdiv (as much of it is overloaded).

4.2 Piecewise Parametric Surfaces

Piecewise parametric surfaces are arguably the most widely used geometric representation in industrial
design, entertainment and many other areas. Many of the objects we deal with everyday – cars, mobile
phones, laptops – were all designed and visualized first as piecewise parametric surfaces before those
designs were approved and pursued.

Piecewise parametric surfaces are ultimately just collections of simpler modeling primitives referred
to as patches. Patches constitute the ”pieces” of the larger surface in much the same way as a face or
polygon constitutes a piece of a polygonal mesh.

4.2.1 Parametric Patches

Patches are the building blocks of piecewise smooth surfaces, and many different kinds of patches have
evolved to meet the needs of geometric modeling. Two of the more effective and common patches are
illustrated below:

Single bicubic B-Spline patch Single bicubic Bezier patch

Figure 5: Parametric Patches

Patches consist of a set of points or vertices that affect a rectangular piece of smooth surface
(triangular patches also exist). That rectangle is ”parameterized” in its two directions, transforming
a simple 2D rectangle into the 3D surface:

47



2D (u,v) domain of a patch Mapping from (u,v) to (x,y,z)

Figure 6: Mapping Parametric Patches

The points that control the shape of the surface are usually referred to as control points or control
vertices, and the collection of the entire set defining a patch as the control mesh, the control hull, the
control cage or simply the hull, the cage, etc. For the sake of brevity we will frequently use the term
”cage”, which serves us more generally later.

So a patch essentially consist of two entities: its control points and the surface affected by them.
The way the control points affect the surface is what makes the different types of patches unique.

Even patches defined by the same number of points can have different behavior. Note that all 16 points
of the B-Spline patch above are relatively far from the surface they define compared to the similar
Bezier patch. The two patches in that example actually represent exactly the same piece of surface
– each with a set of control points having different effects on it. In mathematical terms, each control
point has a ”basis function” associated with it that affects the surface in a particular way when only
that point is moved. It is these basis functions that often give rise to the names of the different patches.

There are pros and cons to these different properties of the control points of patches, which become
more apparent as we assemble patches into piecewise surfaces.

4.2.2 Piecewise Surfaces

Piecewise parametric surfaces are collections of patches.
For rectangular patches, one of the simplest ways to construct a collection is to define a set of

patches using a rectangular grid of control points:

Piecewise B-Spline surface Piecewise Bezier surface

Note that we can overlap the points of adjacent B-spline patches. This overlapping means that
moving one control point affects multiple patches – but it also ensures that those patches always meet

48



smoothly (this was a design intention and not true for other patch types). Adjacent Bezier patches
only share points at their boundaries and coordinating the points across those boundaries to keep the
surface smooth is possible, but awkward. This makes B-splines a more favorable surface representation
for interactive modeling, but Bezier patches serve many other useful purposes.

A more complicated B-spline surface:

Part of a more complicated B-Spline surface

Just as a patch consisted of a cage and a surface, the same is now true of the collection. The control
cage is manipulated by a designer and the surface of each of the patches involved is displayed so they
can assess its effect.

4.3 Arbitrary Topology

Piecewise surfaces discussed thus far have been restricted to collections of patches over regular grids
of control points. There is a certain simplicity with rectangular parametric surfaces that is appealing,
but a surface representation that supports arbitrary topology has many other advantages.

Rectangular parametric surfaces gained widespread adoption despite their topological limitations,
and their popularity continues today in some areas. Complex objects often need many such surfaces
to represent them and a variety of techniques have evolved to assemble them effectively, including
”stitching” multiple surfaces together or cutting holes into them (”trimming”). These are complicated
techniques, and while effective in some contexts (e.g. industrial design) they become cumbersome in
others (e.g. animation and visual effects).

A single polygonal mesh can represent shapes with far more complexity than a single rectangular
piecewise surface, but its faceted nature eventually becomes a problem.

Subdivision surfaces combine the topological flexibility of polygonal meshes with the underlying
smoothness of piecewise parametric surfaces. Just as rectangular piecewise parametric surfaces have a
collection of control points (its cage stored as a grid) and an underlying surface, subdivision surfaces
also have a collection of control points (its cage stored as a mesh) and an underlying surface (often
referred as its ”limit surface”).

49



4.3.1 Regular versus Irregular Features

A mesh contains the vertices and faces that form the cage for the underlying surface, and the topology
of that mesh can be arbitrarily complex.

In areas where the faces and vertices of the mesh are connected to form rectangular grids, the limit
surface becomes one of the rectangular piecewise parametric surfaces previously mentioned. These
regions of the mesh are said to be ”regular”: they provide behavior familiar from the use of similar
rectangular surfaces and their limit surface is relatively simple to deal with. All other areas are
considered ”irregular”: they provide the desired topological flexibility and so are less familiar (and less
predictable in some cases) and their limit surface can be much more complicated.

Irregular features come in a number of forms. The most widely referred to is an extra-ordinary
vertex, i.e. a vertex which, in the case of a quad subdivision scheme like Catmull-Clark, does not have
four incident faces.

Irregular vertex and incident faces Regular and irregular regions of the surface

The presence of these irregular features makes the limit surface around them similarly irregular,
i.e. it cannot be represented as simply as it can for regular regions.

It’s worth noting that irregular regions shrink in size and become more ”isolated” as subdivision is
applied. A face with a lot of extra-ordinary vertices around it makes for a very complicated surface,
and isolating these features is a way to help deal with that complexity:

Two valence-5 vertices nearby Isolation subdivided once Isolation subdivided twice

It’s generally necessary to perform some kind of local subdivision in these areas to break these
pieces of surface into smaller, more manageable pieces, and the term ”feature adaptive subdivision”
has become popular in recent years to describe this process. Whether this is done explicitly or implicitly,
globally or locally, what matters most is that there is an underlying piece of limit surface for each face

50



– albeit a potentially complicated one at an irregular feature – that can be evaluated in much the same
way as rectangular piecewise surfaces.

Patches of the regular regions Patches of the irregular region

While supporting a smooth surface in these irregular areas is the main advantage of subdivision
surfaces, both the complexity of the resulting surfaces and their quality are reasons to use them with
care. When the topology is largely irregular, there is a higher cost associated with its surface, so
minimizing irregularities is advantageous. And in some cases the surface quality, i.e. the perceived
smoothness, of the irregular surfaces can lead to undesirable artefacts.

An arbitrary polygonal mesh will often not make a good subdivision cage, regardless of how good
that polygonal mesh appears.

As with rectangular piecewise parametric surfaces, the cage should be shaped to affect the under-
lying surface it is intended to represent. See ¡Modeling Tips¿ for related recommendations.

4.3.2 Non-manifold Topology

Since the cage of a subdivision surface is stored in a mesh, and often manipulated in the same context
as polygonal meshes, the topic of manifold versus non-manifold topology warrants some attention.

There are many definitions or descriptions of what distinguishes a manifold mesh from one that
is not. These range from concise but abstract mathematical definitions to sets of examples showing
manifold and non-manifold meshes – all have their value and an appropriate audience. The following
is not a strict definition but serves well to illustrate most local topological configurations that cause a
mesh to be non-manifold.

As mentioned earlier, many tools do not support non-manifold meshes, and in some contexts, e.g.
3D printing, they should be strictly avoided. Sometimes a manifold mesh may be desired and enforced
as an end result, but the mesh may temporarily become non-manifold due to a particular sequence of
modeling operations.

Rather than supporting or advocating the use of non-manifold meshes, OpenSubdiv strives to be
robust in the presence of non-manifold features to simplify the usage of its clients – sparing them
the need for topological analysis to determine when OpenSubdiv can or cannot be used. Although
subdivision rules are not as well standardized in areas where the mesh is not manifold, OpenSubdiv
provides simple rules and a reasonable limit surface in most cases.

As with the case of regular versus irregular features, since every face has a corresponding piece of
surface associated with it – whether locally manifold or not – the term ”arbitrary topology” can be
made to include non-manifold topology.

4.4 Subdivision versus Tessellation

The preceding sections illustrate subdivision surfaces as piecewise parametric surfaces of arbitrary
topology. As piecewise parametric surfaces, they consist of a cage and the underlying surface defined

51



by that cage.
Two techniques used to display subdivision surfaces are subdivision and tessellation. Both have

their legitimate uses, but there is an important distinction between them:

• subdivision operates on a cage and produces a refined cage

• tessellation operates on a surface and produces a discretization of that surface

The existence and relative simplicity of the subdivision algorithm makes it easy to apply repeatedly
to approximate the shape of the surface, but with the result being a refined cage, that approximation
is not always very accurate. When compared to a cage refined to a different level, or a tessellation that
uses points evaluated directly on the limit surface, the discrepancies can be confusing.

4.4.1 Subdivision

Subdivision is the process that gives ”subdivision surfaces” their name, but it is not unique to them.
Being piecewise parametric surfaces, let’s first look at subdivision in the context of the simpler para-
metric patches that comprise them.

Subdivision is a special case of refinement, which is key to the success of some of the most widely
used types of parametric patches and their aggregate surfaces. A surface can be ”refined” when
an algorithm exists such that more control points can be introduced while keeping the shape of the
surface exactly the same. For interactive and design purposes, this allows a designer to introduce more
resolution for finer control without introducing undesired side effects in the shape. For more analytical
purposes, it allows the surface to be broken into pieces, often adaptively, while being faithful to the
original shape.

One reason why both B-spline and Bezier patches are so widely used is that both of them can
be refined. Uniform subdivision – the process of splitting each of the patches in one or both of its
directions – is a special case of refinement that both of these patch types support:

B-Spline surface and its cage Cage subdivided 1x Cage subdivided 2x

In the cases illustrated above for B-Splines, the uniformly refined cages produce the same limit
surface as the original (granted in more pieces). So it is fair to say that both uniform B-splines and
Bezier surfaces are subdivision surfaces.

The limit surface remains the same with the many more control points (roughly 4x with each
iteration of subdivision), and those points are closer to (but not on) the surface. It may be tempting to
use these new control points to represent the surface, but using the same number of points evaluated
at corresponding uniformly spaced parametric locations on the surface is usually simpler and more
effective.

Note also that points of the cage typically do not have any normal vectors associated with them,
though we can evaluate normals explicitly for arbitrary locations on the surface just as we do for

52



position. So if displaying a cage as a shaded surface, normal vectors at each of the control points
must be contrived. Both the positions and normals of the points on the finer cage are therefore both
approximations.

For more general subdivision surfaces, the same is true. Subdivision will refine a mesh of arbitrary
topology, but the resulting points will not lie on the limit surface and any normal vectors contrived
from and associated with these points will only be approximations to those of the limit surface.

4.4.2 Tessellation

There is little need to use subdivision to approximate a parametric surface when it can be computed
directly, i.e. it can be tessellated. We can evaluate at arbitrary locations on the surface and connect
the resulting points to form a tessellation – a discretization of the limit surface – that is far more
flexible than the results achieved from uniform subdivision:

Uniform tessellation of B-Spline surface Curvature-adaptive tessellation of B-Spline surface

For a simple parametric surface, the direct evaluation of the limit surface is also simple, but for
more complicated subdivision surfaces of arbitrary topology, this is less the case. The lack of a clear
understanding of the relationship between the limit surface and the cage has historically lead to many
applications avoiding tessellation.

It’s worth mentioning that subdivision can be used to generate a tessellation even when the limit
surface is not available for direct evaluation. The recursive nature of subdivision does give rise to
formulae that allow a point on the limit surface to be computed that corresponds to each point of the
cage. This process is often referred to as ”snapping” or ”pushing” the points of the cage onto the limit
surface.

Subdivided 1x and snapped to limit surface Subdivided 2x and snapped to limit surface

Since the end result is a connected set of points on the limit surface, this forms a tessellation of
the limit surface, and we consider it a separate process to subdivision (though it does make use of it).
The fact that such a tessellation might have been achieved using subdivision is indistinguishable from

53



the final result – the same tessellation might just as easily have been generated by evaluating limit
patches of the cage uniformly 2x, 4x, 8x, etc. along each edge.

4.4.3 Which to Use?

Subdivision is undeniably useful in creating finer cages to manipulate the surface, but tessellation is
preferred for displaying the surface when the patches are available for direct evaluation. There was a
time when global refinement was pursued in limited circles as a way of rapidly evaluating parametric
surfaces along isoparametric lines, but patch evaluation, i.e. tessellation, generally prevails.

Considerable confusion has arisen due the way the two techniques have been employed and presented
when displaying the shape in end-user applications. One can argue that if an application displays a
representation of the surface that is satisfactory for its purposes, then it is not necessary to burden the
user with additional terminology and choices. But when two representations of the same surface differ
considerably between two applications, the lack of any explanation or control leads to confusion.

As long as applications make different choices on how to display the surface, we seek a balance
between simplicity and control. Since subdivided points do not lie on the limit surface, it is important
to make it clear to users when subdivision is being used instead of tessellation. This is particularly
true in applications where the cage and the surface are displayed in the same style as there is no visual
cue for users to make that distinction.

4.5 Mesh Data and Topology

The ability of subdivision surfaces to support arbitrary topology leads to the use of meshes to store
both the topology of the cage and the data values associated with its control points, i.e. its vertices.
The shape of a mesh, or the subdivision surface that results from it, is a combination of the topology
of the mesh and the position data associated with its vertices.

When dealing with meshes there are advantages to separating the topology from the data, and this
is even more important when dealing with subdivision surfaces. The ”shape” referred to above is not
just the shape of the mesh (the cage in this case) but could be the shape of a refined cage or the limit
surface. By observing the roles that both the data and topology play in operations such as subdivision
and evaluation, significant advantages can be gained by managing data, topology and the associated
computations accordingly.

While the main purpose of subdivision surfaces is to use position data associated with the vertices to
define a smooth, continuous limit surface, there are many cases where non-positional data is associated
with a mesh. That data may often be interpolated smoothly like position, but often it is preferred to

54



interpolate it linearly or even make it discontinuous along edges of the mesh. Texture coordinates and
color are common examples here.

Other than position, which is assigned to and associated with vertices, there are no constraints on
how arbitrary data can or should be associated or interpolated. Texture coordinates, for example, can
be assigned to create a completely smooth limit surface like the position, linearly interpolated across
faces, or even made discontinuous between them. There are, however, consequences to consider – both
in terms of data management and performance – which are described below as the terminology and
techniques used to achieve each are defined.

4.5.1 Separating Data from Topology

While the topology of meshes used to store subdivision surfaces is arbitrarily complex and variable,
the topology of the parametric patches that make up its limit surface are simple and fixed. Bicubic
B-Spline and Bezier patches are both defined by a simple 4x4 grid of control points and a set of basis
functions for each point that collectively form the resulting surface.

For such a patch, the position at a given parametric location is the result of the combination of
position data associated with its control points and the weights of the corresponding basis functions
(weights being the values of basis functions evaluated at a parametric location). The topology and
the basis functions remain the same, so we can make use of the weights independent of the data. If
the positions of the control points change, we can simply recombine the new position data with the
weights that we just used and apply the same combination.

Figure 7: The fixed topology of a parametric patch and two shapes resulting from two sets of positions.

Similarly, for a piecewise surface, the position at a given parametric location is the result of the
single patch containing that parametric location evaluated at the given position. The control points
involved are the subset of control points associated with that particular patch. If the topology of the
surface is fixed, so too is the topology of the collection of patches that comprise that surface. If the
positions of those control points change, we can recombine the new position data with the same weights
for the subset of points associated with the patch.

55



Figure 8: More complex but fixed topology of a surface and two shapes resulting from two sets of
positions.

This holds for a piecewise surface of arbitrary topology. Regardless of how complex the topology,
as long as it remains fixed (i.e. relationships between vertices, edges and faces does not change (or
anything other settings affecting subdivision rules)), the same techniques apply.

This is just one example of the value of separating computations involving topology from those
involving the data. Both subdivision and evaluation can be factored into steps involving topology
(computing the weights) and combining the data separately.

When the topology is fixed, enormous savings are possible by pre-computing information associated
with the topology and organizing the data associated with the control points in a way that can be
efficiently combined with it. This is key to understanding some of the techniques used to process
subdivision surfaces.

For a mesh of arbitrary topology, the control points of the underlying surface are the vertices, and
position data associated with them is most familiar. But there is nothing that requires that the control
points of a patch have to represent position – the same techniques apply regardless of the type of data
involved.

4.5.2 Vertex and Varying Data

The most typical and fundamental operation is to evaluate a position on the surface, i.e. evaluate the
underlying patches of the limit surface using the (x,y,z) positions at the vertices of the mesh. Given a
parametric (u,v) location on one such patch, the data-independent evaluation method first computes
the weights and then combines the (x,y,z) vertex positions resulting in an (x,y,z) position at that
location. But the weights and their combination can be applied to any data at the vertices, e.g. color,
texture coordinates or anything else.

Data associated with the vertices that is interpolated this way, including position, is said to be
”vertex” data or to have ”vertex” interpolation. Specifying other data as ”vertex” data will result in it
being smoothly interpolated in exactly the same way (using exactly the same weights) as the position.
So to capture a simple 2D projection of the surface for texture coordinates, 2D values matching the
(x,y) of the positions would be used.

If linear interpolation of data associated with vertices is desired instead, the data is said to be
”varying” data or to have ”varying” interpolation. Here the non-linear evaluation of the patches
defining the smooth limit surface is ignored and weights for simple linear interpolation are used. This
is a common choice for texture coordinates as evaluation of texture without the need of bicubic patches
is computationally cheaper. The linear interpolation will not capture the smoothness required of a true
projection between the vertices, but both vertex and varying interpolation have their uses.

56



Projected texture smoothly inter-
polatedfrom vertex data

Projected texture linearly interpo-
lated from varying data

Since both vertex and varying data is associated with vertices (a unique value assigned to each),
the resulting surface will be continuous – piecewise smooth in the case of vertex data and piecewise
linear in the case of varying.

4.5.3 Face-Varying Data and Topology

In order to support discontinuities in data on the surface, unlike vertex and varying data, there must
be multiple values associated with vertices, edges and/or faces, in order for a discontinuity to exist.

Discontinuities are made possible by assigning values to the corners of faces, similar to the way in
which vertices are assigned to the corners of faces when defining the topology of the mesh. Recalling
the assignment of vertices to faces:

Vertex indices are assigned to all corners of each face as part of mesh construction and are often
referred to as the face-vertices of an individual face or the mesh. All face-vertices that share the same
vertex index will be connected by that vertex and share the same vertex data associated with it.

By assigning a different set of indices to the face-vertices – indices not referring to the vertices but
some set of data to be associated with the corners of each face – corners that share the same vertex
no longer need to share the same data value and the data can be made discontinuous between faces:

57



This method of associating data values with the face-vertices of the mesh is said to be assigning
”face-varying” data for ”face-varying” interpolation. An interpolated value will vary continuously
within a face (i.e. the patch of the limit surface associated with the face) but not necessarily across
the edges or vertices shared with adjacent faces.

Disjoint face-varying UV regions applied to the limit surface

The combination of associating data values not with the vertices (the control points) but the face
corners, and the resulting data-dependent discontinuities that result, make this a considerably more
complicated approach than vertex or varying. The added complexity of the data alone is reason to
only use it when necessary, i.e. when discontinuities are desired and present.

Part of the complexity of dealing with face-varying data and interpolation is the way in which
the interpolation behavior can be defined. Where the data is continuous, the interpolation can be
specified to be as smooth as the underlying limit surface of vertex data or simply linear as achieved
with varying data. Where the data is discontinuous – across interior edges and around vertices –
the discontinuities create boundaries for the data, and partition the underlying surface into disjoint
regions. The interpolation along these boundaries can also be specified as smooth or linear in a number
of ways (many of which have a historical basis).

A more complete description of the different linear interpolation options with face-varying data
and interpolation is given later. These options make it possible to treat the data as either vertex or
varying, but with the added presence of discontinuities.

An essential point to remember with face-varying interpolation is that each set of data is free to
have its own discontinuities – this leads to each data set having both unique topology and size.

The topology specified for a collection of face-varying data is referred to as a channel and is unique
to face-varying interpolation. Unlike vertex and varying interpolation, which both associate a data
value with a vertex, the number of values in a face-varying channel is not fixed by the number of vertices
or faces. The number of indices assigned to the face-corners will be the same for all channels, but the
number of unique values referred to by these indices may not. We can take advantage of the common
mesh topology in areas where the data is continuous, but we lose some of those advantages around the

58



discontinuities. This results in the higher complexity and cost of a face-varying channel compared to
vertex or varying data. If the topology for a channel is fixed, though, similar techniques can be applied
to factor computation related to the topology so that changes to the data can be processed efficiently.

4.6 Schemes and Options

While previous sections have described subdivision surfaces in more general terms, this section describes
a number of common variations (often referred to as extensions to the subdivision algorithms) and the
ways that they are represented in OpenSubdiv.

The number and nature of the extensions here significantly complicate what are otherwise fairly
simple subdivision algorithms. Historically applications have supported either a subset or have had
varying implementations of the same feature. OpenSubdiv strives to provide a consistent and efficient
implementation of this feature set.

Given the varying presentations of some of these features elsewhere, the naming chosen by Open-
Subdiv is emphasized here.

4.6.1 Subdivision Schemes

OpenSubdiv provides two well known subdivision surface types – Catmull-Clark (often referred to
more tersely as ”Catmark”) and Loop subdivision. Catmull-Clark is more widely used and suited to
quad-dominant meshes, while Loop is preferred for purely triangulated meshes.

The many examples from previous sections have illustrated the more popular Catmull-Clark scheme.
For an example of Loop:

Figure 9: Loop scheme subdivision on a triangle mesh

Note that while Loop subdivision has long been available, support for the limit surface of Loop
subdivision (i.e. arbitrary evaluation of the surface via patches) is not supported prior to version 3.4.

4.6.2 Boundary Interpolation

Boundary interpolation rules control how subdivision and the limit surface behave for faces adjacent
to boundary edges and vertices.

The following choices are available:

59



Mode Behavior

VTX BOUNDARY NONE No boundary edge interpolation should occur;
instead boundary faces are implicitly tagged
as holes so that the boundary vertices con-
tinue to support the adjacent interior faces,
but no surface corresponding to the boundary
faces is generated

VTX BOUNDARY EDGE ONLY A sequence of boundary vertices defines a
smooth curve to which the limit surface along
boundary faces extends

VTX BOUNDARY EDGE AND CORNER Similar to edge-only but the smooth curve re-
sulting on the boundary is made to interpo-
late corner vertices (vertices with exactly one
incident face)

On a grid example:
In practice, it is rare to use no boundary interpolation at all – this feature has its uses in allowing

separate meshes to be seamlessly joined together by replicating the vertices along boundaries, but these
uses are limited. Given the global nature of the setting, it is usually preferable to explicitly make the
boundary faces holes in the areas where surfaces from separate meshes are joined.

The remaining ”edge only” and ”edge and corner” choices are then solely distinguished by whether
or not the surface at corner vertices is smooth or sharp.

4.6.3 Face-varying Interpolation

Face-varying interpolation rules control how face-varying data is interpolated both in the interior of
face-varying regions (smooth or linear) and at the boundaries where it is discontinuous (constrained
to be linear or ”pinned” in a number of ways). Where the topology is continuous and the interpo-
lation chosen to be smooth, the behavior of face-varying interpolation will match that of the vertex
interpolation.

Choices for face-varying interpolation are most commonly available in the context of UVs for
texture coordinates and a number of names for such choices have evolved in different applications over
the years. The choices offered by OpenSubdiv cover a wide range of popular applications. The feature
is named face-varying linear interpolation – rather than boundary interpolation commonly used – to
emphasize that it can be applied to the entire surface (not just boundaries) and that the effects are to
make the surface behave more linearly in various ways.

The following choices are available for the Sdc::Options::FVarLinearInterpolation enum – the
ordering here applying progressively more linear constraints:

60



Mode Behavior

FVAR LINEAR NONE smooth everywhere the mesh is smooth

FVAR LINEAR CORNERS ONLY linearly interpolate (sharpen or pin) corners
only

FVAR LINEAR CORNERS PLUS1 CORNERS ONLY + sharpening of junctions
of 3 or more regions

FVAR LINEAR CORNERS PLUS2 CORNERS PLUS1 + sharpening of darts and
concave corners

FVAR LINEAR BOUNDARIES linear interpolation along all boundary edges
and corners

FVAR LINEAR ALL linear interpolation everywhere (boundaries
and interior)

These rules cannot make the interpolation of the face-varying data smoother than that of the ver-
tices. The presence of sharp features of the mesh created by sharpness values, boundary interpolation
rules, or the subdivision scheme itself (e.g. Bilinear) take precedence.

All face-varying interpolation modes illustrated in UV space using a simple 4x4 grid of quads
segmented into three UV regions (their control point locations implied by interpolation):

Figure 10: Face-varying interpolation modes

(For those familiar, this shape and its assigned UV sets are available for inspection in the ”cat-
mark fvar bound1” shape of OpenSubdiv’s example and regression shapes.)

4.6.4 Semi-Sharp Creases

Just as some types of parametric surfaces support additional shaping controls to affect creasing
along the boundaries between surface elements, OpenSubdiv provides additional sharpness values or
”weights” associated with edges and vertices to achieve similar results over arbitrary topology.

61



Setting sharpness values to a maximum value (10 in this case – a number chosen for historical
reasons) effectively modifies the subdivision rules so that the boundaries between the piecewise smooth
surfaces are infinitely sharp or discontinuous.

But since real world surfaces never really have infinitely sharp edges, especially when viewed suf-
ficiently close, it is often preferable to set the sharpness lower than this value, making the crease
”semi-sharp”. A constant weight value assigned to a sequence of edges connected edges therefore en-
ables the creation of features akin to fillets and blends without adding extra rows of vertices (though
that technique still has its merits):

Figure 11: A shape modeled with semi-sharp creases

Sharpness values range from 0-10, with a value of 0 (or less) having no effect on the surface and a
value of 10 (or more) making the feature completely sharp.

It should be noted that infinitely sharp creases are really tangent discontinuities in the surface,
implying that the geometric normals are also discontinuous there. Therefore, displacing along the
normal will likely tear apart the surface along the crease. If you really want to displace a surface at a
crease, it may be better to make the crease semi-sharp.

4.6.5 Other Options

While the preceding options represent features available in a wide-variety of tools and modeling for-
mats, a few others exist whose recognition and adoption is more limited. In some cases, they offer
improvements to undesirable behavior of the subdivision algorithms, but their effects are less than
ideal. Given both their limited effectiveness and lack of recognition, these options should be used with
caution.

4.6.6 Chaikin Rule

The ”Chaikin Rule” is a variation of the semi-sharp creasing method that attempts to improve
the appearance of creases along a sequence of connected edges when the sharpness values differ.
This choice modifies the subdivision of sharpness values using Chaikin’s curve subdivision algorithm

62



to consider all sharpness values of edges around a common vertex when determining the sharp-
ness of child edges. The creasing method can be set using the values defined in the enumeration
Sdc::Options::CreasingMethod:

Table 3: Chaikin rule

Mode Behavior

CREASE UNIFORM Apply regular semi-sharp crease rules
CREASE CHAIKIN Apply “Chaikin” semi-sharp crease rules

Example of contiguous semi-sharp creases interpolation:

Figure 12: Chaikin rule example

4.6.7 Triangle Subdivision” Rule

The triangle subdivision rule is a rule added to the Catmull-Clark scheme that modifies the behavior
at triangular faces to improve the undesirable surface artefacts that often result in such areas.

Table 4: “Triangle Subdivision” Rule

Mode Behavior

TRI SUB CATMARK Default Catmark scheme weights
TRI SUB SMOOTH “Smooth triangle” weights

Cylinder example :

Figure 13: Triangle subdivision rule

63



This rule was empirically determined to make triangles subdivide more smoothly. However, this
rule breaks the nice property that two separate meshes can be joined seamlessly by overlapping their
boundaries; i.e. when there are triangles at either boundary, it is impossible to join the meshes
seamlessly

4.7 API Overview

API Layers
OpenSubdiv is structured as a set of layered libraries. This structure facilitates operation on a

variety of computing resources, and allows developers to only opt-in to the layers and feature sets that
they require. From a top-down point of view, OpenSubdiv is comprised of several layers, some public,
and some private.

Layers list:

Table 5: API Layer list

Sdc (Subdivision Core) The lowest level layer, implements the core subdivision details
to facilitate the generation of consistent results. Most cases
will only require the use of simple public types and constants
from Sdc.

Vtr (Vectorized Topological
Representation)

A suite of classes to provide an intermediate representation of
topology that supports efficient refinement. Vtr is intended
for internal use only.

Far (Feature Adaptive Repre-
sentation)

The central interface that processes client-supplied geometry
and turns it into a serialized data representation ready for
parallel processing in Osd. Far also provides a fully-featured
single-threaded implementation of subdivision interpolation
algorithms.

Osd (OpenSubdiv cross plat-
form)

A suite of classes to provide parallel subdivision kernels and
drawing utilities on a variety of platforms such as TBB,
CUDA, OpenCL, GLSL and DirectX.

Client mesh data enters the API through the Far layer. Typically, results will be collected from the
Osd layer. However, it is possible to use functionality from Far without introducing any dependency
on Osd.

Although there are several entry-points to provide topology and primitive variable data to Open-
Subdiv, eventually everything must pass through the private Vtr and Sdc representations for topological
analysis.

64



OpenSubdiv

Far

Sdc

Vtr

Osd

Topology

StencilTable PatchTable

Evaluator
Result

PrimvarRefiner

Primvar
(x, y, z)

Result

TopologyRefiner

Primvar
(x, y, z)

OptionsScheme

Figure 14: API layers

4.8 References

For more references, please visit http://graphics.pixar.com/opensubdiv/

65



References

Andrew Butts, Ben Porter, Dirk Van Gelder, Mark Hessler, Venkateswaran Krishna, and Gary
Monheit. 2018. Engineering Full-fidelity Hair for Incredibles 2. In ACM SIGGRAPH 2018 Talks
(SIGGRAPH ’18). ACM, New York, NY, USA, Article 14, 2 pages. https://doi.org/10.1145/

3214745.3214798

Gordon Cameron, Robert Russ, and Adam Woodbury. 2007. Acting with Contact in Ratatouille:
Cartoon Collision and Response. In ACM SIGGRAPH 2007 Sketches (SIGGRAPH ’07). ACM,
New York, NY, USA, Article 64. https://doi.org/10.1145/1278780.1278858

Matt Jen-Yuan Chiang, Benedikt Bitterli, Chuck Tappan, and Brent Burley. 2015. A Practical and
Controllable Hair and Fur Model for Production Path Tracing. In ACM SIGGRAPH 2015 Talks
(SIGGRAPH ’15). ACM, New York, NY, USA, Article 23, 1 pages. https://doi.org/10.1145/

2775280.2792559

Matt Jen-Yuan Chiang, Peter Kutz, and Brent Burley. 2016. Practical and Controllable Subsurface
Scattering for Production Path Tracing. In ACM SIGGRAPH 2016 Talks (SIGGRAPH ’16). ACM,
New York, NY, USA, Article 49, 2 pages. https://doi.org/10.1145/2897839.2927433

Per Christensen, Julian Fong, Jonathan Shade, Wayne Wooten, Brenden Schubert, Andrew Kensler,
Stephen Friedman, Charlie Kilpatrick, Cliff Ramshaw, Marc Bannister, Brenton Rayner, Jonathan
Brouillat, and Max Liani. 2018. RenderMan: An Advanced Path-Tracing Architecture for Movie
Rendering. ACM Trans. Graph. 37, 3, Article 30 (Aug. 2018), 21 pages. https://doi.org/10.

1145/3182162

Per H. Christensen. 2015. An Approximate Reflectance Profile for Efficient Subsurface Scattering. In
ACM SIGGRAPH 2015 Talks (SIGGRAPH ’15). ACM, New York, NY, USA, Article 25, 1 pages.
https://doi.org/10.1145/2775280.2792555

Robert L. Cook, Loren Carpenter, and Edwin Catmull. 1987. The Reyes Image Rendering Architecture.
In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’87). ACM, New York, NY, USA, 95–102. https://doi.org/10.1145/37401.37414

Anthony B. Davis and Feng Xu. 2014. A Generalized Linear Transport Model for Spatially-Correlated
Stochastic Media. arXiv:physics.optics/1410.8200

Fernando De Goes and Doug L. James. 2018. Dynamic Kelvinlets: Secondary Motions Based on Fun-
damental Solutions of Elastodynamics. ACM Trans. Graph. 37, 4, Article 81 (July 2018), 10 pages.
https://doi.org/10.1145/3197517.3201280

Fernando de Goes, William Sheffler, Michael Comet, Alonso Martinez, and Aimei Kutt. 2018. Patch-
based Surface Relaxation. In ACM SIGGRAPH 2018 Talks (SIGGRAPH ’18). ACM, New York,
NY, USA, Article 43, 2 pages. https://doi.org/10.1145/3214745.3214768

Eugene d’Eon, Guillaume Francois, Martin Hill, Joe Letteri, and Jean-Marie Aubry. 2011. An Energy-
conserving Hair Reflectance Model. In Proceedings of the Twenty-second Eurographics Conference
on Rendering (EGSR ’11). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 1181–
1187. https://doi.org/10.1111/j.1467-8659.2011.01976.x

Luca Fascione, Johannes Hanika, Rob Pieké, Ryusuke Villemin, Christophe Hery, Manuel Gamito,
Luke Emrose, and André Mazzone. 2018. Path Tracing in Production. In ACM SIGGRAPH 2018
Courses (SIGGRAPH ’18). ACM, New York, NY, USA, Article 15, 79 pages. https://doi.org/

10.1145/3214834.3214864

66

https://doi.org/10.1145/3214745.3214798
https://doi.org/10.1145/3214745.3214798
https://doi.org/10.1145/1278780.1278858
https://doi.org/10.1145/2775280.2792559
https://doi.org/10.1145/2775280.2792559
https://doi.org/10.1145/2897839.2927433
https://doi.org/10.1145/3182162
https://doi.org/10.1145/3182162
https://doi.org/10.1145/2775280.2792555
https://doi.org/10.1145/37401.37414
https://doi.org/10.1145/3197517.3201280
https://doi.org/10.1145/3214745.3214768
https://doi.org/10.1111/j.1467-8659.2011.01976.x
https://doi.org/10.1145/3214834.3214864
https://doi.org/10.1145/3214834.3214864


Julian Fong, Magnus Wrenninge, Christopher Kulla, and Ralf Habel. 2017. Production Volume Ren-
dering: SIGGRAPH 2017 Course. In ACM SIGGRAPH 2017 Courses (SIGGRAPH ’17). ACM,
New York, NY, USA, Article 2, 79 pages. https://doi.org/10.1145/3084873.3084907

L. G. Henyey and J. L. Greenstein. 1941. Diffuse radiation in the Galaxy. Astrophysical Journal 93
(1941), 70–83. https://doi.org/10.1086/144246

Christophe Hery. 2005. Implementing a Skin BSSRDF: (or Several...). In ACM SIGGRAPH 2005
Courses (SIGGRAPH ’05). ACM, New York, NY, USA, Article 4. https://doi.org/10.1145/

1198555.1198584

Christophe Hery. 2012. Texture mapping for the Better Dipole model. Pixar Technical Memo (2012).
http://graphics.pixar.com/library/TexturingBetterDipole/

Geoffrey Irving, Ryan Kautzman, Gordon Cameron, and Jiayi Chong. 2008. Simulating the Devolved:
Finite Elements on WALL&Middot;E. In ACM SIGGRAPH 2008 Talks (SIGGRAPH ’08). ACM,
New York, NY, USA, Article 54, 1 pages. https://doi.org/10.1145/1401032.1401102

Henrik Wann Jensen and Juan Buhler. 2002. A Rapid Hierarchical Rendering Technique for Translucent
Materials. ACM Trans. Graph. 21, 3 (July 2002), 576–581. https://doi.org/10.1145/566654.

566619

Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. 2001. A Practical Model
for Subsurface Light Transport. In Proceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’01). ACM, New York, NY, USA, 511–518. https://doi.

org/10.1145/383259.383319

J. T. Kajiya and T. L. Kay. 1989. Rendering Fur with Three Dimensional Textures. In Proceedings of
the 16th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’89).
ACM, New York, NY, USA, 271–280. https://doi.org/10.1145/74333.74361

Ryan Kautzman, Gordon Cameron, and Theodore Kim. 2018. Robust Skin Simulation in Incredibles 2.
In ACM SIGGRAPH 2018 Talks (SIGGRAPH ’18). ACM, New York, NY, USA, Article 50, 2 pages.
https://doi.org/10.1145/3214745.3214793

Ryan Kautzman, Bill Wise, Meng Yu, Per Karlsson, Mark Hessler, and Audrey Wong. 2016. Finding
Hank: Or How to Sim an Octopus. In ACM SIGGRAPH 2016 Talks (SIGGRAPH ’16). ACM, New
York, NY, USA, Article 61, 2 pages. https://doi.org/10.1145/2897839.2927458

Alan King, Christopher Kulla, Alejandro Conty, and Marcos Fajardo. 2013. BSSRDF Importance
Sampling. In ACM SIGGRAPH 2013 Talks (SIGGRAPH ’13). ACM, New York, NY, USA, Article
48, 1 pages. https://doi.org/10.1145/2504459.2504520

Aimei Kutt, Fran Kalal, Beth Albright, and Trent Crow. 2018. Collaborative Costume Design and
Construction on Incredibles 2. In ACM SIGGRAPH 2018 Talks (SIGGRAPH ’18). ACM, New York,
NY, USA, Article 5, 2 pages. https://doi.org/10.1145/3214745.3214790

Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. 2017. Spectral and Decomposition Tracking
for Rendering Heterogeneous Volumes. ACM Trans. Graph. 36, 4, Article 111 (July 2017), 16 pages.
https://doi.org/10.1145/3072959.3073665

Stephen R. Marschner, Henrik Wann Jensen, Mike Cammarano, Steve Worley, and Pat Hanrahan.
2003. Light Scattering from Human Hair Fibers. In ACM SIGGRAPH 2003 Papers (SIGGRAPH
’03). ACM, New York, NY, USA, 780–791. https://doi.org/10.1145/1201775.882345

67

https://doi.org/10.1145/3084873.3084907
https://doi.org/10.1086/144246
https://doi.org/10.1145/1198555.1198584
https://doi.org/10.1145/1198555.1198584
http://graphics.pixar.com/library/TexturingBetterDipole/
https://doi.org/10.1145/1401032.1401102
https://doi.org/10.1145/566654.566619
https://doi.org/10.1145/566654.566619
https://doi.org/10.1145/383259.383319
https://doi.org/10.1145/383259.383319
https://doi.org/10.1145/74333.74361
https://doi.org/10.1145/3214745.3214793
https://doi.org/10.1145/2897839.2927458
https://doi.org/10.1145/2504459.2504520
https://doi.org/10.1145/3214745.3214790
https://doi.org/10.1145/3072959.3073665
https://doi.org/10.1145/1201775.882345


Jonathan T. Moon, Bruce Walter, and Steve Marschner. 2008. Efficient Multiple Scattering in Hair
Using Spherical Harmonics. In ACM SIGGRAPH 2008 Papers (SIGGRAPH ’08). ACM, New York,
NY, USA, Article 31, 7 pages. https://doi.org/10.1145/1399504.1360630

Laura Murphy, Martin Sebastian Senn, and Matthew Webb. 2018. Efficient hybrid volume and texture
based clouds. In ACM SIGGRAPH 2018 Talks. ACM, 39.

Jan Novk, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018. Monte Carlo Methods for
Volumetric Light Transport Simulation. Computer Graphics Forum (Proceedings of Eurographics -
State of the Art Reports) 37, 2 (may 2018).

Leonid Pekelis, Christophe Hery, Ryusuke Villemin, and Junyi Ling. 2015. A Data-Driven Light
Scattering Model for Hair. Pixar Technical Memo (2015). http://graphics.pixar.com/library/
DataDrivenHairScattering/

Lena Petrovic, Mark Henne, and John Anderson. 2005. Volumetric Methods for Simulation and Ren-
dering of Hair. Pixar Technical Memo (2005). http://graphics.pixar.com/library/Hair/

Iman Sadeghi, Heather Pritchett, Henrik Wann Jensen, and Rasmus Tamstorf. 2010. An Artist Friendly
Hair Shading System. In ACM SIGGRAPH 2010 Papers (SIGGRAPH ’10). ACM, New York, NY,
USA, Article 56, 10 pages. https://doi.org/10.1145/1833349.1778793

Kevin Singleton, Trent Crow, and Edgar Rodriguez. 2018. Making Mrs. Incredible More Flexible. In
ACM SIGGRAPH 2018 Talks (SIGGRAPH ’18). ACM, New York, NY, USA, Article 49, 2 pages.
https://doi.org/10.1145/3214745.3214785

Olivier Soares, Thomas Moser, and Frank Aalbers. 2016. Vegetation Choreography in the Good
Dinosaur. In ACM SIGGRAPH 2016 Talks (SIGGRAPH ’16). ACM, New York, NY, USA, Article
19, 2 pages. https://doi.org/10.1145/2897839.2927435

Ryusuke Villemin, Christophe Hery, and Per Christensen. 2016. Importance Resampling for BSSRDF.
Pixar Technical Memo (2016). http://graphics.pixar.com/library/Resampling/

Matthew Webb, Magnus Wrenninge, Jordan Rempel, and Cody Harrington. 2016. Making a dinosaur
seem small: cloudscapes in The Good Dinosaur. In ACM SIGGRAPH 2016 Talks. ACM, 64.

Audrey Wong, David Eberle, and Theodore Kim. 2018. Clean Cloth Inputs: Removing Character Self-
intersections with Volume Simulation. In ACM SIGGRAPH 2018 Talks (SIGGRAPH ’18). ACM,
New York, NY, USA, Article 42, 2 pages. https://doi.org/10.1145/3214745.3214786

Magnus Wrenninge. 2016. Efficient Rendering of Volumetric Motion Blur Using Temporally Unstruc-
tured Volumes. Journal of Computer Graphics Techniques (JCGT) 5, 1 (31 January 2016), 1–34.
http://jcgt.org/published/0005/01/01/

Magnus Wrenninge, Ryusuke Villemin, and Christophe Hery. 2017. Path Traced Subsurface Scattering
using Anisotropic Phase Functions and Non-Exponential Free Flights. Pixar Technical Memo (2017).
http://graphics.pixar.com/library/PathTracedSubsurface/

Arno Zinke, Cem Yuksel, Andreas Weber, and John Keyser. 2008. Dual Scattering Approximation for
Fast Multiple Scattering in Hair. In ACM SIGGRAPH 2008 Papers (SIGGRAPH ’08). ACM, New
York, NY, USA, Article 32, 10 pages. https://doi.org/10.1145/1399504.1360631

68

https://doi.org/10.1145/1399504.1360630
http://graphics.pixar.com/library/DataDrivenHairScattering/
http://graphics.pixar.com/library/DataDrivenHairScattering/
http://graphics.pixar.com/library/Hair/
https://doi.org/10.1145/1833349.1778793
https://doi.org/10.1145/3214745.3214785
https://doi.org/10.1145/2897839.2927435
http://graphics.pixar.com/library/Resampling/
https://doi.org/10.1145/3214745.3214786
http://jcgt.org/published/0005/01/01/
http://graphics.pixar.com/library/PathTracedSubsurface/
https://doi.org/10.1145/1399504.1360631

	Department Structure
	Approaching the pipeline
	Cloth & Hair Tools that helped shot simulation
	Seeking for Storytelling
	General Effects Workflow
	Generating effects data
	Sharing knowledge in the team
	Rendering and Comp
	Artistic Approach and Technical Approach in Incredible 2 Effects
	Direction and Observation
	Artistic Decision and Solution
	Technical Decision and Solution

	Conclusion
	Introduction
	Pathtraced subsurface
	Sampling internal volumetric paths
	Phase Functions, and free flight models
	Path traced hair rendering
	Hair BSDF Model
	Hair Shadowing and Lighting
	Hair Shading

	Volume Authoring and Rendering at Pixar
	Foundation
	Houdini
	Field3D
	USD
	MIP Volumes
	Min/Max Volumes
	Motion blur and temporal volumes

	Effects Animation
	USD specifics
	Clustering
	Temporal tools & Reves
	3D Clouds and Hybrid Matte Paintings
	Acknowledgments
	Conclusion

	Introduction

	Sequence-level Nuke Scripts
	Shot Board
	Switch Shot & Shot Enable Group
	Precomps
	Nuke plugins
	Conclusion
	Introduction
	Universal Scene Description (USD)
	Composed Scene Description
	Namespace, Prims, and Properties
	References
	Hydra Render Engine
	Hydra Architecture
	Flattening and Instancing and Identity
	Rprim, Sprim, Bprim, Task

	Tasks and RenderPasses and Collections
	OpenSubdiv
	Overview
	Piecewise Parametric Surfaces
	Parametric Patches
	Piecewise Surfaces
	Arbitrary Topology
	Regular versus Irregular Features
	Non-manifold Topology

	Subdivision versus Tessellation
	Subdivision
	Tessellation
	Which to Use?

	Mesh Data and Topology
	Separating Data from Topology
	Vertex and Varying Data
	Face-Varying Data and Topology


	Schemes and Options
	Subdivision Schemes
	Boundary Interpolation
	Face-varying Interpolation
	Semi-Sharp Creases
	Other Options
	Chaikin Rule
	Triangle Subdivision" Rule

	API Overview
	References
















