
Point Multiplication and Soft Caching:
An Approach for Accelerating Calculations in Graphics

Mark Meyer John Anderson
Pixar Animation Studios

Figure 1: An example of the point multiplication technique applied to character animation: (Top) Left: The facial model computed by
posing all 2986 articulated facial points using our in house posing engine. Middle: The 170 key points computed by our Point Multiplication
Algorithm. Right: The facial model computed by posing only the 170 key points using our in house posing engine and then using Point
Multiplication to generate the 2986 facial points. Using the Point Multiplication technique results in an 8.7x speedup in posing time. (Bottom)
Several different poses generated by our Point Multiplication algorithm are displayed to demonstrate the range of poses possible using the
Point Multiplication technique.

Abstract
Point multiplication is a statistical acceleration scheme which first
identifies a set of characteristic key points in a graphical calculation
such as articulation or rendering. Samples of the calculation at the
key points are then used to provide a subspace based estimate of
the entire calculation. Point multiplication is a useful acceleration
scheme when the calculation requirements for evaluating the key
point values are substantially lower than for evaluating the full set
of points. Calculations of this sort occur in many areas of graphics -
here we present examples from the calculation of facial articulation
and the rendering of scenes with global illumination.
The soft caching process is an extension to the point multiplication
technique where the key points are also used to provide a confidence
estimate for the point multiplication result. In frames with high
anticipated error the calculation will then “fail through” to a full
evaluation of those points (a cache miss), while frames with low
error can use the accelerated statistical evaluation (a cache hit).

Keywords: Animation, Subspace Analysis, Statistical Models

1 Introduction

Recently there has been a great deal of interest in the use of statis-
tical models for calculations in graphics. One line of research illus-
trated by Lewis [Lewis et al. 2000] and Wang and Phillips [Wang
and Phillips 2002] involves the creation of a kinematic articulation
model which is trained from poses which can be generated from
either physical simulations or hand corrected posed models. The
Lewis approach is based on a pose based interpolation scheme in
animation variables while Wang and Phillips base their approxima-
tion on multiple coefficient weighting of the positions of points in
various skeletal articulation frames. Both of these approaches are
much more general than the techniques described here since they do
not require the posing of key points, a limitation that precludes the
use of models depending upon history based simulation for posing.

The weakness of the kinematic schemes is related to their general-
ity - the required training sets for these methods can be very large
and it is essentially impossible to place bounds on the errors of the
reconstructions when poses are seen which are far from those in-
cluded in the training set.

Our technique is most similar to EigenSkin [Kry et al. 2002] and
Precomputed Local Radiance Transfer (PLRT) [Kristensen et al.
2005]. EigenSkin is a technique for real time deformation of char-
acter skin. EigenSkin uses principal component analysis to com-
pute a basis for the skin displacements resulting from perturbing
each joint of a model. Given several example poses consisting of



joint angles and skin displacements, specific joint angle values can
be associated with coordinates in the basis space by projecting the
skin displacement into the basis. Skin displacements for novel joint
angle configurations are computed by using the joint angles to in-
terpolate these example basis coordinates, and the resulting coordi-
nates determine a displacement represented in the subspace formed
by the basis.

Precomputed Local Radiance Transfer (PLRT) is a method for ac-
celerating the computation of illumination in a scene. First, the
illumination is computed for several example configurations (light
positions, etc.) the resulting illumination is stored at each vertex
as the coefficients to a spherical harmonic basis. Clustered PCA
is then performed on these coefficients to create a subspace and
the subspace coordinates (projection onto the basis vectors of the
subspace) of the example configurations are computed. The illumi-
nation from a novel lighting position can be computed by using the
light position to interpolate the subspace coordinates of nearby ex-
ample lights, and the resulting subspace coordinates determine the
illumination represented in the subspace.

Our Point Multiplication scheme is similar to these techniques in
that it computes a subspace from examples and uses this subspace
model to accelerate the corresponding calculation. Where our tech-
nique differs from EigenSkin and PLRT is that instead of using an-
imation variables such as joint angles and light positions to drive
the subspace model, we instead use the samples of the calculation
itself (skin displacements or illumination, here) at a set of carefully
chosen key points to drive the projection.

The Point Multiplication / Soft Caching (PMSC) strategy is par-
ticularly applicable to rendering with global illumination. When
applied to a photon mapping renderer [Jensen 1996] the illumina-
tion gather step is initially limited to only the key points. If error
tolerances are exceeded the fail through is easily accommodated
through additional gathers.

Most of the current approaches to accelerating global illumination
involve the use of importance sampling and spatial filtering opera-
tions for noise reduction. The PMSC approach can be interpreted
in this light. The point multiplication stage can be thought of as
a set of optimal spatial filter kernels derived following the Capon
[Capon et al. 1967] formalism and the key point positions can be
interpreted in an importance sampling context. In this context the
contribution of the PMSC technique is to add the introduction of
prior knowledge about the light transport within the scene geome-
try, as observed from the training set, to optimize the spatial filtering
and importance sampling operations.

2 Overview

A schematic block diagram of the general statistical modeling prob-
lem is shown in Figure 2. In this general model we have a core black
box which we would like to train to accept the animation variables
(posing controls, light positions and properties) and produce the
desired outputs (point positions or illumination values). The prob-
lem with this most general form is that the relationships between
the input controls and the outputs can be highly nonlinear - for ex-
ample it is common to use an articulation variable to set either the
sensitivity or pivot point of another variable - an extremely nonlin-
ear process which is essentially impossible to discover statistically
from a training set.

Various approaches to this problem have been tried. Lewis [Lewis
et al. 2000] has proposed a pose interpolation method where one

Statistical
Model

Animation
Controls

Posed
Points

Figure 2:Block Diagram of a basic statistical modeling system for
animation: The trained statistical model accepts as input the an-
imation variables and produces the posed points as output. Un-
fortunately, since the relationships between the animation variables
and the posed points can be extremely nonlinear, both the statistical
model as well as the training set must account for these complex
nonlinearities.

Posing
Engine

Animation
Controls

Posed
Points

Point
Multiplication

Key
Points

Figure 3:Block Diagram of the point multiplication system applied
to animation: Rather than taking the animation controls directly as
input, point multiplication instead computes the positions of a small
set of key points using the standard posing engine and then takes
these posed key points as input. Point Multiplication then uses the
values of these key points to produce all of the posed points. The
advantage here is that if the key points are chosen such that the be-
havior of these key points describes all of the important nonlineari-
ties of the problem, the statistical model can compute the remaining
point values without having to deal with these nonlinearities.

looks for nearby training poses in the high order pose space de-
fined in terms of ”locally important” animation variables. Wang
and Phillips [Wang and Phillips 2002] approach the problem of de-
scribing skeletal articulation with a model based on linear tensor
products of point positions represented in multiple rotated coordi-
nate frames.

The approximation used in the PMSC approach is quite simple and
is depicted in Figure 3. A training set is used to create a statistical
subspace model that is driven by runtime computed values of a set
of key points. We have chosen to use a model that is linear in the
key point values. Thus we must choose our key points from the
training set such that the behavior of the key points describes all
of the important nonlinearities of the problem. It is of course quite
possible that there may be new nonlinearities that are not seen in the
training set and that is where the need for a soft cache fail through
arises. In the rest of this paper we will discuss the two key issues:
how we select the subspace and key points, and how we provide
error estimates to be used in the fail through process.

3 Animation and Rendering Subspaces

The use of subspace descriptions to reduce the number of degrees
of freedom in a process is quite common and goes back at least
as far as [Lorenz 1956] who developed the Empirical Orthogonal
Function (EOF) method in an attempt to classify weather patterns
for use in statistical weather forecasting. Lorenz realized that sin-
gular value decomposition could be used to provide a least squares
optimal decomposition into a low dimensional subspace, and that
the coordinates of this projection could be used for classification.
An extension of this technology to facial animation was developed
in the ”Making Faces” [Guenter et al. 98] system that demonstrated
the use of a low dimensional pose space derived from high resolu-
tion motion capture data.



Following the Lorenz formulation we start with a set of training
frames of a state variableQ, usually a position or illumination
value, that are intended to exercise the pose space of the system
to be accelerated. We then compute a set of basis functionsai(x)
andbi(t) wherex is a generalized ”space” coordinate which iden-
tifies the point andt is a ”time” coordinate indexing the training
frames:

Q̂(x, t) =
M

∑
i=1

ai(x)bi(t).

HereQ̂ is anM dimensional subspace approximation toQ.

Since, in our applications,x andt are discrete variables, it is nota-
tionally convenient to rewrite the previous equation as:

Q̂[x, t] =
M

∑
i=1

ai [x] bi [t].

whereQ̂ (similarly Q) is a matrix indexed byx andt, a is a vector
indexed byx, andb is a vector indexed byt.

Following the EOF (and the closely related singular value decom-
position (SVD)) technique we can find the choices for thea’s and
b’s which minimize the least squares errors for all values ofM from
by finding the eigenvectors of the two covariance matrices1 QQT

andQTQ. These two matrices have the same set of eigenvalues up
to the minimum of the number ofx’s andt ’s. a1[x] andb1[t] are the
eigenvectors with the largest eigenvalues,a2[x] is associated with
the second largest eigenvalue, etc. In our usage we will refer to
thea’s as the subspace basis vectors and theb’s as the pose space
coordinates

This particular decomposition has a number of important proper-
ties. It is sequential, that is if we perform the process forM = 1 we
will get the first set of vectors. Continuing this process by perform-
ing the same analysis on the residual data,Q− Q̂ we will get the
second set of vectors and so on. This iterative process is actually
one of the numerically attractive methods for computing the sub-
space since the largest mode can be easily found from a factored
power method without computing the eigenvalues or even comput-
ing the covariance matrices [Jalickee and Klepczynski 1977]. Since
the process can be iteratively performed one can monitor the mag-
nitude of the residual, which is the subspace projection error, and
terminate the process when the error is acceptably small.

A significant aspect of this technique is that at no point in the pro-
cess have we made any assumptions about the spatial or temporal
adjacency of points and frames. Theai [x] vectors do tend to be
smooth in space but this smoothness results only from the smooth-
ness and spatial correlations of the original training frames. In fact
one interpretation of theai [x] vectors is that of optimal filter kernels
for the detection of pose space coordinates in the presence of noise
[Capon et al. 1967].

It should also be noted that once the final subspace dimension,M,
is chosen, theai [x] andbi [x] vectors are not uniquely determined
by the minimization of error. The only critical property is the sub-
space spanned by the basis vectors. In fact the multiplication by
any nonsingular matrix will result in vectors which span the same
space and the multiplication by any orthogonalM dimensional ro-
tation matrix will result in an orthonormal basis for the subspace.
This property is quite useful and is frequently exploited in the factor

1Without loss of generality,Q is assumed to have zero mean

analysis community [Harmon 1967] to generate basis vectors that
are more ”local” in some sense than the original basis vectors. We
will take advantage of this when we select the key points.

In these terms the point multiplication algorithm can be stated quite
simply: after computing a subspace and set of key points using the
training set, we take the values of selected key points and use a
least squares projection onto the subspace to derive the pose space
coordinates. The statistically determined pose is then taken as the
value of Q̂ for that pose space coordinate. All that remains is to
determine how to select the key points.

4 Selection of Key Points

When using key points to locate a pose in a subspace there are two
potential sources of error. The first of these is the projection error
that results from the fact that the pose itself may not be in the sub-
space. The second is the cueing error - the error that results from the
fact that the subspace location determined from the least squares fit
to the key points may not be the closest point in the subspace to the
desired pose due to the deficiency of our key point values as dis-
tance proxies. We have derived an iterative approach for selecting
the key points that attempts to minimize this cueing error.

Our approach starts by generating a block of basis vectors, typically
10 to 20. Next we perform a coordinate rotation on the basis vec-
tors. We use the Varimax method [Harmon 1967] which computes
an orthogonal rotation that maximizes the ratio of the 4th moment
to the 2nd moment of the basis vectors, a measure of locality. In-
tuitively, this rotation localizes the basis vectors by maximizing the
variation of a small set of points in each basis vector (in turn driving
the variation of the other points towards zero).

Once we have a set of suitably conditioned basis vectors we choose
two points from each vector, the first point is the point with the
largest magnitude in the basis vector and the second is the point
whose inner product with our first point has the largest negative
value. This type of technique is used in statistical climatology to
discover statistical structure and is known as teleconnection analy-
sis. This technique is essentially choosing the point that moves the
most when this (localized) basis function is excited as well as the
most negatively correlated point.

In addition to the points computed by the above procedure, there are
often critical fiducial points identified by the character (or lighting)
designer that are seeded into the first batch. For rendering applica-
tions we may also add a sparse grid of points to ensure that no large
regions are devoid of key points.

Given this set of key points and the subspace basis vectors, we
can compute a point multiplication approximation for each of the
columns of the training matrixQ. Subtracting these approxima-
tions from the corresponding columns ofQ creates a residual ma-
trix which represents the error (both projection and cueing error)
when approximating the training set using the current set of key
points. We then repeat the key point selection process to add ad-
ditional key points, using the residual matrix to compute the basis
vectors. Using the residual in this iterative process allows the key
point selection to choose points to reduce the cueing error.

The process terminates when the maximum residuals reach an ac-
ceptable error bound. A subtle but important point is that the basis
vectors constructed during this phase in the second and later batches
should now be discarded - all basis vectors used for the runtime
point multiplication reconstruction should be computed from the
initial training matrixQ.



The process of selecting key points can be summarized as follows:

keyPoints = initial user defined key points
resid = Q
Iterate untilresid is small:

Compute basis vectors fromresid
Varimax rotate the basis vectors
Choose the control points from each rotated basis vector (excluding points that

are already in keyPoints) and add them to keyPoints
Reconstruct the columns ofQ using point multiplication with

the current set of key points, call thiŝQ
resid = Q− Q̂

5 Soft Caching and Fail Through

Although estimates produced by the Point Multiplication technique
are usually quite accurate, there can be times when the statistical
reconstruction is unable to produce an estimate with acceptable ac-
curacy. An example of this is shown in Figure 4 for the application
of facial animation. The facial pose resulting from posing all of the
points with our posing engine is shown on the left, while the result
generated via Point Multiplication of 170 key points is shown in the
middle. Notice how the tight lip pucker is incorrectly reconstructed.

Remember that the first step in our point multiplication process in-
volves the least squares calculation of a set of subspace coordinates
from the key points. If the key points are well chosen, the error
in this calculation is a good measure of the total projection error.
Large projection errors occur in cases when we are calculating the
results for a frame where an animation control is exercised that was
not exercised in the training set or a particular combination of ani-
mation controls is exercised that result in a novel pose.

This suggests the possibility that we could treat the Point Multipli-
cation result like a cache and use a large key point projection error
as an indication of a ”cache miss”. Since the domain of applicabil-
ity of our method involves calculations easily performed on a point
by point basis, in the event of a cache miss, we could simply go on
to perform the full calculation on all of the points. For animated se-
quences somewhat more subtlety is required since we do not want
to have any discontinuous behavior that will lead to popping. To
eliminate this problem we incorporate a transition zone of projec-
tion error valuesε = [εmin,εmax] over which we do perform the full
calculation but interpolate between the point multiplication result
and the full calculation result as a function of error. Specifically, if
the error (measured by RMS error of the key points) is belowεmin,
only the Point Multiplication result is used, if the error is greater
thanεmax, the full calculation is used at every point, and if the error
is in theε range, the result is linearly interpolated between the Point
Multiplication and fully calculated results.

Figure 4(right) shows the result of applying Soft Caching to the
incorrectly reconstructed facial pose in Figure 4(middle) usingε =
[0.1,0.15]. Notice how the cache miss was correctly identified and
the resulting pose is much more accurate. We should also mention
that poses identified as cache misses can be tagged and used as
additional training for the PMSC system. This results in a system
that learns more about the pose space as it is used. Training could
be done each night resulting in a more accurate PMSC system for
the animators and lighters to use the next day.

6 The Complete PMSC Algorithm

Now that we have described all of the pieces, the complete PMSC
algorithm can be formulated as follows:

Preprocess
1) Compute the basis vectorsai [x] from the training setQ (Section 3)
2) Compute the key points (Section 4)

Runtime
1) Compute values only at the key points
2) Least squares project the key points onto the subspace

to find the pose space coordinatesbi

3) Reconstruct all points usingbi :
Q̂[x] = ∑ai [x] bi

4) Soft Cache (Section 5):
Using the projection error of the key points
and the user definedε determine if a cache miss has
occurred. If it has, compute the full solution at all
points and interpolate with the point multiplication solution.

Note that the runtime component of the PM algorithm is extremely
cheap (compared to the full solution), only requiring the computa-
tion of the key point values, a small least squares projection and a
linear combination of the basis vectors.

7 Applications to Character Articulation

The first target domain of our study was in the area of non-skeletal
character articulation, particularly facial articulation. Faces are par-
ticularly difficult to replace with statistical models because they of-
ten have hundreds of animation controls, many of which are very
complex and non-linear. On the other hand the results of Guenter
et al.’s [Guenter et al. 98] work have shown that, at least for human
faces, the number of real degrees of freedom is often quite small.
This suggests that a subspace based technique should work well for
faces. Unfortunately, using the animation variables directly to drive
the subspace model is difficult due to the complex nonlinearities.
Additionally, faces do not have the benefit of skeletal structure and
joint angles used by other parts of the body as input to their statis-
tical models. By using the computed key point positions as input,
our Point Multiplication technique is able to avoid modeling these
complex nonlinearities and performs well when applied to facial
articulation.

We were very fortunate to be able to get access to the facial anima-
tion for a boy character from an entire CG feature film for testing
purposes. The data set consists of about 8322 frames of animation
from 137 animation sequences. In order to provide an independent
data test for the point multiplication process we divided the anima-
tion sequences into two sets, one was used to train the model (2503
poses chosen from 44 randomly selected sequences) and the second
was used for validation (the remaining 5819 poses). We found that
85 basis vectors posed by 170 key points was sufficient to pose the
model to very small errors in the training segments. The character
with the key points indicated is shown in the top-middle of Figure
1.

One important question related to facial articulation is how much
acceleration is possible. On our characters, which employ fairly
complicated kinematic deformer networks, we have found that
faces lie in between the near linear cost per point calculation and
a constant cost (where posing a small set of points is no less expen-
sive than posing than the full face). For our test character (Figure
1), we have found that the cost of posing our 170 key points is
about 10% of the cost of posing the full 2986 points. In particular,
all 2986 points can be posed in 0.5 seconds on average, while the
170 key points can be posed in 0.05 seconds on average. The Point
Multiplication itself takes 0.00745 seconds on average resulting in
an 8.7x speedup in posing time. We do not achieve a speedup lin-
ear with the key point to total point ratio for a few reasons: First,
the key points often require more complicated deformations than
the other points. For example, the mouth points require more effort



Figure 4:An example of Soft Caching applied to character animation: (left) The face generated by posing all 2986 points using our in house
posing engine. (middle) The pose generated using point multiplication of 170 key points. Notice how the lips are improperly reconstructed.
(right) That pose generated using Soft Caching with ε = [0.1,0.15]. Notice that the pose generated by Point Multiplication was correctly
identified as inaccurate using the key point error and the cache miss fail through correctly interpolated the Point Multiplication pose with the
fully computed pose producing much more accurate lips.

to pose than the points on the back of the head. Second, multi-
ple points can sometimes reuse computations - so posing twice the
points won’t necessarily require twice the computations.

In order to validate our technique, we have examined the Point Mul-
tiplication results using the independent test poses. Figure 1 shows
an example of the quality of the Point Multiplication result. The
top-left image shows the character with all 2986 points posed using
our in house posing engine, while the top-right shows the result of
posing only the 170 key points with our in house posing engine and
then using Point Multiplication to generate the 2986 facial points.
Notice that the Point Multiplication result is an extremely accurate
recreation of the fully computed pose. The accompanying video
shows the side by side results for the more than the first 800 poses
in the independent test set. As can be seen in the video, the Point
Multiplication results match the fully computed results very well -
the maximum error for any point over 99.5% of the test poses is less
than 1% of the diagonal of the head bounding box.

For most of the test poses the Point Multiplication result and the
fully computed result are visually similar and any differences are
only noticeable though detailed examination of the side by side re-
sults. However, as noted in section 5, there are times when the
estimated pose does not accurately match the fully computed pose.
Figure 4 and the video show an example of one of the worst poses
in our test set. The left image displays the pose generated by full
computation, while the middle shows the result of Point Multipli-
cation. Notice how the lips in particular do not match between the
two techniques. In these cases, the Soft Caching mechanism (sec-
tion 5) can detect and fix such poses. Usingε = [0.1,0.15], the
Soft Cache detects the incorrect poses and generates a more accu-
rate pose as can be seen on the rightmost image and in the video.
With these settings, we have a cache hit rate of 96.6% for the entire
dataset (8042 poses out of 8322 poses). Note that poses that cause
a cache miss do pose slightly slower than simply computing a full
pose (due to the subspace projection, error computation and possi-
ble interpolation), however it has been less than 5% slower in all
our tests.

Although our test character used a kinematic deformation rig, it
should be noted that interesting effects can be achieved for charac-
ters using poses defined by physical simulation or hand sculpting.
First we define a version of the face that can be manipulated by the

animator at runtime (the control face). Then we create a training
set containing pairs of the physically simulated (or hand sculpted)
face and the corresponding pose of the control face. At runtime,
the animator poses the control face and the system uses the control
face points to find the projection into the joint (control face, sim-
ulated face) subspace and computes the corresponding simulated
face. Note that in this ”Cross Point Multiplication” case the Soft
Cache fail through to a full calculation is not possible.

8 Applications to Rendering

The second problem domain we explored was the computation of
indirect illumination. These rendering problems are particularly
well suited to acceleration using our PMSC approach since they
often have a large fraction of the total computation in a final gather
step whose computational costs vary nearly linearly with the num-
ber of points computed.

We have constructed a test case for the indirect illumination prob-
lem based on the Cornell box. Each training frame was generated
by illuminating the box using a single point light from a grid of
144 lights along the ceiling (see Figure 5(a)). Training results in 32
illumination basis functions and 200 control points as seen in Fig-
ure 5(a). We have validated the results by computing the indirect
illumination at a series of light locations scattered near the train-
ing array. Figures 5(b), (c) and (d) shows comparisons of the fully
computed lighting versus the lighting computed via Point Multipli-
cation for a few select frames. As these images show, the lighting
is accurately estimated and the resulting errors are quite small.

Note that the use of the lighting at key points as input to our system
as opposed to lighting variables (such as light position) allows our
system to handle changes in the lighting variables rather easily. For
instance, changing the light type, or distance falloff, etc. will have
a complex, nonlinear effect on the resulting indirect illumination.
Since our system actually computes the indirect illumination at the
key points and uses the illumination itself to drive the statistical
model, we do not require a way to map each of these animation
variables to the final indirect illumination as other methods would.
In a production setting where lights have many complex and often
interacting controls, this is huge benefit. We are in the process of



(a) (b) (c) (d)
Figure 5:An example of Point Multiplication applied to rendering indirect illumination: (a) The green points show the locations of the point
lights used to generate the training set and the white dots are the 200 key point locations computed by the the Point Multiplication technique.
(b,c,d) Comparisons of the fully computed solution using 160000 points (top) to the Point Multiplication solution computed from the 200 key
point values (bottom) for novel light positions. Note that the Point Multiplication results are extremely accurate.

exploring the use of this sort of technique in interactive relighting
including global illumination.2

For the rendering tests presented here we have performed the calcu-
lations using image space locations, however the illumination data
can easily be stored in a spatial data structure or texture map to
accommodate moving cameras and geometry.

9 Summary and Ongoing Work

In this paper we have presented a methodology for accelerating cer-
tain classes of calculations that are common in computer graphics.
This methodology involves the use of a statistical model that is lin-
ear in key points and can fail through to a full calculation in the
event of a ”cache miss”. By using the key point values to capture
the nonlinearities of the space, the statistical model can compute the
additional points without having to deal with these nonlinearities.

One area of ongoing work involves ”local” fail through. In general
it is reasonable to expect that subspace projection error should be
local, confined to a particular unexercised animation control or local
rendering feature such as a contact shadow. We are currently in
the process of exploring the use of various forms of basis function
rotation and clustering to be able to localize the projection error so
that the fail through process would only need to compute the full
calculation on a subset of the domain.

References

CAPON, J., GREENFIELD, R. J.,AND KOLKER, R. J. 1967. Multi-
dimensional maximum-likelihood processing of a large aperture
seismic array.Proc. IEEE 55, 2, 192–211.

2There are of course other ways to use the spatial correlation data dis-
covered from our training set in accelerating rendering operations. The use
of the basis functions themselves as optimal filtering kernels for sampling
noise reduction is the subject of a related paper [anonymous 2006].

GUENTER, B., GRIMM , C., WOOD, D., MALVAR , H., AND
PIGHIN , F. 98. Making faces. InSIGGRAPH ’98: Proceed-
ings of the 25th annual conference on Computer graphics and
interactive techniques, 55–66.

HARMON, H. H. 1967.Modern factor analysis, 2nd ed. Chicago:
University of Chicago Press.

JALICKEE , J. B., AND KLEPCZYNSKI, W. J. 1977. A method
for compacting navigation tables.Journal of The Institute of
Navigation 24, 2, 125–131.

JENSEN, H. W. 1996. Global illumination using photon maps. In
Rendering Techniques ’96 (Proceedings of the 7th Eurographics
Workshop on Rendering).

KRISTENSEN, A. W., AKENINE-MOELLER, T., AND JENSEN,
H. W. 2005. Precomputed local radiance transfer for real-time
lighting design. ACM Transactions on Graphics (SIGGRAPH
2005) 24, 3, 1208–1215.

KRY, P. G., JAMES, D. L., AND PAI , D. K. 2002. Eigenskin: real
time large deformation character skinning in hardware. InSCA
’02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics
symposium on Computer animation, 153–159.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose
space deformation: a unified approach to shape interpolation and
skeleton-driven deformation. InSIGGRAPH ’00: Proceedings
of the 27th annual conference on Computer graphics and inter-
active techniques, ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 165–172.

LORENZ, E. 1956. Empirical orthogonal functions and statistical
weather prediction. Scientific Report No.1, Statistical Forecast-
ing Project, MIT Dept. of Meteorology, December.

WANG, X. C., AND PHILLIPS, C. 2002. Multi-weight
enveloping: least-squares approximation techniques for skin
animation. In SCA ’02: Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
ACM Press, New York, NY, USA, 129–138.


