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(a) Stable Neo-Hookean (b) Filtered Neo-Hookean
[Teran et al. 2005]

(c) Cubic Penalized StVK
[Kikuuwe et al. 2009]

Exploded!

(d) C2 Neo-Hookean
[Stomakhin et al. 2012]

(e) Fixed Co-rotational
[Stomakhin et al. 2012]

(f) Co-rotational
[Irving et al. 2004]

Fig. 1. Stretch test on a cylinder discretized with 306,406 hexahedra. The rows correspond respectively to ν = 0.2, ν = 0.3, ν = 0.4 and ν = 0.49. For the C2
Neo-Hookean model at ν = 0.49, we were unable to locate settings that completed the stretch test.

1 MODEL PERFORMANCE FOR MULTIPLE ν
In Fig. 1, we show the results of running the stretch test for a variety
of Poisson’s ratios ν across a variety of elasticity models:

• Our new energy.
• Neo-Hookean energy, filtered with Teran et al. [2005].
• St. Venant-Kirchhoff with a compression-resisting cubic

penalty [Kikuuwe et al. 2009].
• TheC2 continuous extension of Neo-Hookean energy from

Stomakhin et al. [2012].
• The “fixed” co-rotational energy from Stomakhin et al. [2012].
• The co-rotational energy from Irving et al. [2004].

The behavior of the three Neo-Hookean energies is very similar,
although the slightly superior volume preservation of our model
starts to be seen in the ν = 0.3 row.

The “fixed” co-rotational model preserves volume, but unnatural
crinkling artifacts start to appear even at small Poisson’s ratios,
e.g. ν = 0.2. The original co-rotational model yields good results at
ν = 0.2, but quickly begins to lose volume at ν = 0.3, and starts to
severely invert at ν = 0.4.
The StVK model with cubic compression resistance does not

collapse like the co-rotational model, but instead gains significant

volume (83%) under extension. This is expected, as the volumetric
term deactivates under extension. The compression resistance term
was set to κ = 8× 108. This setting was selected by running a sweep
of elbow flexion simulations over the range κ ∈ [0, 1.4 × 109] for
ν = 0.49 and retaining the setting that exhibited the best volume
preservation. Thus, these results are likely to be close to the highest
quality that the model is able to produce.

2 META-STABILITY UNDER DEGENERACY
We examine the behavior of our initial energy,

Ψ =
µ

2
(IC − 3) − µ (J − 1) +

λ

2
(J − 1)2 (1)

under three degenerate configurations: compression to a plane, line,
and point.

2.1 Plane Degeneracy
We characterize a plane degeneracy by parameterizing F according
to a compression term δ ,

F =



δ 0 0
0 1 0
0 0 1


. (2)
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Fig. 2. Behavior of our initial energy, Ψ = µ
2 (IC − 3) − µ (J − 1) +

λ
2 (J − 1)

2, under various degenerate configurations.

The energy with respect to δ then becomes:

Ψplane (δ ) =
µ

2
(δ2 − 1) − µ (δ − 1) +

λ

2
(δ − 1)2 (3)

The energy is well-behaved under this degeneracy, as seen in Fig. 2(a).
The energy has a minimum at δ = 1 ≡ F = I, and increases else-
where, including δ ≤ 0. It has this shape over the entire range
ν ∈ [0, 0.5), where ν = 0.5 is excluded because it corresponds to
λ = ∞.

2.2 Line Degeneracy
We parameterize the line degeneracy as,

F =



δ 0 0
0 δ 0
0 0 1


, (4)

and the energy with respect to δ then becomes:

Ψline =
µ

2
(2δ2 − 2) − µ (δ2 − 1) +

λ

2
(δ2 − α )2 (5)

The energy is again well-behaved, as can be seen in Fig. 2(b). The
energy again has aminimum atδ = 1 ≡ F = I, but is nowmeta-stable
at δ = 0. In the absence of a singularity at δ = 0, this is the correct
behavior. If an unconstrained element has been crushed to a line, the
rest shape that it should return to is no longer uniquely determined
under rotation. Thus, it is meta-stable unless a tie-breaker such
as momentum or an infinitesimal perturbation is introduced that
selects an orientation.
The filtered forces from Teran et al. [2005] use the reflection

convention as the tie-breaker. However, as observed by subsequent
works [Civit-Flores and Susín 2014], the choice of reflection conven-
tion introduces new issues. When one singular value passes another
in smallness, their orderings in Σ flip abruptly, which causes the
direction of the restoring forces to flip, and introduces a force dis-
continuity.
Finally, when µ = 1 and λ = 0, the energy resolves to zero, as

seen in Fig. 2(c). Using the shifted Poisson’s ratio for this model,
ν = (λ−µ )/(2λ), we see that this corresponds to ν = −∞. Thus, it is
definitely well-behaved over the range of interest, ν ∈ [0, 0.5).

2.3 Point Degeneracy
Parameterizing by F = δ I, we obtainΨpoint =

µ
2 (3δ

2−3)−µ (δ3−1)+
λ
2 (δ

3 − 1)2. For high Poisson’s ratios, i.e. ν = 0.495 ≡ µ = 1, λ = 100,
the energy resembles the line case, as seen in Fig. 3(a).
The same argument for meta-stability at δ = 0 applies. If an

element has been crushed to a point, the rest shape it should return
to is ambiguous due to rotation. However, as the ratio is lowered,
e.g. ν = 0.25 ≡ µ = 1, λ = 2, a spurious basin appears at δ = 0 in
Fig. 3(b). Then, as µ and λ approach parity, i.e. ν = 0 ≡ µ = 1, λ =
1, this minimum becomes energetically equivalent to the δ = 1
minimum, as seen in Fig. 3(c). Finally, when λ → 0 ≡ ν → −∞,
the δ = 0 minimum becomes the preferred one and δ = 1 becomes
meta-stable in Fig. 3(d).

2.4 Adding a Regularized Origin Barrier
We have now identified two issues, both of which only appear under
the point degeneracy:

• A stable basin appears at F = 0 that grows as ν → −∞.
• When ν = 0, a basin appears at F = 0 that is energetically

identical to F = I.

We will introduce a new term that addresses both issues. Introducing
a barrier term such as log IC eliminates any basin of stability at F = 0,
but it also produces a singularity that we consider numerically
unacceptable. Instead, we add a regularized barrier at the origin:

Ψb =
µ

2
(IC − 3) +

λ

2
(J − α )2 −

µ

2
log (IC + ε ) (6)

We must now set ε to some positive value that eliminates both the
F = 0 basin and the log singularity.

We can derive an ε that accomplishes these goals. The Hessian of
the original energy at F = 0 is:

A(F) = µI + λggT + λ(J − α )H (7)
A(0) = µI (8)

The µI matrix is trivially positive definite, whereas we want to es-
tablish meta-stability by forcing A(0) to be zero or negative definite.
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(a) ν = 0.495 ≡ µ = 1, λ = 100
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(b) ν = 0.25 ≡ µ = 1, λ = 2
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(c) ν = 0 ≡ µ = 1, λ = 1
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(d) ν = −∞ ≡ µ = 1, λ = 0

Fig. 3. Behavior of the initial energy Ψ =
µ
2 (IC − 3) − µ (J − 1) +

λ
2 (J − 1)

2 under uniform scaling for various Poisson’s ratios ν . As ν decreases to −∞, a
spurious basin of stability appears about δ = 0. At ν = 0, the basin at δ = 0 and δ = 1 becomes energetically equivalent.

The Hessian of the energy at F = 0 with the barrier term added is:

A(F)b = µ

(
1 −

1
IC + ε

)
I + λggT + λ(J − α )H +

2µ
(IC + ε )2

ffT (9)

A(0)b = µ

(
1 −

1
ε

)
I (10)

Setting ε = 1 will eliminate F = 0 as a local minimum, and accom-
plishes the intended goal, as seen in Figure 4 The spurious basin
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Fig. 4. Energy under uniform scaling both with (in blue) and without (in
red) the origin barrier. In both plots, µ = 1, λ = 2. With the origin barrier
added, the basin at δ = 0 is clearly eliminated. The red plot without the
origin barrier is the same as Fig. 3(b), but scaled to accommodate the range
of the other plot.

of stability at F = 0 has now been eliminated for all ν ∈ [0, 0.5).
For completeness, we now compute the ν at which F = I becomes
meta-stable. The point degeneracy, including the barrier, is:

Ψb,point =
µ

2
(3δ2 − 3) − µ

(
3
4
δ3 − 1

)
+
λ

2
(δ3 − 1)2 −

µ

2
log

(
3δ2 + 1

)
(11)

The meta-stable point first appears when λ turns Ψb,point (1) into an

inflection point, i.e. when λ makes ∂2Ψb,point (1)
∂δ 2 = 0. For general ε ,

this occurs when:

λ =


1
3
−

1
3 + ε

(
1
3
+

2
3 + ε

) µ (12)

For ε = 1, this corresponds to λ =
µ
8 . Using the Poisson’s ratio

formula ν = λ−5/8µ
2(λ+1/8µ ) , this means F = I becomes meta-stable when

ν = −1. At this exact setting of ν , some oscillations appear around
F = I due to the presence of the inflection point, as seen in Fig. 5(a).
At λ = 1/4, µ = 1 ≡ ν = −1/2, these oscillations already begin to

smooth out, as seen in Fig. 5(c). Finally, when λ = 5
8 , µ = 1 ≡ ν = 0,

the oscillation has smoothed out completely, as seen in Fig. 5(d).
Thus, adding the regularized origin barrier has guaranteed that our
model is well-behaved under point, line, and plane degeneracies,
over the range of ν ∈ [0, 0.5). It appears that the material will also
give stable results in the auxetic regime as well, but there is no
reason to expect that these results will be accurate.

2.5 The Final Energy
The final energy is:

Ψb =
µ

2
(IC − 3) +

λ

2
(J − α )2 −

µ

2
log (IC + 1) (13)

The α that preserves rest-stability is α = 1 + µ
λ −

µ
4λ , so expanding

α out of the quadratic yields:

Ψ =
µ

2
(IC − 3) − µ

(
3J
4
− 1

)
+
λ

2
(J − 1)2 −

µ

2
log (IC + 1) (14)

The PK1 becomes:

P = µF − µ
3
4
∂J

∂F
+ λ(J − 1)

∂J

∂F
−

µ

IC + 1
F (15)

= µ

(
1 −

1
IC + 1

)
F +

(
λ(J − 1) −

3
4
µ

)
∂J

∂F
, (16)

the Hessian is then,

∂P
∂Fi j

=µ
∂F
∂Fi j

−
3
4
µ
∂2 J

∂F∂Fi j
+ λ
∂J

∂Fi j
∂J

∂F
+

λ(J − 1)
∂2 J

∂F∂Fi j
−

µ

IC + 1
∂F
∂Fi j

+
2µ

(IC + 1)2
Fi jF,

(17)
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(a) ν = −1 ≡ µ = 1, λ = 1/8
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(b) ν = −0.851 ≡ µ = 1, λ = 0.1526
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(c) ν = −1/2 ≡ µ = 1, λ = 1/4
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Fig. 5. Behavior of the energy under uniform scaling with an origin barrier added, Ψb =
µ
2 (IC − 3) + λ

2 (J − α )
2 −

µ
2 log (IC + 1), as the Poisson’s ratio

increases from -1 to 0. The −0.851 threshold was found numerically to be the transition point where a spurious critical point disappears. By ν = −1/2, the
oscillation has smoothed out, and by ν = 0, it has disappeared entirely.

which flattens to

A =µ
(
1 −

1
IC + 1

)
I +

(
λ(J − 1) −

3
4
µ

)
H+

λggT +
2µ

(IC + 1)2
ffT .

(18)

The complete eigensystem for this energy is given in the main
document.

3 ENERGY MINIMA FOR STABLE NEO-HOOKEAN
ELASTICITY

We would like to determine the conditions under which our Stable
Neo-Hookean energy contains spurious minima that do not cor-
respond to pure rotations. We address this question in two stages.
First, we show that minima can only appear during uniform scaling,
i.e. when all the singular values σi are equal. Then, with the uniform
scaling mode isolated, will locate Poisson’s ratios under which the
desirable minima appear.

3.1 Minima Only Appear Under Uniform Scaling
We denote the SVD of the deformation gradient F as:

F = UΣVT and Σ =



σ0 0 0
0 σ1 0
0 0 σ2


. (19)

The PK1 in the principal stretch space spanned by Σ is then:

P(Σ) = µ

(
1 −

1
IC + 1

)
Σ + λ

(
J − 1 −

µ

λ
+

µ

4λ

)
∂J

∂F
(20)

= µ

(
1 −

1
IC + 1

) 
σ0 0 0
0 σ1 0
0 0 σ2


+ (21)

(
λ(J − 1) −

3
4
µ

) 
σ1σ2 0 0

0 σ0σ2 0
0 0 σ0σ1


(22)

We will now examine the conditions under which P(Σ) = 0, which
correspond to the critical points of Ψ up to rotation. This is equiv-
alent to the general case, since P(0) = U0VT = 0. Showing the
non-existence of critical points over a certain domain is a stronger

test than locating the minima, since it also includes the maxima and
saddle points. We can write P(Σ) = 0 as a rational system:

µ

(
1 −

1
IC + 1

)
σ0 +

(
λ(J − 1) −

3
4
µ

)
σ1σ2 = 0 (23)

µ

(
1 −

1
IC + 1

)
σ1 +

(
λ(J − 1) −

3
4
µ

)
σ0σ2 = 0 (24)

µ

(
1 −

1
IC + 1

)
σ2 +

(
λ(J − 1) −

3
4
µ

)
σ0σ1 = 0. (25)

This can bemade into a polynomial system bymultiplying by (IC+1)
and further simplified by expanding J = σ0σ1σ2. We also divide
through by µ so that the system only contains one constant, β = λ

µ .(
IC + β (IC + 1)σ 2

1σ
2
2
)
σ0 −

(
β +

3
4

)
(IC + 1)σ1σ2 = 0 (26)

(
IC + β (IC + 1)σ 2

0σ
2
2
)
σ1 −

(
β +

3
4

)
(IC + 1)σ0σ2 = 0 (27)

(
IC + β (IC + 1)σ 2

0σ
2
1
)
σ2 −

(
β +

3
4

)
(IC + 1)σ0σ1 = 0. (28)

We then exclude the uniform scaling mode from the solution space
by imposing the following constraints:

σ0 , σ1 σ0 , σ2 σ1 , σ2. (29)

We can then solve for all the real-valued critical points symbolically
using Mathematica:
s0 =.
s1 =.
s2 =.
beta =.
IC = s0^2 + s1^2 + s2^2;
solution =

Solve[{
(IC + beta * s1^2 * s2^2 * (IC + 1)) * s0 -
(3/4 + beta) * s1 * s2 * (IC + 1) == 0,
(IC + beta * s0^2 * s2^2 * (IC + 1)) * s1 -
(3/4 + beta) * s0 * s2 * (IC + 1) == 0,
(IC + beta * s0^2 * s1^2 * (IC + 1)) * s2 -
(3/4 + beta) * s0 * s1 * (IC + 1) == 0,
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s0 != s1, s0 != s2, s1 != s2}, {s0, s1, s2}, Reals]

After a lengthy computation (4.3 hours on a MacBook Pro), Mathe-
matica returns the null set. No critical points exist over this domain.
As a sanity check, we remove the uniform scaling constraints and
set β = 1:
beta = 1
solution =
Solve[{
(IC + beta * s1^2 * s2^2 * (IC + 1)) * s0 -
(3/4 + beta) * s1 * s2 * (IC + 1) == 0,
(IC + beta * s0^2 * s2^2 * (IC + 1)) * s1 -
(3/4 + beta) * s0 * s2 * (IC + 1) == 0,
(IC + beta * s0^2 * s1^2 * (IC + 1)) * s2 -
(3/4 + beta) * s0 * s1 * (IC + 1) == 0},
{s0, s1, s2}, Reals]

Mathematica then returns the expected critical points, which all lie
along the uniform scaling directions:

(σ0,σ1,σ2) = (0, 0, 0) (30)
= (1, 1, 1) (31)
= (−1,−1, 1) (32)
= (1,−1,−1) (33)
= (−1, 1,−1) (34)

The last four correspond to the minima for general rigid rotation,
and 180◦ rotations about each coordinate axis in stretch space. The
(0, 0, 0) corresponds to the maximum induced by the origin barrier.

3.2 Locating Minima Under Uniform Scaling
We now analyze the uniform scaling case, and characterize the
critical points that appear. Following from the previous section, this
constitutes a complete characterization of all the critical points in
the energy.
Under a uniform scaling δ , the energy becomes:

Ψ =
µ

2
(3δ2−3)−µ

(
3
4
δ3 − 1

)
+
λ

2
(δ3−1)2−

µ

2
log

(
3δ2 + 1

)
. (35)

We can again divide through by µ to obtain β = λ
µ and solve for the

critical points using Mathematica:
beta =.
Psi = (1/2) (3 x^2 - 3) - ((3/4) x^3 - 1) +
(beta/2) (x^3 - 1)^2 - (1/2) Log[3 x^2 + 1]
P = D[Psi, x]
solution = Solve[{P == 0}, x]

This solve finds a double root at δ = 0, one at δ = 1, and four addi-
tional roots that do not have simple expressions. The first two are
always complex, so they require no further examination. The second
two become real-valued at a sufficiently low threshold for β . When
they becomes real-valued, they represent spurious critical points, so
we should characterize the settings of β where the complex-to-real
transition occurs. Fortunately, the two roots become real-valued at
the same moment; their imaginary components are identical up to
a sign change. Therefore, examining the transition point of one of
them suffices.

Solving for the transition point symbolically can be difficult, be-
cause the imaginary component flattens out to zero at the critical
moment, so phrasing the problem in terms of root-finding is am-
bgiuous because there are infinitely many solutions. Instead, we
take a numerical approach in Matlab. The code that evaluates the
relevant root is as follows:
function [result] = root(beta)
result = ...
(-1/4)+(1/2).*((-23/36)+(1/9).*2.^(-1/3).*beta.^(-1).*(189.* ...
beta+172.*beta.^2).*(6561.*beta+(-9396).*beta.^2+(-8320).* ...

beta.^3+9.*3.^(1/2).*(177147.*beta.^2+(-951912).*beta.^3+( ...
-1299600).*beta.^4+(-461056).*beta.^5+(-50176).*beta.^6).^( ...
1/2)).^(-1/3)+(1/18).*2.^(-2/3).*beta.^(-1).*(6561.*beta+( ...
-9396).*beta.^2+(-8320).*beta.^3+9.*3.^(1/2).*(177147.* ...
beta.^2+(-951912).*beta.^3+(-1299600).*beta.^4+(-461056).* ...
beta.^5+(-50176).*beta.^6).^(1/2)).^(1/3)).^(1/2)+(1/2).*(( ...
-23/18)+(-1/9).*2.^(-1/3).*beta.^(-1).*(189.*beta+172.* ...
beta.^2).*(6561.*beta+(-9396).*beta.^2+(-8320).*beta.^3+ ...
9.*3.^(1/2).*(177147.*beta.^2+(-951912).*beta.^3+(-1299600).* ...
beta.^4+(-461056).*beta.^5+(-50176).*beta.^6).^(1/2)).^( ...
-1/3)+(-1/18).*2.^(-2/3).*beta.^(-1).*(6561.*beta+(-9396).* ...
beta.^2+(-8320).*beta.^3+9.*3.^(1/2).*(177147.*beta.^2+( ...
-951912).*beta.^3+(-1299600).*beta.^4+(-461056).*beta.^5+( ...
-50176).*beta.^6).^(1/2)).^(1/3)+(1/4).*((13/3)+(-2/3).* ...
beta.^(-1).*((-9)+4.*beta)).*((-23/36)+(1/9).*2.^(-1/3).* ...
beta.^(-1).*(189.*beta+172.*beta.^2).*(6561.*beta+(-9396) ...

.*beta.^2+(-8320).*beta.^3+9.*3.^(1/2).*(177147.*beta.^2+( ...
-951912).*beta.^3+(-1299600).*beta.^4+(-461056).*beta.^5+( ...
-50176).*beta.^6).^(1/2)).^(-1/3)+(1/18).*2.^(-2/3).*beta.^( ...
-1).*(6561.*beta+(-9396).*beta.^2+(-8320).*beta.^3+9.*3.^( ...
1/2).*(177147.*beta.^2+(-951912).*beta.^3+(-1299600).* ...

beta.^4+(-461056).*beta.^5+(-50176).*beta.^6).^(1/2)).^(1/3) ...
).^(-1/2)).^(1/2);

We ran a midpoint search to double precision and located the tran-
sition point at β = 0.152568262069702. This is the smallest setting
of β where the spurious root does not appear. This corresponds to
ν ≈ −0.85102, which is more precise than the ν ∈ (−1,− 1

2 ) bound
that was empirically observed in Figs. 5(a) and 5(c)
The exact shape of the energy at this moment can be seen in

Fig. 5(b). This is the moment when the critical point first appears as
an inflection point, but has not yet become a minimum. The stable
settings for our material model can thus be stated more precisely
as ν ∈ [−0.851, 0.5), though it is really only recommended for
ν ∈ [0, 0.5). From a practical standpoint, this means that if we pin
µ = 1, then the stable region is λ ∈ [0.1526,∞).
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