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Figure 1: Three of the 8 scene geometries analyzed to estimate IE ! - expectation over pixel space. The rest
are shown in figure 4.

1 Abstract

Importance sampling methods for ray tracing are numerous. One reason is due to the lack
of a robust, quantitative method for comparison. This tech memo takes strides to provide a
framework for comparing sampling methods on fair ground. We define a simple, mathematical
notion of strictly preferring one method to another. We demonstrate how to apply the
framework in comparing three methods from sampling light rays from a rectangular light
source. One method, Angular Stratification, is new to the literature.
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2 Introduction

We have a number of ways to importance sample light rays from a rectangular light. The
lack of cohesion on the best way stems from the fact that solid angle sampling fits naturally
into an angular basis while polygons generally are described in Euclidean. It isn’t natural
to measure a box with circles. This discussion stems back to Arvo ’95 [2], who proposed a
method for sampling spherical triangles.

In this memo, we compare three prevailing methods: Angular Approximation, Angular
StratiÞcation, and Spherical Rectangles.
Section 3 will describe each of these in turn, as well as a general fix for numerical issues
caused by glancing angles.

A general cause of multiple sampling methods is the absence of a unified framework for
comparing them. Without consistent and reasonable metrics there is no reason to believe
anyone’s method is better than your own. Furthermore, authors can only make relative
comparisons. The phrase “variance reduced by half” carries di↵erent weight if the competing
method is 1 unit away from the global optimum, or 100. This is playing a particularly cruel
version of darts - with the point values changing in scale and the center constantly moving.

Section 4 presents an optimization argument, which derives a framework for comparing
the 3 methods above. Where possible we keep calculations general enough to extend to other
situations, or, at the very least, note areas of current assumption and simplification.

Section 5 gives the results of statistical analysis, applying the framework to rectangular
light sampling.

3 Rectangular Light Sampling

Importance sampling reduces variance of Monte Carlo estimators. For ray tracing, this means
cleaner images with fewer rays per polygon. For light source sampling, it has been found
that distributions approximating the solid angle measure go a long way in this direction. If
the light source is circular, this distribution is possible to compute, and analytical answers
are available, at least in terms of tabulated functions, see e.g. [4].

Unfortunately projecting a polygon onto a unit sphere isn’t as easy. In this section
I’ll review three approaches to solid angle sampling a rectangle from a reference point -
Angular approximation, Angular stratiÞcation, and Spherical rectangles. In the following, I
will abbreviate method names as AA, AS and SR.

Establishing a little notation, take a rectangle R described by it’s bottom-left corner
a0 = (x0, y0, z0), width w and height h. Coordinates are fixed by a reference point p = (0, 0, 0)
oriented such that the z-axis remains fixed for any point in R. Let ! denote solid angle
measure, and " and # be the horizontal and vertical angles formed by the coordinates of R
and p.

3.1 Angular approximation

The first method seeks tractability by combining Euclidean sampling with solid angle ap-
proximations from the circular case. The procedure can be broken down into three main
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steps:

1. Step over equi-area boxes - Bk = (x0 + n$, y0 + n$) ! (x0 + (n + 1)$, y0 + (n + 1)$).

2. Jitter inside the box - pk " Uniform (Bk).

3. Approximate area by circular solid angle of the stratum - ! (Bk) # ! (Ck) where Ck is
a circle with center a0 +(n+ .5)$(1, 1, 0) and radius $/2, assuming p lies on the normal
line set to Ck ’s center. Expressions for ! (Ck) are straightforward and readily available
online.

This procedure is attractive because it requires few lines of code, and is computation-
ally e�cient. It also gives the right answer as $ $ 0. Or put in other words, the error
caused by the approximation decreases with the number of samples. On the other hand, the
approximation necessarily introduces error, hampering convergence rate.

3.2 Angular stratiÞcation

A second method, proposed by Christophe Hery, takes a mechanical interpretation of propor-
tional angular measure. This is achieved by sequentially marching over equiangular rectangles
of R, front-loading the burden of angular measure as shown in the following steps

1. Step over equiangular rectangles, Bk = (xk, xk+1 ) ! (yk, yk1) such that "k = "/n and
#k = #/n for k = 0, . . . , n %1, where "k and #k are the horizontal and vertical angles
formed by the coordinates of Bk and p.

2. Jitter inside the box - pk " Uniform (Bk).

3. The solid angle of Bk is easily seen to be (xk+1 %xk)(yk+1 %yk)/ &pk %p&2.

As this is a novel method presented in this work, we include pseudocode in the Appendix.
Note that while we do not follow this implementation below, it is possible to sample "k " U(" )
and #k " U(#) directly when stratification is not available, e.g with progressive rendering.
In this case the Euclidean distribution of the horizontal component is

pdfW ("k) =
sin(a+ "k)2

" ||W1|| sin(a)

where W1 is a vector from p to the center of the left side of R, and a denotes the angle
formed by W1 and the horizontal axis of the plane defined by R. The vertical distribution is
congruent and independent, so the overall sampling distribution becomes

pdfAM ("k , #k) = pdfW ("k)pdfH (#k)
&p %pk&2

cos(" !)
. (1)

While not quite as simple as angular approximation, the computational burden is light,
and judicious use of trigonometric identities make it even more so. All the computations in
this method are also exact. A downside is that equiangular rectangles are not required to be
well behaved, and therefore sampling in some of these regions may cause numerical issues.
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3.3 Spherical rectangles

Finally, in a recent paper by Urena, Fajardo and King [5], the authors propose an extension
of [2] to parametrizing a spherical rectangle. In particular, they describe a procedure to
calculate a map f : [0, 1]2 $ Q, with Q the region obtained by projecting R onto a unit
sphere about p, such that for any U ' [0, 1]2, A (U) ( ! (f (U)), with A the planar area
measure.

Sampling can then be performed by taking two independent uniform draws u = (u1, u2),
applying the map f , and projecting back onto R. Both a detailed derivation and pseudocode
can be found in the cited paper.

It should be noted that the map f is a theoretical generalization of the 2nd method,
which holds specifically for angular stratification. Hence we predict that these two methods
will exhibit similar characteristics.

As a final point, we found that Spherical rectangleshad numerical instability when A (Q)
was very small. As shown in figure 5 (method 4), these errors persisted even after we removed
errors due to glancing angles (see section 3.4 for details). A relatively straightforward fix
comes from applying a limiting argument to equations (6)-(8) in [5], and boils down to
taking the first component of f as identity when A (Q) is below float precision.

3.4 Fixing numerical errors at glancing angles

During initial testing, we noticed that all three methods exhibited instability for glancing
angles - cases where the point p is almost in the plane defined by R, call it L(R).

This isn’t very surprising as these cases are exactly the ones where we see a phase tran-
sition in solid angle measure. This is most readily seen by examining the equations for solid
angle measure of a disk approximation to R (denoted by C), and noting that either ! (C) $ 0
or ) as p approaches L(R) at a point outside or inside C. See, for example, equations (19)
and (28) in [4]. This also suggests an explanation for why numerical errors get worse for very
large or very small area lights.

Our fix leverages the same approximation used in method 1. A straightforward compu-
tation shows that the solid angle measure of a disk when p lies on a normal line to the center
of C is

! (C) = 2%
!
1 %

1
*

r 2 + 1

"
(2)

where r = r c/ &p %C&2, the ratio of C’s radius to distance from p. Since importance sampling
estimates are normalized by the inverse of (2), cases where r $ 0 will be exactly those
where light transport approximations explode, causing the visual hot spots in figure 2. We
mitigate these errors by taming the curvature of ! (C) close to 0, applying a 1st order Taylor
Approximation to (2) in all cases where r < &. For all three methods above, this leads to a
particularly simple sampling distribution in edge cases,

pdf (pk) =
&p %pk&2

cos(" !)wh
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The e↵ect of this fix is most prominent for small area lights, since it’s easier to find cases
where r is small. The top two images of figure 2 show a slice of a cornell box rendered with
one rectangular light in the ceiling and rendered using method AS, without and with our
fix. Errors for the other two methods were at least as egregious. Yet even this does not
remove numerical error at glancing angles completely. The bottom row of figure 2 shows a
comparison of rendered images using the fixed methods when the size of the light is large
relative to the scene. We find that method SR is most adept at dealing with extreme glancing
angles when the light is large.

With these results in mind, we decided to not consider glancing angles in the statistical
analysis of variance and cost in section 5. In particular, for the results of the next section
to hold we assume that our sampling methods are unbiased, a notion that loses tractability
with persistent and varied numerical errors.

Figure 2: Errors caused by glancing angles. All images show cropped sections of the same cornell box as in
figure 4. The top image highlights numerical integration error with a very small area light in the ceiling, the
tiny light as described in Section 5. The second image shows the e↵ect of using our fix. The next three
images show persisting numerical error for methods AA, AS and SR with a very large area light, size49
light in Section 5. Method SR is most adept at dealing with errors in these circumstances.

4 Framework for method comparison

In this section, we attempt to answer in the positive the question - can we utilize importance
sampling theory to evaluate and compare sampling methods in physically-based ray tracing?
In setting up some notation, we quickly review the light transport problem. For a given point,
p, in a 3 dimensional scene, we evaluate the emitted radiance in direction ! r by evaluating
the integral
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L(p, ! r )

#

!
S(!, ! r ; p)V (! ; p)L(p, ! )cos(" )d!

where S is the BRDF, potentially dependent on p, V a visibility indicator, and L the in-
coming radiance from direction ! . Since this function is for the most part computationally
intractable, we estimate an importance sampled approximation, L̂(p, ! r ). To render an image,
the light transport problem is solved across polygons, call them $, and then their contribu-
tions are aggregated together for each pixel on a camera lens, call these ' . Slightly abusing
notation, the radiance expressed at each screen pixel, L(' ), is approximated by

L̂(' ) = A"

$
L̂($, ! (' ))

%

with A" denoting an aggregator over polygons. An optimization one may seek to achieve in
production rendering is

min
n

C(n) s.t.
&

!

D
'

L(' ), L̂(' )
(

< &, (3)

for a given error tolerance & > 0, a fixed importance sampling method, C the cost of
evaluating n samples and D some suitable error function.

The following lemma shows how this optimization can motivate comparison across meth-
ods.

Lemma 4.1. Let M be some set of sampling methods for evaluatingL(p, ! r ) such that for
m + M the sampling cost is proportional to the number of samples,

Cm(n) = cmn

, and

Dm,n , IE ! D
'

L(' ), L̂m(' )
(
= amn" bm (4)

, exponential in number of samples. Furthermore assume we wish to optimize (3) overM
independent of the particular rendered image. Then for any two methodsm1 and m2, we
strictly prefer m1 to m2 for all sample sizesn > n # where

n# = inf

)

n :
Dm1,n

Dm2,n
-

!
n %1

n

" bm 1
!

IE ! [cm2 ]

IE ! [cm1 ]

" bm 2

*

,

and IE ! is an expectation over all pixels arising from possible scene geometries. We adhere
to convention that the inÞmum of an empty set is) .

Proof. Relegated to the appendix for brevity, which also contains the definition of strict
preference.

The expectation IE ! arises from the assumption that we don’t expect cost and convergence
rate to be exactly the same across di↵erent scene geometries. Since what we really care about
is the final visual representation of each pixel, we can pass all this through to variation among
pixels. Note that this may mean that the pertinent range of variation is much smaller than
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“all possible scene geometries.” Finally note that as consequence of the above lemma, for
any two methods of equal cost, n# becomes the smallest sample size such that the ratio of
convergence rate is below 1 times a correction factor for integer constrained sample sizes.

One procedure using lemma 4.1 for comparing importance sampling methods is

1. Estimate Dm,n and cm across di↵erent methods, m, sample sizes, n, and pixel combi-
nations, ' , among a suitable test bank of images.

2. Average over pixel combinations to uncover image independent estimate of signal.

3. Estimate n# for any pairwise comparison methods.

A statement we would have liked to make is that for D L2 loss we have Dm,n = IE ! V arL̂m(' ),
and in fact, under the additional assumption that A " is a linear operator we can. Unfortu-
nately this would imply that bm , 1 and results such as those in figure 6 suggest that the
connection between L2 convergence and importance sampling variance is not as straightfor-
ward for image rendering. Hence we stay clear of such terminology in the sequel, and prefer
convergence rate or error.

With this framework in tow, we turn to evaluating and comparing the three rectangular
light sampling methods.

5 Statistical Analysis

All tests were performed on a 12 core machine with Intel Xeon X5660 CPUs and 23.4GB of
RAM, and RenderMan 18.0 rendering system. The scene used to compare our 3 methods
was a cornell box with a fancy ball in the center and one rectangular light source, shown in
4. The dimensions of each rendered image were 1000 x 1000 pixels.

Our experiment varies three factors: sampling method, number of light samples - 20 values
in the range [1, 1024], and variations of scene geometry. We assume a way scene geometry
a↵ects performance is through the distribution of solid angle measures across polygons in
the scene. In other words, some sampling methods may be better able to handle a high
concentration of small solid angles than others. From this, we defined 8 scene variations to
test across, described as follows,

close Baseline size (16x16 in) moved halfway down the box on the z-axis.

tiny A .1x.1in light with VERY high intensity.

sizex Rectangles with side lengths x in { 4, 9, 16, 25, 36, 49} with total flux kept constant.

Note that we tacitly assume these 8 variations adequately cover the variation in IE ! . The
Appendix contains an example rendered image under each scene variation.
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6 Cost

According to Lemma 4.1, we wish to estimate the per-sample cost of each method, averaged
over method-dependent geometries. Since we have potentially many significant levels, and
even more interactions, I used a BIC all-subsets regression to penalize inclusion of unnecessary
variables. Furthermore, as many of the coe�cients are close to one another in magnitude,
we performed a series of likelihood ratio tests to test equivalence of variables. The following
main conclusions arise from the analysis

¥ small and large lights both seem to have lower startup costs than average sized lights,

¥ cost per sample goes up fairly linearly with the size of the light for AA, while AS does
not have higher per sample cost for large lights,

¥ and SR has about 10% per sample cost increase, mitigated somewhat for larger lights.

We find that, averaging over scene variations, there is no statistically significant di↵erence
in cost between AA and AR methods, while SR has roughly a 6.9 % greater run time than
first two. Hence in the notation of section 4, we take cAA /c AS = 1 and cSR/c i = 1.069 for
i = AA, AS .

Table 2 in the appendix gives full results from regression. Included variables with p value
greater than 0.001, our threshold for significance accounting for some multiple testing slack,
are not reported.

7 Convergence Rate

We estimate convergence by L2 distance in RGB space from a reference image, averaged
over pixels. The reference image is relative, method dependent, and can be assumed a good
empirical approximation to letting n $ ) for a given scene geometry and sampling method.
Figure 5 in the Appendix gives an overview of all data points. In the figure, “Mdist 4”
corresponds to method SR without a correction small solid angles (see 3.3 for a discussion).
We wanted to demonstrate the impact of the correction on convergence rate, in particular
among di↵erent scene geometries.

The average convergence rate is found by first averaging across scenes, producing an
estimate

D̂n,m #
1

8

&

g

V̂n,m,g ,

and then linearly regressing the log transform on inverse number of samples, log(D̂n,m ) "
( 0 % ( 1 log(n). Figure 6 in the Appendix shows the superiority of this fit to one assuming
unitary convergence rate, i.e ( 1 , 1. Two noteworthy secondary e↵ects found in figure 5 are
the apparent acceleration of convergence rate for method AA, and greater variability of SR
about it’s fit. These e↵ects support our claims that errors from approximating rectangles
by circular solid angles decrease with sample size, and SR is more prone to scene dependent
errors.
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A resulting estimate of average convergence rate is

D̂m(n) = e
ö" 0 n" ö" 1 .

Note that it is reasonable to assume that Dm(n) $ 0 since our experiment is explicitly
method unbiased. Table 1 gives results, while figure 3(left) plots the fitted estimates over an
interesting range of samples. Our results are consistent with the qualitative hypotheses from
section 3.

To compare the two exact methods we estimate the ratios r in = Di,n /D 1,n . The resulting
fits, shown in figure 3(right) give us a more precise answer to the question of when does
each method overtake angular approximation. Following section 4, we want to find the
smallest number of samples that reject the null hypothesis that r in . ci with c2 = 1 and
c3 = (CAA /C SR)b1 # .93. Noting that we assume a monotonically decreasing convergence
rate, the p-value for each n can be computed as

pin = P(r̂ in %Ci < Z # | r in . Ci )

with Z# the ) -quatile of a standard normal variate, and for each i , n̂ is the first n such
that pin < ) . This controls the false positive rate - the chance that the true n# > n̂ - at
level ) . The dashed lines in figure 3(right) show n̂ for both methods. We conclude that
rendered images with more than 8 and 30 light samples makes AS and SR preferred to AA,
respectively.

Figure 3: Results of convergence rate estimates. Left figure - estimated convergence rate, Right figure -
estimated convergence ratios. Dotted lines denote minimum number of samples to prefer a method to AA,
with preference as defined in the proof of lemma 4.1. Abbreviations are AA - Angular Approximation, AS -
Angular Stratification, SR - Spherical Rectangles
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8 Conclusion

In this technical memo, we sought to achieve two objectives: propose a framework for com-
paring importance sampling methods in ray tracing, fairly compare 3 competing methods for
sampling from a rectangular light source.

The authors feel we have achieved modest success at both. Starting with the second, we
find that while Angular Approximation gains an early advantage in convergence, possibly due
to its computational simplicity, both Angular Stratification and Spherical Rectangles attain
better convergence with relatively few light samples. These transitions happen well within
practical bounds for industry rendering. Computational cost is nearly identical for Angular
Approximation and Angular Stratification and about 7 % more for Spherical Rectangles.
Using our framework, we conclude that for rendered images with more than 5 light samples,
Angular Approximation is optimal.

Our success in the first objective is decidedly murkier. In addition to cost and convergence,
we found that method SR is better able to handle numerical error at extreme glancing angles.
Assumptions to simplify calculations forced us to concentrate solely on error free regions in
the results above. We also do not consider variability of estimates about their mean, which
may indicate certain methods are more robust to scene geometry. On the other hand, it was
the framework, through it’s limitations, that cast light on these additional results.

At the least, we hope that we have demonstrated the value of taking a formal approach to
comparing sampling methods in ray tracing, and that the details are not as straightforward as
might seem at first glance. Besides the more apparent next steps of expanding a comparative
framework to account for bias and scene dependent variance, the authors feel a perhaps even
more pressing need is to give a standardized answer to: how do scene geometries vary?

As there are standard collections of test cases for machine learning [1] and face recognition
[3], we feel it would be useful to find a similar collection for sampling methods in global
illumination.
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9 Appendix

Proof of Lemma 4.1. To enforce an image independentmethod, we consider the sum in
(3) to be over all possible pixels from di↵erent scene geometries. Standard limiting arguments
allow us to transfer the average of this sum to an expectation,

1

|' |

&

!

D
'

L(' ), L̂(' )
(

$ IE ! D
'

L(' ), L̂(' )
(

.
A similar argument applies to the cost factor, cm $ IE ! [cm ]. Let the expected error and cost
parameters for methods 1 and 2 be denoted Ei (n) and ci for i = 1, 2, and ni (&) be defined as
the minimum number of samples such that Ei (n) < &.

We define strict preference by the following: Consider any & > 0 such that n1(&) /
n2(&) > n #, then method 1 is strictly preferred to method 2 if

c1n1(&) < c2n2(&)

For the remainder, we fix &and reduce notational complexity by taking ni , ni (&). It
follows from assumption of proportional cost and exponentially decreasing and unbiased error
that

c1n1 = c2n2

+!
E2(n2)

E1(n1)

" $�1
2

!
c1

c2

" ,

and that

E2(n2) < & < E 1(n1 %1) =

!
n1 %1

n1

" " $1

E1(n1).

Combining these results and considering the definition of n# finishes the proof.

Coef (( 0) Rate (( 1)
M1 0.086 ( 0.081 , 0.091 ) -1.03 ( -1.028 , -1.033 )
M2 0.216 ( 0.208 , 0.224 ) -1.72 ( -1.718 , -1.722 )
M3 0.31 ( 0.26 , 0.371 ) -1.515 ( -1.507 , -1.523 )

Table 1: Variance regression coe�cient estimates. Method coding is M = 1-4, AA = 1, AS = 2, SR = 3,
and variables are ! 0 coe�cient and ! 1 rate of convergence.
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Algorithm 1 Pseudocode for rectangular light sampling method - Angular Stratification
(AS).
1: " Objective: Compute random angular increments #n and $n . Update pdf accordingly.
2: " Pre-defined variables: Uvec and Vvec are horizontal and vertical vectors describing the light source.

Unorm and Vnorm are unit vectors in the same directions. p is a point in the scene. lightCenterDir is a
vector from p to the center of the rectangular light, R. And %1 and %2 are uniform random draws in [0, 1].

3: vector W1 = lightCenterDir %0.5 0 Uvec

4: vector W2 = W1 + Uvec

5: vector H1 = lightCenterDir %0.5 0 Vvec

6: vector H2 = H1 + Vvec

7: float LW 2
1 = W1 áW1

8: float LW 1 =
-

LW 2
1

9: " . . . do the same for W2, H1 and H2

10: float cosX = %W1 áUnorm /LW 1

11: float sin X =
*
1.0 %cosX 0 coxX

12: " . . . do the same for cosY and sin Y

13: float dx = 1.0/numSamplesX
14: float dy = 1.0/numSamplesY
15: float # = acos((LW 2

1 + LW 2
2 %R2

width ) 0 0.5/ (LW 1 0 LW 2)) " law of cosines
16: float #n = # 0 dx
17: float tanW = tan(#n )
18: " . . . do the same to calculate horizontal increment $n

19: " March over equi-angular rectangles. First loop over x coordinates.
20: float x1 = 0.0
21: float tanx1 = 0.0
22: for (int x = 0; x < numSamplesX ; x+ = 1) do
23: float tanx2 = (tanx1 + tanW )/ (1.0 %tanx1 0 tanW )
24: float x2 = LW 1 0 tanx2/ (sin X + tanx2 0 cosX )
25: float L x = x2 %x1 " Calculate length of step in horizontal direction
26: " Now loop over y coordinates
27: float y1 = 0.0
28: float tany1 = 0.0
29: for (int y = 0; y < numSamplesY ; y+ = 1) do
30: " . . . do the same for y2 and L y

31: float &x = (x1 + %1 0 L x )/R width " jitter over Rk

32: float &y = (y1 + %2 0 L y )/R height

33: y1 = y2
34: tany1 = tany2

35: point pi = a0 + &x 0 Uvec + &y 0 Vvec " point on the light
36: vector lightDir = pi %p " direction towards the light
37: float &p %pi &

2
= lightDir álightDir

38: vector lightDirNorm = lightDir/
.

&p %pi &
2

39: float cos" 0 = %Wnorm álightDirNorm
40: float lightPdf = &p %pi &

2 / (cos" 0 0 L x 0 L y 0 numSamples) " solid angle measure
41: end for

42: x1 = x2

43: tanx1 = tanx2

44: end for
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Figure 4: The 8 scene geometries analyzed, from left to right: close, tiny, size4, size9, size16,
size25, size36, size49.

Figure 5: Pixel averages of L2 Distance from reference by importance sampling distribution and scene
geometry. The far right image shows convergence for method SR without a fix for small solid angles and
hence includes numerical error. Color code is black - close, red - size16, green - size25, purple - size36, teal

- size4, pink - size49, yellow - size9, grey - tiny
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Estimate Std. Error t value Pr( > |t |)
(Intercept) 32.6503 0.1352 241.55 0.0000e+00

Samples 0.1320 0.0005 274.84 0.0000e+00
size36TRUE -1.3228 0.1860 -7.11 3.3147e-12
size4TRUE -3.6569 0.1860 -19.66 1.2929e-66

size49TRUE -1.4887 0.1860 -8.00 6.4048e-15
size9TRUE -3.4746 0.1860 -18.68 1.4402e-61
tinyTRUE -1.9234 0.1860 -10.34 3.7417e-23
M2TRUE 0.7689 0.1593 4.83 1.7615e-06
M3TRUE 0.9683 0.1593 6.08 2.1659e-09
M4TRUE 0.9374 0.1646 5.69 1.9485e-08

Samples:closeTRUE -0.0041 0.0008 -5.20 2.7179e-07
Samples:size25TRUE 0.0036 0.0005 7.65 8.0947e-14
Samples:size36TRUE 0.0062 0.0008 7.37 5.6260e-13
Samples:size4TRUE -0.0074 0.0006 -13.00 3.4991e-34

Samples:size49TRUE 0.0057 0.0008 6.76 3.3408e-11
Samples:size9TRUE -0.0037 0.0006 -6.12 1.7098e-09
Samples:tinyTRUE -0.0101 0.0006 -17.73 1.0318e-56
Samples:M3TRUE 0.0110 0.0005 22.04 4.8011e-79
Samples:M4TRUE 0.0112 0.0005 20.95 2.5582e-73

Samples:size36TRUE:M2TRUE -0.0047 0.0010 -4.64 4.3670e-06
Samples:size49TRUE:M2TRUE -0.0073 0.0010 -7.16 2.4800e-12
Samples:M3TRUE:closeTRUE -0.0065 0.0010 -6.37 3.7394e-10

Samples:size36TRUE:M3TRUE -0.0080 0.0010 -7.84 2.0986e-14
Samples:size49TRUE:M3TRUE -0.0056 0.0010 -5.53 4.7459e-08
Samples:size36TRUE:M4TRUE -0.0037 0.0010 -3.59 3.5935e-04
Samples:size49TRUE:M4TRUE -0.0095 0.0010 -9.22 5.2427e-19

Table 2: Regression Results for Cost Analysis. Dependent variable is total render run time in seconds. The
intercept here corresponds to the initial cost of our baseline condition - method 1 with a 16in light source -
about 33 seconds. The baseline case costs an additional 0.13 seconds per light sample to render the image.
Method coding is M = 1-4, AA = 1, AS = 2, SR = 3, and method 4 is SR without the fixes in sections
3.3 and 3.4. We find that our fixes have little overall e↵ect on runtime.

Figure 6: Fits of convergence rates to averages of L2 distances over scene geometries. Theoretical estimates
assume the rate bm = 1 in (4). The fits are more accurate than theoretical assumptions. Interesting features
are the variability of estimates for SR, and apparent acceleration of rate for AA. The latter is seen in the bias of
the AA fit at large samples. In all likelihood the rate smoothly increases with n as the error in approximation
decreases (see section 3.1 for further discussion). The bias occurs since we assumed bm constant in all fits.
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