Stochastic Computation of Barycentric Coordinates

FERNANDO DE GOES, Pixar Animation Studios, USA
MATHIEU DESBRUN, Inria / Ecole Polytechnique, France

Fig. 1. Stochastic Harmonic Coordinates: We introduce a flexible and efficient approach to evaluate various types of barycentric coordinates stochastically,
without requiring any volumetric discretization, large memory footprint, or custom solves. In this example, we reproduce harmonic coordinates [Joshi et al.
2007] on a 3D character made of multiple disconnected components (body, hair, and shirt) with a total of 30.8k points, deformed via a quadrangulated cage
mesh with 88 control vertices. The left image shows the initial configuration on which we compute our stochastic harmonic coordinates, which took 2.9 s
using 50 samples per query and a single denoising step, while the other images illustrate the resulting cage deformations. ©Pixar

This paper presents a practical and general approach for computing barycen-
tric coordinates through stochastic sampling. Our key insight is a reformula-
tion of the kernel integral defining barycentric coordinates into a weighted
least-squares minimization that enables Monte Carlo integration without
sacrificing linear precision. Our method can thus compute barycentric coor-
dinates directly at the points of interest, both inside and outside the cage,
using just proximity queries to the cage such as closest points and ray in-
tersections. As a result, we can evaluate barycentric coordinates for a large
variety of cage representations (from quadrangulated surface meshes to
parametric curves) seamlessly, bypassing any volumetric discretization or
custom solves. To address the archetypal noise induced by sample-based
estimates, we also introduce a denoising scheme tailored to barycentric coor-
dinates. We demonstrate the efficiency and flexibility of our formulation by
implementing a stochastic generation of harmonic coordinates, mean-value
coordinates, and positive mean-value coordinates.

CCS Concepts: « Computing methodologies — Shape modeling.

Additional Key Words and Phrases: Barycentric coordinates, cage interpola-
tion, numerical integration, Monte Carlo methods, linear precision.

Authors’ addresses: F. de Goes, fernando@pixar.com, Pixar Animation Studios, 1200
Park Avenue, Emeryville, CA, USA; M. Desbrun, mathieu.desbrun@inria.fr, Inria Saclay
& LIX (IPP), 1 rue Honoré d’Estienne d’Orves, Palaiseau, France.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2024/7-ART42 $15.00

https://doi.org/10.1145/3658131

ACM Reference Format:

Fernando de Goes and Mathieu Desbrun. 2024. Stochastic Computation of
Barycentric Coordinates. ACM Trans. Graph. 43, 4, Article 42 (July 2024),
13 pages. https://doi.org/10.1145/3658131

1 INTRODUCTION

The key premise behind barycentric coordinates lies in their ability
to express any point in space as a weighted combination of the ver-
tices of a cage mesh. This property, often denoted as linear precision,
makes the resulting coordinates a powerful tool to extend a function
defined on the cage to arbitrary points in space, with applications in
a wide range of fields from geometric modeling and scattered data
interpolation to computational mechanics [Hormann and Sukumar
2017]. Within the graphics community, barycentric coordinates are
routinely deployed to compute free-form deformations using the
cage vertices as a sparse set of manipulation handles.

While barycentric coordinates have easy-to-evaluate expressions
in 2D [Meyer et al. 2002; Floater et al. 2006; Weber et al. 2009],
computing similar coordinates in 3D still poses various practical
challenges. Even if a few closed-form expressions for 3D coordinates
exist, they assume strict restrictions on the input cage. For instance,
the method proposed by Budninskiy et al. [2016] requires the cage
to be a convex polytope and limits the coordinate evaluation to the
interior of the cage. The popular 3D mean-value coordinates [Ju
et al. 2005; Floater et al. 2005] possess an algebraic construction
only when the cage is a watertight triangulation, and extensions of
these coordinates involve costly computations such as numerical
corrections to accommodate quadrangular cages [Thiery et al. 2018]
and visibility tests to guarantee non-negative weights [Lipman et al.
2007]. Another common strategy for computing 3D coordinates is
through an auxiliary volumetric discretization of the cage interior

ACM Trans. Graph., Vol. 43, No. 4, Article 42. Publication date: July 2024.

https://doi.org/10.1145/3658131
https://doi.org/10.1145/3658131

42:2 « de Goes & Desbun

combined with iterative solves [Joshi et al. 2007; Zhang et al. 2014;
Dodik et al. 2023]. However, these volumetric approaches impose
the burden of 3D meshing the inside of the cage and a large memory
footprint to store the coordinates on the volumetric mesh.

In this work, we introduce a new method for efficiently com-
puting barycentric coordinates that is agnostic to the type of cage
discretization (be it a triangle or quad mesh, with boundaries or not,
or even just a polygon soup), can handle query points both inside
and outside the cage, and is free of any intermediate volumetric
representation. At its core, our approach employs the Reproduc-
ing Kernel Particle Method (RKPM) [Liu et al. 1995] to reformulate
barycentric coordinates as a weighted moving least-squares mini-
mization defined directly on the points of interest. This new formu-
lation enables the evaluation of 3D coordinates through numerical
integration via Monte Carlo techniques without sacrificing linear
precision. Additionally, our construction can easily incorporate de-
noising routines that eliminate the typical high-frequency noise
caused by sampling strategies while still producing linear-precise
coordinates. We showcase the versatility of our technique by pre-
senting a stochastic generation of harmonic coordinates [Joshi et al.
2007], mean-value coordinates [Ju et al. 2005; Thiery et al. 2018],
and positive mean-value coordinates [Lipman et al. 2007], all of
them built upon simple proximity queries on the cage geometry
such as closest points and ray intersections.

2 RELATED WORK

We start by providing a brief overview of prior work on barycentric
coordinates, focusing exclusively on methods closely related to our
formulation. We point the reader to recent surveys for more details
[Floater 2015; Weber 2017; Hormann and Sukumar 2017].

Mean-Value Coordinates. Floater [2003] introduced closed-form
mean-value coordinates on star-shaped 2D polygons, which was
later generalized to arbitrary polygons by Hormann and Floater
[2006]. Analytical expressions for mean-value coordinates in 3D
were derived by Ju et al. [2005] and Floater et al. [2005] concurrently,
both assuming closed triangular cages. Lipman et al. [2007] proposed
positive mean-value coordinates as a variant preventing negative
weights caused by cage concavities through visibility tests. More
recently, Thiery et al. [2018] noticed that mean-value coordinates
generated by triangulated cages can lead to severe interpolation
artifacts, and devised an extension to quadrangulated cages via a
custom quadrature-based correction. We instead draw inspiration
from the theoretical work of Belyaev [2006], which described a
general construction of barycentric coordinates as a simple modi-
fication of the Gordon-Wixon interpolation scheme [Gordon and
Wixom 1974]. In particular, Belyaev [2006] showed that the (trans-
finite) mean-value coordinates correspond to a special case of the
Gordon-Wixon scheme that averages values linearly interpolated
between cage points. Our approach complements this formulation
by presenting a unified numerical routine that can evaluate any
transfinite barycentric kernel (including mean-value coordinates
and its variants) via stochastic sampling by properly aggregating
ray intersections against the cage geometry.

ACM Trans. Graph., Vol. 43, No. 4, Article 42. Publication date: July 2024.

Harmonic Coordinates. Joshi et al. [2007] designed harmonic co-
ordinates as a generalized barycentric coordinate that interpolates
the basis function associated with each cage vertex through space
by solving a Laplacian equation. While this construction offers de-
sirable properties such as shape-awareness and non-negative coor-
dinates, it relies on an indirect evaluation that involves 3D meshing
the cage interior followed by volumetric solves. Alternatively, Mar-
tin et al. [2008] approximated harmonic coordinates by placing
radial basis functions on the cage boundary via the method of fun-
damental solutions. Instead, Weber and Gotsman [2010] computed
harmonic coordinates via a dense linear system derived through
a boundary element method, but restricted to the case of simply-
connected cages in 2D. More recently, Sawhney and Crane [2020]
and Sugimoto et al. [2023] advocated for Monte Carlo methods to
evaluate harmonic functions free of any volumetric discretization
or costly solve. While the inherent noise of Monte Carlo methods
can be reduced using boundary value caching [Miller et al. 2023],
these schemes are inadequate for computing harmonic coordinates
since the results lack linear precision even if a large number of
samples is used (Figure 2 left). Moreover, these techniques assume
that the harmonic functions fade to zero when evaluated outside
the cage domain, thus producing exterior harmonic coordinates
that fail to enforce partition of unity. With our construction, we
can extend the Walk-on-Spheres algorithm [Sawhney and Crane
2020] in order to generate valid harmonic coordinates both inside
and outside the cage. Additionally, our approach offers accurate
gradient estimates and can retrofit existing denoising strategies to
barycentric coordinates while still retaining linear precision.

Projection Methods. Instead of constructing linear-precise coordi-
nates directly, some methods have considered projection routines
that correct flawed coordinate estimates as a post-processing step.
For instance, Hormann and Sukumar [2008] and Chang et al. [2023]
employed statistical models as optimization objectives that project
prior functions into barycentric coordinates. In contrast, we enforce
linear precision by recasting the construction of barycentric coor-
dinates based on the Reproducing Kernel Particle Method (RKPM)
[Liu et al. 1995]. In graphics, RKPM has found previous applications
in multi-phase [Chen et al. 2020] and fluid simulation [Westhofen
et al. 2023], but we are not aware of its usage for cage interpolation.
With our RKPM-based formulation, numerical approximations of
barycentric coordinates can be converted into a weighted moving
least-squares minimization that ensures linear precision exactly.
Therefore, our approach can be seen as a more general form of
projection in which kernel-based weights are introduced in order
to encapsulate various types of barycentric coordinates and sam-
pling strategies. Finally, we point out that our work can also be seen
as an extension of the moving least-squares coordinates [Manson
and Schaefer 2010] to arbitrary weighting functions, enabling the
stochastic computation of various types of barycentric coordinates
across diverse cage representations.

3 PRELIMINARIES

Before presenting our contributions, we summarize some definitions
and notations necessary for our formulation. Hereafter, we adopt the

convention of using letters with Sans-serif font (e.g., u) to indicate d-
sized vectors versus bold font (e.g., u) to encode (d+1)-sized vectors.
For more concise expressions, we also make use of homogeneous
coordinates. To this end, we reserve the symbols x and y to denote
points in R? and encode their respective homogeneous coordinates
as the (d+1)-sized vectors x=[x; 1] and y=[y; 1].

Cage Primitive: We define a cage primitive C in R? as a list of
n control vertices in general position so that their linear combi-
nations span R?. For each control vertex v, we assign a position
Xp and a basis function ¢, : C —R. We further assume that these
basis functions {¢,} define a partition of unity over the cage, i.e.,
Yo Pu(y)=1VyeC. Observe that our cage definition covers the
typical case of simplicial cages such as 2D polygons and 3D tri-
angle meshes, but it also provides a more general representation
that detaches the cage discretization of any meshing requirement.
For instance, when the cage is a triangle (resp., quad) mesh, the
basis function ¢, is one at x,, zero at any other control vertex, and
piecewise-linear (resp., bilinear) over each cage element. Based on
this cage definition, our work also applies to parametric curves,
point clouds, meshes with boundaries, non-manifold geometry, or
even a combination thereof.

Kernel Interpolation: Equipped with vertex-based basis functions,
we can now set scalar values {g,} to each control vertex v of the
cage C to construct a cage function ¢g: C — R through

9y) =D bo(y)go VyeC. (1)

To further interpolate the cage function g to the inside (and, possibly,
the outside) of the cage domain, we introduce a kernel function
k: RIXC >R (with properties to be reviewed next) that determines
the influence of each point y from the cage primitive C over an
arbitrary point x € R%. We can now compute a function f that
extends the cage function g to the rest of R4 via

£00 = /C K(xy)g(y)dy VxeRe. @

By substituting Eq. (1) into Eq. (2), we can rewrite the cage interpola-
tion as a weighted sum of vertex values of the form f(x) =3, oy (x)go,
where the coordinate function ay : R4 — R extends the basis function

¢, for each control vertex o throughout R by accounting for the

kernel influence over the cage, with

au(x)=/cx(x,y)¢v(y)dy vxeR4, 3)

Barycentric Coordinates. The coordinate functions defined by
Eq. (3) provide a proper generalization of M6bius’ simplicial barycen-
tric coordinates [Mobius 1827] to arbitrary cage primitives when
two fundamental properties hold. First, the cage coordinates must
be interpolant, i.e., oy (y) = ¢ (y) Vo for any point y € C, so that the
extended function f reproduces the input function g when restricted
to the cage. Second, the coordinate functions must reproduce linear
functions, i.e., any cage function of the form g(y) =a’y with constant
vector a€ R4 must generate f(x) =a'x. The latter property, often
denoted as linear precision or linear reproduction, implies that the
coordinates must both form a partition of unity and reproduce the

Stochastic Computation of Barycentric Coordinates + 42:3

Fig. 2. Reproduction of linear functions: To demonstrate the improve-
ments that our stochastic harmonic coordinates bring compared to a raw
Monte Carlo interpolation [Sawhney and Crane 2020], we visualize isocon-
tours of the distance function from the cage center for the identity map
reconstructed using 10k samples per query via a) from Eq. (13) (left), its
denoised version ay©° from Eq. (14) (center), and our coordinates &, from
Eq. (10) (right). The high-frequency noise introduced by the Monte Carlo
method ruins linear precision, leading to visual defects (left inset) with a
L? error of 0.45% and a L*™ error of 1.15%, both measured relative to the
cage’s diameter. Denoising the raw Monte-Carlo evaluations reduces the
noise but shifts isocontours away from their correct locations (right inset)
due to the lack of linear precision, with a L2 error of 0.37% and a L* error
of 0.56%, measured once again relative to the cage’s diameter. In contrast,
our projection to linear-precise coordinates reproduces the identity map
exactly, thus retaining evenly-spaced isocontours.

identity map, which can be concisely written using homogeneous
coordinates as the linear constraint

Zuav(x) Xp=x VxeRY 4)

This constraint limits the kernel functions suitable to define barycen-
tric coordinates, referred to as transfinite barycentric kernels [Belyaev
2006]. In particular, this constraint suggests that numerical approxi-
mations of the kernel integral in Eq. (3) are likely to violate linear
precision and lead to flawed barycentric coordinates. To overcome
these undesirable artifacts, we introduce next a new construction
of coordinate functions that guarantees linear precision.

4 REFORMULATING BARYCENTRIC COORDINATES

In this section, we describe how to systematically convert possibly-
flawed estimates of coordinate functions into barycentric coordi-
nates. This step will be at the heart of our stochastic construction of
barycentric coordinates, as it will ensure that numerical defects in
the computation of kernel integrals are properly compensated for.

4.1 Rationale

As expressed by Eq. (3), the coordinate function a;,(x) is defined by
a boundary integral that pairs a kernel function k(x, y) to the basis
function ¢, (y) of a cage vertex v. However, computing this boundary
integral analytically is unfeasible in most cases depending on the
choice of the kernel function and the specific type of cage being
used. Numerical integration offers a more practical approach to
evaluate Eq. (3), but it induces oft-inevitable inaccuracies, resulting
in deficient coordinates that are not linear precise (Figure 2 left). Our
approach for constructing barycentric coordinates borrows from the
Reproducible Kernel Particle Method (RKPM) [Liu et al. 1995], which
is commonly used by mesh-free techniques in order to evaluate
functions through a numerical approximation of a kernel integral

ACM Trans. Graph., Vol. 43, No. 4, Article 42. Publication date: July 2024.

42:4 « de Goes & Desbun

Eq. (13)

Eq. (10)

Eq. (11)

Fig. 3. Accuracy: For a more quantitative comparison between a raw Monte
Carlo interpolation [Sawhney and Crane 2020] and our stochastic harmonic
coordinates, we reuse the setup of Figure 2 and compute the difference of
the resulting barycentric coordinates versus a reference solution. In the top
row, we plot the coordinate function after the raw Monte Carlo evaluations
from Eq. (13) (with L? error of 0.18% and L* error of 1.12%) and after they
are denoised by Eq. (14) (with L? error of 0.15% and L™ error of 0.65%).
In the bottom row, we plot the Monte Carlo estimates after projection to
linear-precise coordinates via Eq. (10) (with L? error of 0.06% and L™ error
of 0.40%) and finally after they are denoised by Eq. (11) (with L? error of
0.02% and L* error of 0.10%). Additionally, the middle column displays
the point-wise error for each coordinate approximation, with all the errors
calculated as a percentage of the cage’s diameter.

while reproducing a desired sub-class of functions (typically low-
order polynomials) exactly. This formalism is particularly well suited
to our task at hand of computing barycentric coordinates based on
sampling approximations without sacrificing linear precision.

4.2 Barycentric Coordinates through RKPM

To adapt RKPM to the construction of barycentric coordinates, we
associate each control vertex v of the cage C with an auxiliary
function Ay(x, y) =uy(x)’y parametrized by the (d + 1)-sized vector
uy(x). Note that A,(x,y) is a separable function, defining a linear
function relative to its second argument. For a given point x e R,
we seek a vector uy(x) so that its auxiliary function A,(x,y) best
approximates the vertex-based basis function ¢, (y) when evaluated
on any cage point y € C. Following Liu et al. [1997], we compute
uy(x) through a kernel-based least-squares minimization

wo() = argmin [xoy) o'y ~ o)y @

Once the vector uy(x) is found, we can then evaluate the coordinate
function for the cage vertex v at the query point x as
@o(x) =Ag (%, X) =y (x)'x. (6)

Notice that we use the symbol @, in Eq. (6) to differentiate from the
kernel integral a, defined by Eq. (3), as we will see that even if the

ACM Trans. Graph., Vol. 43, No. 4, Article 42. Publication date: July 2024.

latter is not linear precise, the former will be. It is also worth men-
tioning that other fitting schemes could be employed to calculate
the vector uy(x) [Fries and Matthies 2004], however, we favored the
integral-based functional in Eq. (5) as it inherits the properties of
moving least-squares approximation [Levin 1998] such as bounded
fitting error and easy access to derivative estimates, while also being
amenable to stochastic sampling as we describe next.

4.3 Numerical Evaluation

In what follows, we will consider that a series of m sample points
{yk} on the cage C has been selected for a given query point xR,
where each sample y;. is accompanied by the values of its respec-
tive vertex-based basis functions {¢,(yx)}. Additionally, we will
assume that each cage sample yy is assigned a scalar weight wy
that estimates k(x, y)dy measured at yg, thus indicating the sample
importance to the cage integral in Eq. (5). We will discuss how to
generate cage samples and set their weights later in §5 when we
go through specific examples of barycentric coordinates, since the
sampling strategy depends directly on the choice of kernel function.

Equipped with these weighted samples, we can trivially discretize
the cage integral in Eq. (5) and then compute the vector u,(x) for
the control vertex v at a specific query point x via

uy(x) = argmin) willu'yi —do(yp)lI*.)

The unique solution to Eq. (7) is of the form uy(x) = M(x) " lmy(x),
where the (d+1)-sized vector m,(x) is given as

mo(x) =)" Wi do(Vi) Vi (8)

while the (d+1) X (d+1) symmetric matrix M(x) represents the
second-order moment of the weighted cage samples defined as

M(x) = Zk Wi Yk V- ©

Therefore, we can expand Eq. (6) and express our barycentric coor-
dinate @, (x) for the cage vertex v at the query point x as

|00 = x'M() " my(x). (10)

Importantly, by utilizing the same set of samples to compute u,(x)
for every cage vertex v at a fixed query point x, we can easily show
that Y, m,(x)x,=M(x) and, consequently, >, u,(x)x},=1. Using
these identities, we can then verify that our construction of barycen-
tric coordinates given by Eq. (10) satisfies Eq. (4), thus resulting in
linear-precise coordinates despite the use of a numerical evaluation.

4.4 Denoising

So far we have described how to generate linear-precise coordinates
numerically by aggregating sample estimates from a single query
point. However, sample-based integration such as Monte Carlo
methods tends to introduce high-frequency noise to the resulting
coordinates, thus conflicting with the spatial smoothness expected
from barycentric coordinates. Conventional sampling schemes al-
leviate these artifacts by averaging point-wise evaluations around
nearby query points. Unfortunately, denoising each vertex-based
coordinate individually is inappropriate due to the linear-precision
condition in Eq. (4) that couples the coordinates together (Figure 2).

To address this issue, we retrofit the construction of denoising
schemes tailored to barycentric coordinates. To this end, we con-
sider a smoothing operator oy : RY 5 Ris given for any query
point x e R?. We also make the mild assumption that the smoothing
operator is normalized, i.e., /Rd ox(y)dy =1 ¥x € R%. We then gen-
eralize our barycentric coordinates defined in Eq. (6) by convolving
ox against the RKPM auxiliary function A,, yielding

t
ay(x) = /Rd ox(Y)Ay(y, x)dy = (_/Rd O'X(Y)“v(Y)dY) x, (11

where the last equality uses the fact that A, is a separable func-
tion. Note that, if oy is simply a Dirac function centered at x, then
Eq. (11) simplifies to Eq. (6). Importantly, by reusing the identity
Yo Up(x)x}, =T discussed in §4.3, we can easily verify that our filtered
coordinates satisfy Eq. (4), thus defining linear-precise coordinates.

In addition to linear precision, we also need to ensure that the
denoising process keeps the coordinates interpolatory. To achieve
this goal, we detect any query point x that lies on the cage C and
then constraint the smoothing convolution so that @y (x) =gy (x)
for every control vertex v. Since the values for the vertex-based
basis functions are known for any cage query, we can impose this
constraint by a simple change of variables: we first introduce a new
variable g,(x) that defines a d-sized vector and then express the
vector uy(x) as [gy(X) ; Po(X) — go(x)?x]. With this split encoding,
we can filter each vector uy(x) at any cage query x by smoothing
only its sub-vector g, (x), while correcting its last coefficient in order
to restore the interpolation property. As a result, our denoising
method ensures interpolatory coordinates even if the input kernel
function is not interpolatory. Based on this construction, we can now
compute denoising of the sample-based evaluation of barycentric
coordinates by simply applying any existing smoothing operator
ox to each vertex-based vector u, individually and the results are
guaranteed to produce valid barycentric coordinates.

In graphics applications, barycentric coordinates are often evalu-
ated on query points that come from specific geometric primitives
such as polygonal meshes, point clouds, or grid nodes. Based on
this observation, we selected the heat kernel associated with the
query primitives as the smoothing operator oy, since the heat kernel
has discretizations available for various types of geometric primi-
tives. For instance, when the queries correspond to a uniform grid,
the smoothing operator is simply a Gaussian convolution. In the
case of queries forming a polygonal surface mesh, we compute the
smoothing operator as the symmetric matrix (A + tL) A, which
amounts to an implicit Laplacian smoothing [Desbrun et al. 1999]
with time-step ¢, where the diagonal mass matrix A indicates the
local area of each query point on the surface mesh and L is the
sparse Laplacian matrix with zero Neumann boundary condition,
for which we implemented the polygonal discretization proposed
by de Goes et al. [2020]. In the general case, we can discretize the
heat kernel by handling the entire set of queries seen as a point
cloud following the work of Sharp and Crane [2020]. Finally, we set
the heat kernel time-step ¢ to the mean squared distance between
neighboring queries scaled by a function s of the number of sam-
ples m so that fewer samples imply more smoothing. This scaling
function was experimentally chosen as s(m)=max(1, 5-log;,(m)).

Stochastic Computation of Barycentric Coordinates « 42:5

Undeformed

Mean-Value Harmonic

Fig. 4. Triangulated vs. Quadrangulated Cage: Our stochastic approach
can seamlessly handle cage meshes made of triangles and/or quadrilaterals,
thus extending the work of Thiery and Boubekeur [2022] to a broader class of
barycentric coordinates. Symmetry artifacts (top), caused by a triangulated
cage generated by adding quad diagonals to a quad mesh, are evident
with mean-value coordinates [Ju et al. 2005; Thiery et al. 2018] (middle) or
harmonic coordinates [Joshi et al. 2007] (right), but all disappear when the
same coordinates are evaluated directly on the quad cage (bottom). These
results were generated with a sample count m=50 and one denoising step.

4.5 Discussion

Our method presented above has many unique properties besides
guaranteeing linear-precise and interpolatory coordinates. First, it is
general in the sense that it accommodates a number of cage represen-
tations, including meshes with boundaries and imperfect geometries,
for which there are only rare examples of known barycentric coor-
dinates [Yan and Schaefer 2019]. Second, it can handle any kernel
function, be it transfinite or not, relying only on sample estimates.
As we will see in §5, our formulation also offers a new means to eval-
uate many of the state-of-the-art barycentric coordinates, including
harmonic coordinates [Joshi et al. 2007] and positive mean-value
coordinates [Lipman et al. 2007]. Moreover, our sampling-based gen-
eration of barycentric coordinates directly at the points of interest
is easy to parallelize, free of any volumetric discretization. Even
our denoising scheme based on linear smoothing operators can be
parallelized, making the computation of barycentric coordinates
per query point efficient. At last, our approach provides a unified
construction of barycentric coordinates for query points both inside
and outside a cage independent of the choice of kernel function.

Projection Operator. While we derived barycentric coordinates
through a sampling-based evaluation, it is worth noticing that this
approach amounts to a discrete version of a continuous counter-
part, where sums of sample terms are replaced by integrals. This
continuous formulation, sketched in Appendix A, allows any kernel
function to be projected to a transfinite barycentric kernel. We can
even deduce from this continuous derivation that our barycentric
coordinates in Eq. (10) can be expanded into Eq. (15), thus revealing
that our construction offers a correction term that compensates for
any lack of linear precision, hence forming a proper projection of
coordinate functions to linear-precise coordinates. Compared to

ACM Trans. Graph., Vol. 43, No. 4, Article 42. Publication date: July 2024.

42:6 « de Goes & Desbun

prior projection techniques [Hormann and Sukumar 2008; Chang
et al. 2023], our scheme does not impose restrictions on the type of
kernel or prior function.

Gradient of Barycentric Coordinates. Furthermore, our variational
definition of the (d+1)-sized vector u,(x) in Eq. (5) as a linear
regression of the vertex-based basis function ¢, over the cage C
leads to an interesting side effect: the resulting vector u,(x) con-
tains a weighted least-squares approximation of the gradient vec-
tor Va,(x). Indeed, the solution of Eq. (5) can be re-expressed as
Uy (x) = [Va,(x) 5 @o(x) — Vs (x)'x], ie., uy(x) provides in its first
d coefficients an estimate Va,(x) of the gradient vector Vay,(x),
while its last coefficient quantifies the residual between the barycen-
tric coordinate @,(x) and its first-order approximation. Figure 6
shows an example of the gradient estimate produced by our method
both inside and outside the cage domain.

Queries at the Cage. In general, barycentric coordinates are only
Co at the cage, with gradient vector Vo, matching the gradient of
the vertex-based basis function ¢, tangent to the cage, but ill-defined
along the cage normal. By leveraging our interpretation of the vector
uy(x), we can now calculate smooth gradient vectors for barycentric
coordinates even when the query point x lies on the cage geometry
C. To this end, we initialize the gradient vector at a cage point
x by perturbing x away from the cage and computing the vector
Uy (x) on this shifted location. We then filter the approximated u,(x)
using our denoising scheme, which smooths the gradient estimates
spatially while enforcing that @, (x) = ¢, (x) for every control vertex
v at any cage query X, as previously detailed in §4.4.

Limitations. Finally, we point out theoretical limitations to our
formulation. First, the matrix M(x) must be invertible to be able to
evaluate our barycentric coordinates. Yet, this may not be the case
if the input (continuous) kernel function has poles, i.e., it integrates
to zero at any point in space. Too few samples in our numerical
integration may also cause M(x) to be singular, but all our exper-
iments suggest that 20 samples or more are sufficient to produce

Coarse Tetrahedral Mesh Dense Tetrahedral Mesh ~ No Tetrahedral Mesh

Fig.5. Volume Discretization: The method proposed by Joshi et al. [2007]
exhibits artifacts when the tetrahedral discretization of the cage interior
used to evaluate harmonic coordinates is too coarse compared to the details
of the binding geometry (left, for a tet-mesh with 369 vertices). These arti-
facts are resolved through finer discretizations (center, for a tet-mesh with
28k vertices) at the price of greater memory footprint and computational
times. Instead, our approach (with m=50 and one denoising step) produces
similar results free of any volumetric meshing requirements (right).

ACM Trans. Graph., Vol. 43, No. 4, Article 42. Publication date: July 2024.

Fig. 6. Gradient Estimation: Our method provides accurate estimations
of barycentric coordinates and their gradients at arbitrary query points, be
they inside or outside the cage. In this example, we use stochastic harmonic
coordinates to interpolate linear (left) and sinusoidal (right) color attributes
from a cage polyline to an enclosing background grid of 12k points, using 1k
samples per query and one denoising step. For comparison, results obtained
via a direct application of Sawhney and Crane [2020] for these same inputs
exhibit inaccurate color interpolations and noisy gradients (center column).

valid results. Second, our method can lead to negative coordinates
even if the kernel function is supposed to be positive, due to either
the linear-precision projection or the denoising step. For example,
our stochastic approximation of harmonic coordinates [Joshi et al.
2007] and positive mean-value coordinates [Lipman et al. 2007]
may present negative weights for interior queries in the vicinity of
the cage boundary, depending on the number m of samples used.
A possible workaround is to add u,(x)?x>0 as a linear inequality
constraint to the denoising so that the coordinates are always forced
to be positive, but a different denoising solver must be used then.
At last, we note that our denoising step introduces smoothness for
both the coordinates and their gradients, however, we can not claim
any specific order of continuity for the resulting coordinates since
our approach evaluates them at discrete locations.

5 EXAMPLES

We now present how to reproduce various types of barycentric co-
ordinates using our sampling-based construction. For each example
of barycentric coordinates, we will describe a sampling strategy that
produces a list of m sample points {y,} on the cage C, with each
sample y; containing the values of its vertex-based basis function
{¢o(yr)}. Following the setup outlined in §4.3, we will also detail
the process of computing a scalar weight wy. for each sample point
yi relative to its originating query point x.

5.1 Harmonic Coordinates

Since the Laplacian kernel is not known in closed-form for arbitrary
domains, we adopt the Walk-on-Spheres (WoS) algorithm [Muller
1956; Sawhney and Crane 2020] which consists in generating sam-
ples through a Monte Carlo method with uniform weights to ap-
proximate the Dirichlet problem for the Laplacian equation. Given
a query point x, we run the WoS algorithm that simulates a random
walk from x to the cage C in order to generate a boundary sample
point y; which we associate with a weight wy = 1. This Monte-
Carlo-based estimate is performed for a cage thickness (indicating
the tolerance to decide convergence) set to 0.1% of the length of the
diagonal of the cage’s bounding box, and for a maximum number of

steps per random walk set to 20. If a call to WoS does not converge
to a cage location, we just discard this random walk. This simple pro-
cedure provides an approximation of harmonic coordinates [Joshi
et al. 2007] for all query points, with an accuracy in O(1/+/m) for
m calls to WoS. Note that even for thousands of calls, the spatial
smoothness of these estimates is limited, but our denoising removes
the high-frequency noise present in the raw results (Figure 3). It is
also worth pointing out that the WoS-based results are known to
converge to harmonic functions in expectation [Binder and Braver-
man 2012], thus zeroing out the contribution of our RKPM-based
projection gradually as the sample count m increases.

5.2 Mean-Value Coordinates

Our generation of mean-value coordinates builds on the Gordon-
Wixon interpolation scheme [Gordon and Wixom 1974], which was
generalized to non-convex domains by Belyaev [2006]. We comple-
ment this interpolation scheme by proposing a Monte Carlo evalua-
tion that traces rays stochastically from a query point x against the
cage C. More precisely, for the k-th ray test, we choose a random
direction to shoot from x and compute every intersection {yy,}
of this ray against C, which we then sort in ascending distance
di, = |lyk, — x|l from x. We finally create a cage sample for each yy,
with an associated weight wy, = (-1)H*1/ dy, so that intersections
with odd indices have positive weights, while even indices receive
negative weights. When a ray does not intersect the cage, we simply
ignore it. We repeat tracing rays until m samples are collected per
query point, or until m random ray tests are performed, whichever
is reached first. Just like the harmonic coordinates case, our estima-
tions of the mean-value coordinates based on Belyaev [2006] are
then denoised to provide our final barycentric coordinates.

5.3 Positive Mean-Value Coordinates

Positive mean-value coordinates were originally computed by ex-
tracting the visible part of the cage C w.r.t. the query point x and

Harmonic

Undeformed Mean-Value Positive Mean-Value

Fig. 7. Comparing Coordinates: Our formulation is general enough to
provide stochastic evaluations of (quadrangulated) mean-value coordinates
[Ju et al. 2005; Thiery et al. 2018] (left-center), positive mean-value coordi-
nates [Lipman et al. 2007] (right-center), and harmonic coordinates [Joshi
et al. 2007] (right). This example is purposely replicating the test originally
shown in Joshi et al. [2007] illustrating the artifacts caused by negative
mean-value coordinates (here, thinning of the legs), which are resolved by
using either harmonic coordinates or positive mean-value coordinates, both
computed using m=50 and a single denoising step. ©Pixar

Stochastic Computation of Barycentric Coordinates « 42:7

using only this subdomain to evaluate mean-value coordinates [Lip-
man et al. 2007]. However, generating the visible part of a cage for
every query point in 3D is computationally expensive. Here again,
our stochastic construction of coordinates finds another practical
application by, instead, considering these positive coordinates as a
special case of weighted mean-value coordinates via a generalized
Gordon-Wixon interpolation scheme [Belyaev 2006].

The weighted mean-value coordinates are based on the mean-
value kernel multiplied by a weighting function w satisfying the
following condition:

/w(x, y)v(y)dy =0 VxeR?, (12)
C

where v(y) is the direction of a ray emanating from the query x and
passing through the cage point y, i.e., v(y)=(y — x)/|ly — x||. For
example, the weighting for mean-value coordinates used above is
simply w(x, yg,) = (=1)™1, which verifies Eq. (12) due to symmetry.
We can easily adapt our stochastic construction to weighted mean-
value coordinates by still following the procedure described in §5.2,
but now every intersection of a random ray from x towards C is
associated with a sample weight wy, =w(x, yx,)/dx;-

We can thus evaluate positive mean-value coordinates by defining
a weighting function w that accounts for the cage visibility from
a query x while holding Eq. (12). To design this custom weighting
function, we exploit two simple observations about ray intersections
with a closed cage. First, an odd number of intersections along a ray
indicates that the starting point x is inside the cage C, while an even
number signifies that x is outside. Second, the first ray intersection
with a cage is visible from x. Therefore, if the number of intersections
for a random ray is odd, we create a single sample located at the first
hit with an associated weight wy =1/dy, disregarding all further
hits along the ray. Conversely, if the number of intersections is
even, we only create samples for the first two hits using the same
weights as in the mean-value case, that is, the first sample yy, is
given weight wy, =1/dj, , while the second sample yy, is given
weight wy, =—1/dy,. Note that our choice of weights ensures Eq.
(12) for closed cages. Finally, our coordinate denoising allows us not
only to suppress high-frequency noise, but to remove the lack of
smoothness of the original positive mean-value coordinates near
reflex vertices without having to refine the cage (Figure 11).

5.4 Other Coordinates

As discussed by Belyaev [2006], the weighted version of mean-
value coordinates can be used to compute other known types of
barycentric coordinates, such as the Wachspress-Warren coordi-
nates [Warren et al. 2007], and our method can reproduce these
cases by simply adjusting the sample weights. The moving least-
squares coordinates [Manson and Schaefer 2010] is also simple to re-
produce with our scheme, since their formulation corresponds to Eq.
(5) with a non-transfinite kernel of the form x(x,y) = 1/||x — y||?4,
where a > 0 is a user-specific parameter. When the cage is a 2D
polygon, closed-form expressions are available for the moving least-
squares coordinates, but quadrature rules are necessary to compute
the 3D version of these coordinates from triangular cages [Manson
and Schaefer 2010, §7]. Therefore, we can interpret their numeri-
cal approximation as a sampling strategy that generates samples

ACM Trans. Graph., Vol. 43, No. 4, Article 42. Publication date: July 2024.

42:8 « de Goes & Desbun

=
L
=
=
S
]
<
=
=}

Deformed

Fig. 8. Cage Mesh vs. Cage Soup: Our stochastic approach is well suited
for computing barycentric coordinates (here, positive mean-value coordi-
nates) from a cage made of a soup of disconnected polygons (right), produc-
ing results qualitatively similar to those generated from a manifold cage
mesh (left), both using m =50 and one denoising step. Also, notice that our
method can handle non-simply connected cages, as on this torus-like shape.

only once over the entire cage and reuses this sample set for every
input query point. It is also worth noting that the mean-value co-
ordinates as presented by Ju et al. [2005] could be computed using
query-independent samples. To do so, the sample weights should be
set based on the kernel function x(x, y) =n(y)!(y = x)/|ly - x||d+1,
where n(y) is the outward normal at the cage point y. However,
requiring sample normals prohibits some cage discretizations such
as 3D curves, unoriented point clouds, and non-orientable surfaces.

6 RESULTS

We now go over a few implementation details and present a series
of experiments showcasing the accuracy, efficiency, and generality
of our stochastic approach to barycentric coordinates. We also point
the reader to our supplemental video, which provides additional
comparisons and visualizations of our results.

Cage Representation. As discussed in §5, a core component of our
construction is the computation of closest-point projections and ray
intersections against the cage primitive C. In our implementation,
we handle various forms of cage discretization by encoding them
into an axis-aligned bounding volume hierarchy and changing just
the proximity calculation to its atomic elements. For instance, when
using a triangular cage, we evaluate the proximity queries to individ-
ual triangles analytically. For cages made of (possibly non-planar)
quads, we define the shape of each quad as a bilinear patch and com-
pute ray intersections using the algorithm described by Reshetov
[2019], while closest points are found through a custom-made solver
presented in Appendix B. In the case of parametric curves, we con-
vert each curve into a dense polyline and compute the proximity
queries to each line segment. Finally, proximity queries on point
clouds can be performed following Madan and Levin [2022].

ACM Trans. Graph., Vol. 43, No. 4, Article 42. Publication date: July 2024.

Selection of Random Rays. To reduce the number of ray tests with
zero intersections, we restrict the random selection of rays to be
within the visibility cone of the query point x against the bounding
box of the cage C. This is particularly valuable for the stochastic
evaluation of mean-value coordinates and their variants when the
query points are far outside the cage. In the case of cages made of
a sparse network of 3D curves, we adopt a different strategy that
consists in picking first a random point y on the curve network,
then setting the ray direction from the query point x to y, ensuring
that the ray test will produce at least one hit on the cage.

Accuracy. To analyze the accuracy of our method, we compare
our results to a Monte Carlo integration of Eq. (3) that reuses our
stochastically generated weighted samples via

@y (%) = (Y wido(yi)) /(D i) (13)

where the denominator is a normalization term enforcing parti-
tion of unity. For completeness, we also include comparisons to a
smoothed version of Eq. (13) computed by applying our denoising
operator described in §4.4 to each coordinate approximation o}/ (x)
separately (thus losing linear precision), which can be expressed as

@700 = [oty may. (1)

In Figure 3, we use pseudo-colors to display the harmonic coordi-
nates associated with a single cage vertex over a 2D mesh produced
by our method versus Eq. (13) and Eq. (14), followed by error plots
that quantify the difference of these results to a baseline solution
obtained by implementing Joshi et al. [2007]. In this example, our
approach reduced both the maximum and the mean point-wise error

Fig. 9. Different Cages: Our stochastic construction applies even to cages
with multiple components or cages defined by curve networks. When we
compute 2D harmonic coordinates using m=1k and one denoising step for
a cage made of an outer square, an inner circle, and a line, deforming the
outer square and the line keeps the region inside the inner circle unaffected
(top). For a 3D curve-network cage, manipulating the few curves is enough
to induce an intuitive spatial deformation via our stochastic harmonic
coordinates using m=>50 and one denoising step (bottom).

by a factor of 3 before denoising, and by a factor of 10 after denois-
ing despite the use of a high sample count of 10k per query. Note
that approximating harmonic coordinates through Eq. (13) boils
down to the method of Sawhney and Crane [2020] without further
alterations, thus explaining the noise artifacts found in the top-left
image. Figure 11 shows the results for three types of barycentric
coordinates computed on a 2D non-convex cage with two sample
counts, confirming that our results are qualitatively similar to ref-
erence solutions (left column) with error decaying as the number
of samples increases. We also point out that our denoising step
smooths the kinks of the positive mean-value coordinates around
cage concavities, instead of relying on a post-processing subdivision
as proposed by Lipman et al. [2007]. In our supplemental video, we
provide qualitative and quantitative comparisons for our 3D experi-
ments, including statistics for the deformation differences between
our results and baseline solutions. In particular, we observed empir-
ically throughout these 3D tests that m=50 is a reasonable default
in practice, offering efficiency without sacrificing visual quality.

2D Experiments. In Figure 2, we illustrate that the lack of lin-
ear precision caused by naive numerical integration of barycen-
tric coordinates leads to visual artifacts even when reconstructing
the identity map. Figure 6 showcases that our method improves
the estimate of gradient vectors for functions generated through
cage interpolation. In particular, our construction offers a linear
extrapolation of the cage values in contrast to the fading behavior
produced by Sawhney and Crane [2020]. We show in Figure 10
the 2D harmonic coordinates computed on a closed versus open
cage, demonstrating the generality of our approach. At last, Figure
9 (left) exemplifies how our method handles cages with multiple
parts, generating deformations bounded within each cage element
(see the supplemental video for a short animated sequence).

3D Experiments. We discuss next the results produced by our
method on various 3D scenarios, all of them computed using 50
samples per query and a single denoising step. Figure 1 showcases
several poses of a 3D character produced by our stochastic ver-
sion of harmonic coordinates using a quadrangulated cage mesh. In
Figure 7, we reproduce the test originally presented by Joshi et al.
[2007] exemplifying the impact of negative mean-value coordinates
within concave regions. In addition to harmonic coordinates, our
approach confirms that positive mean-value coordinates can also
resolve these deformation artifacts. Similarly, we repeat in Figure 4

Fig. 10. Open Cages: Our stochastic evaluation of barycentric coordinates
applies as is to cages with boundaries. The harmonic coordinates produced
by our method on a closed cage in 2D (left) change dramatically when
the cage is open through the removal of two cage edges (right). Here, we
visualize the before and after coordinates for two control vertices computed
on a mesh with 2.5k points using 1k samples per query.

Stochastic Computation of Barycentric Coordinates + 42:9

Table 1. Timing: Wall clock time in seconds spent by our method to evaluate
and denoise 3D barycentric coordinates using 50 samples per query, all
measured on 3.49 GHz Apple M2 with 8 cores. We also report the coordinate
type, the number of queries, and the number of cage vertices.

Example | Coordinates # Queries | # Verts | Evaluation | Denoising
Fig. 1 harmonic 30.8k 88 2.5 0.4
Fig. 4 harmonic 39k 48 3.2 0.5
Fig. 4 mean-value 39k 48 0.3 0.5
Fig. 5 harmonic 60.8k 8 2.2 0.9
Fig. 7 harmonic 11k 138 1.1 0.4
Fig. 7 mean-value 11k 138 0.1 0.4
Fig. 7 pos. mean-value 11k 138 0.1 0.4
Fig. 8 pos. mean-value 5k 98 0.1 0.2
Fig. 9 harmonic 8k 145 0.8 0.2

the test originally performed by Thiery et al. [2018] exhibiting the
artifacts caused by an asymmetric triangular cage versus the sym-
metric results obtained from a quadrangulated cage. Observe that
our technique enables the usage of quad cages for both harmonic
and mean-value coordinates. In Figure 5, we show that the original
implementation of harmonic coordinates [Joshi et al. 2007] can lead
to visual defects when the resolution of the volumetric discretiza-
tion is not sufficient to capture the details of the query geometry.
This is in sharp contrast to our approach which evaluates harmonic
coordinates directly at the points of interest, without the need for a
volumetric discretization. Figure 8 demonstrates that our method
produces similar deformations for a non-simply connected surface
driven either by a manifold mesh or by a polygon soup. Finally,
Figure 9 (right) illustrates a harmonic deformation generated by a
sparse network of 3D curves.

Performance. We implemented our technique as a C++ plugin
to Houdini [Side Effects 2024] with query-based evaluations multi-
threaded via Intel TBB [Reinders 2007]. Table 1 presents timings of
our prototype for all 3D experiments clocked on a 3.49 GHz Apple
M2 with 8 cores. In our supplemental video, we also report the
performance of our method using m=50, 500, and 5000 followed by
one denoising step for the meshes from Figure 1, which reveals a
linear growth of the computational cost as the number of samples
increases. In general, we observed that computing harmonic coor-
dinates is more costly than any of the variants of the mean-value
coordinates, since the former generates one sample through mul-
tiple closest-point projections, versus a single ray test per sample
for the latter. This cost discrepancy can be reduced by tweaking the
parameters of WoS algorithm that control the termination of each
random walk, thus invoking fewer closest-point calls. Still, comput-
ing harmonic coordinates with our method is more efficient than
Joshi et al. [2007], producing barycentric coordinates for queries
both inside and outside the cage without spending time and memory
on calculating and storing the harmonic coordinates on a volumetric
mesh. For instance, our own implementation of Joshi et al. [2007] is
over ten times slower than our stochastic evaluation of harmonic
coordinates for the example shown in Figure 1, while producing
visually similar deformations (see supplemental video). Profiling the

ACM Trans. Graph., Vol. 43, No. 4, Article 42. Publication date: July 2024.

42:10 « de Goes & Desbun

execution of our implementation of the original harmonic coordi-
nates shows that 90% of the cost is due to the coordinate solve on the
volumetric mesh, which we generated using Houdini’s tetrahedral
meshing tool for a resolution set to three times the mean edge length
of the deforming meshes. We also measured the performance of our
technique for every model provided by Thiery et al. [2018], which
took less than 1 ms per query. While our timings are comparable to
those reported by Thiery et al. [2018] and slower than evaluating the
analytical expressions presented by Ju et al. [2005] and Floater et al.
[2005], only our approach is able to support non-watertight cages,
incorporate positive mean-value coordinates, and estimate gradient
vectors at no extra cost. Therefore, our construction can be seen as
a more practical approach that unifies the generation of different
types of barycentric coordinates to various cage discretizations and
evaluated at arbitrary locations, at the expense of approximated
yet visually plausible results. Since all the pieces of our method are
parallelizable, we believe further performance improvements can
be achieved by implementing our algorithm directly on the GPU.
Finally, we point out that our approach is most advantageous in
3D, since 2D coordinates are often analytical or just involve a linear
solve with a computational cost similar to our denoising step.

7 CONCLUSION

We have introduced a stochastic approach for the construction of
barycentric coordinates, where the usual kernel integral formulation
of barycentric coordinates is turned into a weighted least-squares
minimization, thus enabling numerical integration that preserves
linear precision. Our contribution offers a unified evaluation method
to barycentric coordinates for cages as varied as polygon soups, open
meshes, or curve networks. Repeated ray intersections against the
cage or Walk-on-Sphere runs over the cage are all that is needed to
provide the resulting linear-precise coordinates. To resolve the noise
caused by stochastic sampling, we also devised a denoising strat-
egy that can filter each vertex-based coordinate separately while
retaining their core properties. Moreover, our method supports the
computation of barycentric coordinates and their gradients for both
inside and outside query points, and for any kernel function. We
demonstrated the efficiency and flexibility of our method by ap-
proximating key known coordinates, namely, harmonic coordinates,
mean-value coordinates, and positive mean-value coordinates.

As future work, it would be interesting to extend our RKPM-
based formulation to non-interpolatory methods, such as Green
coordinates [Lipman et al. 2008] or Somigliana coordinates [Chen
et al. 2023], but this may need new sampling strategies. Since our
approach provides gradient estimates, we could also exploit our
construction to evaluate deformation gradients and compute shape
deformations based on distortion minimization, similar to [Ben-
Chen et al. 2009]. Another interesting direction would be to design
new types of barycentric coordinates by either projecting custom
kernels onto the space of transfinite barycentric kernels, or as a way
to incorporate additional application-specific features. Adapting
variance reduction techniques (see, e.g., [Sawhney and Crane 2020,
§4.1]) to barycentric coordinates is also desirable in order to control
the coordinate accuracy as a function of the number of samples.
Finally, our method is well suited to compute free-form deformations

ACM Trans. Graph., Vol. 43, No. 4, Article 42. Publication date: July 2024.

driven by implicit functions using recent advances on proximity
queries for implicit representations [Sharp and Jacobson 2022].

ACKNOWLEDGMENTS

We are grateful to William Sheffler and Michael Nieves for modeling
the cage meshes used in Figures 1 and 7 respectively, and to Andrew
Butts and Mark Meyer for feedback. We also thank Thiery et al.
[2018] for sharing their code and the 3D models used in Figures 4
and 5 (FireHydrant and SpikyBox). The 3D model used in Figure 8
is courtesy of Keenan Crane. Finally, MD acknowledges the support
of Ansys, Adobe Research, and the MediTwin consortium, as well
as a Choose France Inria chair.

REFERENCES

Alexander Belyaev. 2006. On Transfinite Barycentric Coordinates. In Symposium on
Geometry Processing. https://doi.org/10.2312/SGP/SGP06/089-099

Mirela Ben-Chen, Ofir Weber, and Craig Gotsman. 2009. Variational Harmonic Maps
for Space Deformation. ACM Trans. Graph. 28, 3, Article 34 (2009).

Ilia Binder and Mark Braverman. 2012. The rate of convergence of the Walk on
Spheres Algorithm. Geometric and Functional Analysis 22 (aug 2012), 558-587.
https://doi.org/10.1007/s00039-012-0161-z

Max Budninskiy, Beibei Liu, Yiying Tong, and Mathieu Desbrun. 2016. Power Coordi-
nates: A Geometric Construction of Barycentric Coordinates on Convex Polytopes.
ACM Trans. Graph. 35, 6, Article 241 (2016).

Qingjun Chang, Chongyang Deng, and Kai Hormann. 2023. Maximum likelihood
coordinates. Computer Graphics Forum 42, 5 (Aug. 2023), Article e14908, 13 pages.
Proceedings of SGP.

Jiong Chen, Fernando De Goes, and Mathieu Desbrun. 2023. Somigliana Coordinates: An
Elasticity-Derived Approach for Cage Deformation. In ACM SIGGRAPH Conference
Proceedings. Article 52, 8 pages. https://doi.org/10.1145/3588432.3591519

Xiao-Song Chen, Chen-Feng Li, Geng-Chen Cao, Yun-Tao Jiang, and Shi-Min Hu.
2020. A Moving Least Square Reproducing Kernel Particle Method for Unified
Multiphase Continuum Simulation. ACM Trans. Graph. 39, 6, Article 176 (nov 2020).
https://doi.org/10.1145/3414685.3417809

Fernando de Goes, Andrew Butts, and Mathieu Desbrun. 2020. Discrete Differential
Operators on Polygonal Meshes. ACM Trans. Graph. 39, 4, Article 110 (aug 2020).

Mathieu Desbrun, Mark Meyer, Peter Schroder, and Alan H. Barr. 1999. Implicit Fairing
of Irregular Meshes Using Diffusion and Curvature Flow. In Proceedings of the
26th Annual Conference on Computer Graphics and Interactive Techniques. 317-324.
https://doi.org/10.1145/311535.311576

Ana Dodik, Oded Stein, Vincent Sitzmann, and Justin Solomon. 2023. Variational
Barycentric Coordinates. ACM Trans. Graph. 42, 6, Article 255 (2023), 16 pages.
https://doi.org/10.1145/3618403

Michael S. Floater. 2003. Mean Value Coordinates. Comput. Aided Geom. Design 20, 1
(2003), 19-27.

Michael S. Floater. 2015. Generalized barycentric coordinates and applications. Acta
Numerica 24 (2015), 161-214.

Michael S. Floater, Kai Hormann, and Géza Kos. 2006. A general construction of barycen-
tric coordinates over convex polygons. Advances in Computational Mathematics 24
(2006), 311-331. https://doi.org/10.1007/s10444-004-7611-6

Michael S. Floater, Géza Kos, and Martin Reimers. 2005. Mean value coordinates in 3D.
Computer Aided Geometric Design 22, 7 (2005), 623-631. https://doi.org/10.1016/j.
cagd.2005.06.004

Thomas-Peter Fries and Hermann G. Matthies. 2004. Classification and Overview of
Meshfree Methods. Informatik-Berichte der Technischen Universitit Braunschweig
2003-03 (2004). https://doi.org/10.24355/dbbs.084-200511080100-465

William J. Gordon and James A. Wixom. 1974. Pseudo-Harmonic Interpolation on
Convex Domains. SIAM J. Numer. Anal. 11, 5 (1974), 909-933. https://doi.org/10.
1137/0711072

Kai Hormann and Michael S. Floater. 2006. Mean Value Coordinates for Arbitrary
Planar Polygons. ACM Trans. Graph. 25, 4 (oct 2006), 1424-1441. https://doi.org/10.
1145/1183287.1183295

Kai Hormann and N. Sukumar. 2008. Maximum Entropy Coordinates for Arbitrary
Polytopes. In Symp. Geo. Proc. 1513-1520.

Kai Hormann and N. Sukumar. 2017. Generalized barycentric coordinates in computer
graphics and computational mechanics. CRC press.

Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Har-
monic Coordinates for Character Articulation. ACM Trans. Graph. 26, 3, Article 71
(2007). https://doi.org/10.1145/1276377.1276466

Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean Value Coordinates for Closed
Triangular Meshes. ACM Trans. Graph. 24, 3 (jul 2005), 561-566. https://doi.org/10.

https://doi.org/10.2312/SGP/SGP06/089-099
https://doi.org/10.1007/s00039-012-0161-z
https://doi.org/10.1145/3588432.3591519
https://doi.org/10.1145/3414685.3417809
https://doi.org/10.1145/311535.311576
https://doi.org/10.1145/3618403
https://doi.org/10.1007/s10444-004-7611-6
https://doi.org/10.1016/j.cagd.2005.06.004
https://doi.org/10.1016/j.cagd.2005.06.004
https://doi.org/10.24355/dbbs.084-200511080100-465
https://doi.org/10.1137/0711072
https://doi.org/10.1137/0711072
https://doi.org/10.1145/1183287.1183295
https://doi.org/10.1145/1183287.1183295
https://doi.org/10.1145/1276377.1276466
https://doi.org/10.1145/1073204.1073229
https://doi.org/10.1145/1073204.1073229

Stochastic Computation of Barycentric Coordinates « 42:11

00 samples / query

Harmonic

Mean-Value

Positive Mean-Value

Baseline Eq. (11) Eq.(10) Eq.(13) Eq. (11) Eq. (10) Eq.(13)

Fig. 11. Gallery: We use pseudo-colors to showcase the barycentric coordinates for two control vertices generated by our stochastic method on 3k queries
inside a non-convex cage in 2D. The two top rows display our results for harmonic coordinates, while the center and bottom rows present results for mean-value
coordinates and positive mean-value coordinates, respectively. For each row, we compare a reference solution (left) versus our results computed using 1k
samples per query (middle) and 100 samples per query (right). Additionally, for each number of samples per query, we include our denoised coordinates
produced by Eq. (11), our linear-precise evaluation defined by Eq. (10), and a raw Monte Carlo approximation computed via Eq.(13). Note that our denoised
coordinates are visually similar to the baselines, even when computed with a small sample count per query, while the largest point-wise error is concentrated

near the reflex control vertex, especially in the case of positive mean-value coordinates.

1145/1073204.1073229 Yaron Lipman, David Levin, and Daniel Cohen-Or. 2008. Green Coordinates. ACM

David Levin. 1998. The approximation power of moving least-squares. Math. Comp. 67, Trans. Graph. 27, 3 (2008), 1-10.
224 (oct 1998), 1517-1531. https://doi.org/10.1090/S0025-5718-98-00974-0 Wing-Kam Liu, Sukky Jun, and Yifei Zhang. 1995. Reproducing kernel particle methods.
Yaron Lipman, Johannes Kopf, Daniel Cohen-Or, and David Levin. 2007. GPU-assisted Int. J. Num. Meth. Fluids 20, 8-9 (1995), 1081-1106. https://doi.org/10.1002/fld.
Positive Mean Value Coordinates for Mesh Deformations. In Symposium on Geometry 1650200824
Processing.

ACM Trans. Graph., Vol. 43, No. 4, Article 42. Publication date: July 2024.

https://doi.org/10.1145/1073204.1073229
https://doi.org/10.1145/1073204.1073229
https://doi.org/10.1090/S0025-5718-98-00974-0
https://doi.org/10.1002/fld.1650200824
https://doi.org/10.1002/fld.1650200824

42:12 « de Goes & Desbun

Wing-Kam Liu, Shaofan Li, and Ted Belytschko. 1997. Moving least-square reproducing
kernel methods (I) Methodology and convergence. Computer Methods in Applied
Mechanics and Engineering 143, 1 (1997), 113-154.

Abhishek Madan and David I. W. Levin. 2022. Fast Evaluation of Smooth Distance
Constraints on Co-Dimensional Geometry. ACM Trans. Graph. 41, 4, Article 68 (jul
2022), 17 pages. https://doi.org/10.1145/3528223.3530093

Josiah Manson and Scott Schaefer. 2010. Moving Least Squares Coordinates. Computer
Graphics Forum 29, 5 (2010), 1517-1524. https://doi.org/10.1111/j.1467-8659.2010.
01760.x

Sebastian Martin, Peter Kaufmann, Mario Botsch, Martin Wicke, and Markus Gross.
2008. Polyhedral Finite Elements Using Harmonic Basis Functions. Computer
Graphics Forum 27, 5 (2008), 1521-1529.

Mark Meyer, Alan Barr, Haeyoung Lee, and Mathieu Desbrun. 2002. Generalized
Barycentric Coordinates on Irregular Polygons. J. Graph. Tools 7, 1 (2002), 13-22.

Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. 2023. Boundary
Value Caching for Walk on Spheres. ACM Trans. Graph. 42, 4 (2023).

August Ferdinand Mobius. 1827. Der Barycentrische Calcul : ein neues Hiilfsmittel zur
analytischen Behandlung der Geometrie. Leipzig, Verlag von Johann Ambrosius
Barth.

Mervin E. Muller. 1956. Some Continuous Monte Carlo Methods for the Dirichlet
Problem. The Annals of Mathematical Statistics 27, 3 (1956), 569-589. https://doi.
org/10.1214/aoms/1177728169

James Reinders. 2007. Intel Threading Building Blocks. O’Reilly & Associates, Inc.

Alexander Reshetov. 2019. Cool Patches: A Geometric Approach to Ray/Bilinear Patch
Intersections. 95-109 pages.

Rohan Sawhney and Keenan Crane. 2020. Monte Carlo Geometry Processing: A Grid-
Free Approach to PDE-Based Methods on Volumetric Domains. ACM Trans. Graph.
39, 4 (2020).

Nicholas Sharp and Keenan Crane. 2020. A Laplacian for Nonmanifold Triangle Meshes.
Computer Graphics Forum (SGP) 39, 5 (2020).

Nicholas Sharp and Alec Jacobson. 2022. Spelunking the Deep: Guaranteed Queries
on General Neural Implicit Surfaces via Range Analysis. ACM Trans. Graph. 41, 4,
Article 107 (jul 2022), 16 pages.

Side Effects. 2024. Houdini Engine. http://www.sidefx.com.

Ryusuke Sugimoto, Terry Chen, Yiti Jiang, Christopher Batty, and Toshiya Hachisuka.
2023. A Practical Walk-on-Boundary Method for Boundary Value Problems. ACM
Trans. Graph. 42, 4, Article 81 (jul 2023), 16 pages. https://doi.org/10.1145/3592109

Jean-Marc Thiery and Tamy Boubekeur. 2022. Green Coordinates for Triquad Cages in
3D. In SIGGRAPH Asia Conference Papers. Article 38.

Jean-Marc Thiery, Pooran Memari, and Tamy Boubekeur. 2018. Mean Value Coordinates
for Quad Cages in 3D. ACM Trans. Graph. 37, 6, Article 229 (2018).

Joe Warren, Scott Schaefer, Anil Hirani, and Mathieu Desbrun. 2007. Barycentric
Coordinates for Convex Sets. Adv. Comput. Math. 27, 3 (2007), 319-338.

Ofir Weber. 2017. Planar Shape Deformation. In Generalized Barycentric Coordinates in
Computer Graphics and Computational Mechanics, Kai Hormann and N. Sukumar
(Eds.). CRC Press, Chapter 7, 109-133.

Ofir Weber, Mirela Ben-Chen, and Craig Gotsman. 2009. Complex Barycentric Coordi-
nates with Applications to Planar Shape Deformation. Comput. Graph. Forum 28, 2
(2009).

Ofir Weber and Craig Gotsman. 2010. Controllable Conformal Maps for Shape Defor-
mation and Interpolation. In ACM SIGGRAPH Proceedings. Article 78.

Lukas Westhofen, Stefan Jeske, and Jan Bender. 2023. A Comparison of Linear Consistent
Correction Methods for First-Order SPH Derivatives. Proc. ACM Comput. Graph.
Interact. Tech. 6, 3, Article 48 (2023), 20 pages.

Zhipei Yan and Scott Schaefer. 2019. A Family of Barycentric Coordinates for Co-
Dimension 1 Manifolds with Simplicial Facets. Computer Graphics Forum 38, 5
(2019), 75-83. https://doi.org/10.1111/cgf.13790

Juyong Zhang, Bailin Deng, Zishun Liu, Giuseppe Patané, Sofien Bouaziz, Kai Hormann,
and Ligang Liu. 2014. Local Barycentric Coordinates. ACM Trans. Graph. 33, 6,
Article 188 (nov 2014), 12 pages. https://doi.org/10.1145/2661229.2661255

A RKPM-CORRECTED COORDINATES

In this section, we provide additional insights on our approach
described in §4 by starting from the minimization in Eq. (5) and
without ever discretizing the integrals involving the kernel func-
tion. This continuous counterpart of our derivation offers a better
understanding of why our novel means to evaluate barycentric
coordinates is in fact a projection onto linear-precise coordinates.
Moreover, we present a closed-form expression for the resulting
coordinates without using homogeneous coordinates in order to
reveal how the projection ensuring linear precision is achieved.

ACM Trans. Graph., Vol. 43, No. 4, Article 42. Publication date: July 2024.

Continuous derivation. Since the variation of the functional in
Eq. (5) w.r.t. u is fc k(% y) y(uly—¢,(y)) dy, the vector u,(x) that
minimizes Eq. (5) also takes the form uy(x) = M(x) ~'m,(x), but
now with the vertex-based vector m,(x) written as

mo() = [kxy) do(y)ydy
and the the second-order moment matrix M(x) defined as
M(x) = /C k(xy)yy'dy.

Observe that these expressions are clearly continuous versions of
Egs. (8) and (9), respectively.

Linear precision. Just like in the discretized version presented in
§4.3, one can easily prove the following property for the vertex-
based vectors {uy(x)} for any query point x not lying on C:

D ue(xh = M(x) ! (ZU /C k(% Y)po(y) y X, dy)
t
= M(x)_1 /C k(X y)y (ZU ¢U(y)xv) dy
=M™ / k(xy)yy'dy =1
C
By expressing our coordinate functions in terms of the vector u, as

defined by Eq. (6), the final proof of linear precision for the resulting
coordinates is then straightforward:

Zv Ap(X)Xy = ZU Xo(Up(x)'x) = (Zv uy(x) xf,)t X=X

RKPM-based correction. To further detail how our approach cor-
rects coordinate functions that are not linear-precise, we introduce
the definition of the first three kernel-based moment terms:

Y00 = /C K(x, y)dy,

1

c(x) = m/CK(X’Y)YdY’

Cky= / k(xy) Ly = <001 Ly = (" dy
yx) Je ’

With these terms, we can expand the matrix M(x) into

C(x) +c(x)c(x)! c(x)

M(x) =y(x)
c(x)? 1
Its inverse matrix is thus:
1 C(x)! -C(x)te(x)

M(x)'= —

Y | —c(x)!C(x)™! 1+c(x)!C(x) " Le(x)

We can also rewrite the vector my(x) as ay(x)[ay(x); 1], which uses
ay(x) given by Eq. (3) and defines the d-sized vertex-based vector

ay(x) = %(X)'/(;K(X, y)po(x) ydy.

Finally, the continuous version of our barycentric coordinate @y (x)
for the cage vertex v defined by Eq. (6) can be expanded from the

https://doi.org/10.1145/3528223.3530093
https://doi.org/10.1111/j.1467-8659.2010.01760.x
https://doi.org/10.1111/j.1467-8659.2010.01760.x
https://doi.org/10.1214/aoms/1177728169
https://doi.org/10.1214/aoms/1177728169
https://doi.org/10.1145/3592109
https://doi.org/10.1111/cgf.13790
https://doi.org/10.1145/2661229.2661255

possibly-flawed coordinate function &, (x) into

%o (X) (1+ [20(x) = c(x)]* C(x) ™ [X—C(X)])~ (15)
y(%)

Given that the term a,(x)/y(x) simply corresponds to normalized
coordinates derived from the kernel function, we thus confirm that
our approach adds a correction to the kernel integral that enforces
linear precision. Note that, if the kernel is a transfinite function,
then y(x) =1 and c(x) = x, implying that @, (x) = ay(x). Our cor-
rection thus represents a projection to linear-precise coordinates.
Consequently, our formulation can be used to return linear-precise
coordinates from coordinate functions of an arbitrary kernel that
may not be linear-precise, or to resolve numerical artifacts intro-
duced by a numerical approximation of the kernel integration.

ay(x) =

B CLOSEST POINT TO A BILINEAR PATCH

We denote the corners of a (possibly non-planar) quadrilateral ele-
ment by the 3D points {qo, q1, q2, q3 } sorted counter-clockwise. We
then define the bilinear interpolation within the quad parametrized

Stochastic Computation of Barycentric Coordinates « 42:13

by the values 0 < u,0 < 1as

q(u,0) = (1-0) [(1 - u)qo +uqi] +ov [(1-u)q3 +uqz].
Given a query point x, our goal is to compute the parameters (u,)
that minimizes ||q(u, v) — x||2. The optimal parameters can be com-
puted analytically in the special case of planar quads, as described
by Floater [2015, Theorem 1]. For non-planar quads, one approach
to find these parameters is through the smooth projection presented
by Thiery et al. [2018, Algorithm 1]. We instead propose an alter-
native algorithm that uses just projections to line segments. We
initialize (u,v) by finding the closest point to x along the boundary
of the quad, which amounts to computing the closest point to four
line segments. We then refine this initial guess by alternating the
update of each parameter u and v. Consider w.l.o.g. that the last iter-
ation updated the parameter %, we then optimize the parameter v by
computing the closest point to the line segment q(%, v) defined by
fixing u. We repeat these alternating steps until no more progress is
made. In our tests, this procedure converges after 5 to 10 iterations.

ACM Trans. Graph., Vol. 43, No. 4, Article 42. Publication date: July 2024.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Reformulating Barycentric Coordinates
	4.1 Rationale
	4.2 Barycentric Coordinates through RKPM
	4.3 Numerical Evaluation
	4.4 Denoising
	4.5 Discussion

	5 Examples
	5.1 Harmonic Coordinates
	5.2 Mean-Value Coordinates
	5.3 Positive Mean-Value Coordinates
	5.4 Other Coordinates

	6 Results
	7 Conclusion
	Acknowledgments
	References
	A RKPM-corrected Coordinates
	B Closest Point to a Bilinear Patch

