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Abstract

Many renderers perform poorly on scenes that contain a lot of de-
tailed geometry. The load on the renderer can be alleviated by sim-
plification techniques, which create less expensive representations
of geometry that is small on the screen. Current simplification tech-
niques for high-quality surface-based rendering tend to work best
with element detail (i.e., detail due to the complexity of individ-
ual elements) but not as well with aggregate detail (i.e., detail due
to the large number of elements). To address this latter type of de-
tail, we introduce a stochastic technique related to some approaches
used for point-based renderers. Scenes are rendered by randomly
selecting a subset of the geometric elements and altering those ele-
ments statistically to preserve the overall appearance of the scene.
The amount of simplification can depend on a number of factors,
including screen size, motion blur, and depth of field.

I.3.7 [Three-Dimensional Graphics and Realism]: Animation—
Simplification

Keywords: Level of detail, stochastic sampling, simplification.

1 Introduction

Geometrically detailed scenes can overwhelm a renderer, in-
creasing its memory requirements and severely degrading its
performance. Usually, though, much of the detail is too small to be
represented at the resolution of the rendered image, so that a version
of the scene without this unrenderable detail can be substituted
without perceptibly changing the image. Reducing detail manually
[Crow 1982] can be prohibitively labor-intensive, so automatic
simplification techniques are crucial for the efficient rendering of
complex scenes.

Scenes can be complex because of element detail or aggregate
detail. Element detail comes from having geometric elements
that individually contain a lot of detail; aggregate detail comes
from having a lot of elements, even if the individual elements
are very simple. Existing simplification techniques have been
mostly designed for element detail, but aggregate detail is becoming
more prevalent as more procedurally generated models are used in
animation and special effects. Consider for example the landscape
in Figure 3, which is filled with plants like the one in Figure 1
stretching from the near distance to the far horizon. This scene
contains over a hundred million leaves, and the unsimplified version
is unrenderable with the RenderMan program.

Figure 1: A plant with 320,000 leaves.

(a) (b) (c) (d)
Figure 2: Distant views of the plant from Figure 1 with close-ups
below: (a) unsimplified, (b) with 90% of its leaves excluded, (c)
with area correction, (d) with area and contrast correction.

The types of simplification techniques most relevant for film
production are surface-filtering methods (such as mesh simplifi-
cation), which create low-resolution geometry, and texture-based
methods (such as impostors and volume textures), which create
pixel arrays. For scenes like the one in Figure 3, we found
that mesh simplification didn’t help since the individual elements
were already extremely simple. Impostors didn’t help because
the camera’s point of view was changing and the models were
animated. Volume texture approaches didn’t help because the
amount of detail required in the foreground made the storage
requirements prohibitive.

It was scenes like this that led us to develop a new approach to
simplification that can handle large numbers of small geometric
elements. The new technique renders a scene using a randomly
selected subset of the elements, altering them statistically to
preserve the overall appearance of the scene. This is neither
a surface-filtering method nor a texture-based method; it is a
stochastic method. Stochastic methods have previously been used
mainly for point-based rendering.

2 Previous Work

There is a large body of level-of-detail research with many
techniques for creating simplified versions of a scene (see [Garland
1999] and [Luebke et al. 2002] for good surveys). This section
briefly reviews a few representative techniques with an emphasis



Figure 3: A scene renderered with stochastic simplification that was unrenderable in RenderMan without simplification.

on how they perform with aggregate detail. The types of
techniques include adaptive generation, surface filtering, textures,
and stochastic simplification.

Adaptive-generation methods are integrated into the model
creation process and adjust the number of elements generated
based on screen size. Simple models can be generated at render
time [Reeves 1983], but complex models are more expensive to
generate so they are usually pre-computed [Prusinkiewicz et al.
1994]; simplification involves pre-computing the model at a
few different detail levels. Some very impressive images have
been made using approximate instancing and combining rendered
subscenes [Deussen et al. 1998]. These methods do well with
aggregate detail, but their applicability is limited because they are
integrated into specific model generation algorithms, whereas other
methods operate on the resulting generated elements and are thus
independent of the modeling algorithm. Moreover, many model
generation algorithms are complex, and integrated level-of-detail
calculations can make them even more complicated.

Surface-filtering methods create lower-resolution geometric ver-
sions of pre-generated objects. Most of the research in this area
has focused on creating simplified surface representations; exam-
ples include progressive meshes ([Hoppe 1996]), multiresolution
methods ([Lounsbery et al. 1997]), and simplification envelopes
([Cohen et al. 1996]). Some methods (such as [Luebke and Erikson
1997] and [Garland and Heckbert 1997]) are able to merge disjoint
surfaces. [Erikson and Manocha 1999] uses error metrics stored in
point clouds to preserve area and surface attributes as vertices are
removed. Recent work by [Yoon et al. 2006] uses PCA analysis to
compute a plane that approximates the triangles in each region of
space and stores these planes and the average local surface attributes
in a k-d tree for use in ray tracing.

Texture-based methods represent the simplified geometry using
2D or 3D textures. In general, they are able to handle aggregate
detail better than surface-filtering methods. 2D methods such as
impostors [Schaufler and Stürzlinger 1996], textured depth meshes
[Wilson and Manocha 2003], and billboard clouds [Décoret et al.
2003] [Lacewell et al. 2006] work well in many situations, but their
2D nature can become evident if the camera is moving. This can be
ameliorated by blending between multiple textures with different
resolutions and different view angles, but this increases memory
requirements and can still have artifacts. Moreover, our plants are
procedurally animated so that every leaf is moving differently in
every frame; this would require having a different texture per frame,
which would be prohibitively expensive.

We found volume texture methods such as [Neyret 1998] to be more
promising because they are not view dependent. Unfortunately, our
detail and resolution requirements make the storage requirements
prohibitive. To illustrate the magnitude of the problem, figure 17
in [Neyret 1998] uses an 18 MB low-resolution reference volume
(2563 voxels) to render a low-resolution image (768x512 pixels,
1 sample per pixel). A high-quality, high-resolution rendering
that included objects close up on the screen would require several
gigabytes. We got the best results with brick maps [Christensen
and Batali 2004], but even with this sparse octree representation
of volume textures the image quality was nowhere near acceptable
even with the largest practical textures. Furthermore, although
limited animation can be done by deforming a single reference
volume ([Neyret 1995]), complex procedural animation requires
multiple reference volumes, making the storage requirements even
greater.

Stochastic simplification methods have mainly been used for
point-based renderers. These renderers use a cloud of surface
sample points which are rendered as simple primitives such as
splats [Rusinkiewicz and Levoy 2000]. The density and splat size
of the sample points depends on the amount of detail required; the
sample points can be pre-computed and stored in a multi-resolution
tree structure. [Dachsbacher et al. 2003] stored the sample point
hierarchy in a sequential list. [Stamminger and Drettakis 2001]
used an object-space hierarchy and generated the sample points
adaptively based on screen size. [Wand et al. 2001] placed
the sample points at randomly selected locations on the surface,
and [Wand and Straßer 2002] used stratified sampling to build a
point hierarchy from animation keyframes. [Deussen et al. 2002]
used stratified sampling to determine the point sample locations.
[Gobbetti and Marton 2004] created a multi-resolution hierarchy
for unstructured point samples by randomly selecting uniformly
distributed samples for each level of the hierarchy. [Kalaiah
and Varshney 2003] used PCA analysis to extract a statistical
model from a dense set of input points and used that model to
stochastically generate the sample points. These methods can
preserve area by adjusting the size of the splats used to render the
points. [Pfister et al. 2000] [Wand and Straßer 2002] were able to
preserve contrast by pre-filtering.

[Klein et al. 2002] used a stochastic approach to simplifying
polygonal scenes by rendering a random subset of the scene
elements. Their method is designed for interactive walkthroughs,
however, and is inappropriate for high-quality rendering because
it does not alter the elements in the subset, and as a result it does
not preserve area or contrast. [Deussen et al. 2002] simplified line



a element surface area
B bounding box size of the object in pixels
b B scaled so simplification begins at b = 1
c color of an element
D depth complexity of the object
h value of b at which λ = 1/2

k number of elements sampled per pixel
N number of elements in the object
r ratio of a to V
s area scaling correction factor
t size of transition region for fading out excluded elements
V visible area of the object
x position of an element in the rendering priority order
α scaling factor used in variance reduction
λ level of detail, fraction of elements to be included
σ2 variance

Figure 4: Some symbols used in this paper

renderings by randomly reordering the lines, storing them in a list,
reading just the first part of the list, and correcting the width of the
rendered lines to preserve the overall projected area. This approach
is similar to ours.

3 The Algorithm

Previous high-quality level-of-detail techniques for surface render-
ers determine the properties of the simplified representation by
averaging the properties of neighboring elements in the original
model. Surface-filtering methods use these averages to create less
detailed geometric representations; texture-based methods use them
to create arrays of pixels or voxels.

Our approach does not rely on averaging neighboring elements;
instead, the simplified model is a randomly selected subset of the
original elements. The properties of the selected elements are
modified so that the statistical properties of the scene are preserved.
Each selected element is modified independently of its neighbors.

The disadvantage of this independence is that the simplification
is not as locally accurate because it ignores local variations that
other algorithms can consider, including geometric properties like
the local error of the simplified surface [Hoppe 1998] or local
perceptual factors like whether the element is on a silhouette
[Luebke and Hallen 2001] [Williams et al. 2003] (though there
might be ways to partially account for local factors, as discussed
in Section 5.) The advantage is that the performance scales well
and the memory requirements are modest.

There are 5 aspects to making this approach work; each is discussed
in detail below.

1. Detail level. Determining how many elements to exclude.
2. Rendering priority. Determining the order in which ele-

ments are excluded.
3. Area preservation. Altering the size of the included elements

so the area of the object does not change.
4. Contrast preservation. Altering the shading of the included

elements so the contrast of the image does not change.
5. Smooth animation. Making the excluded elements fade out

instead of disappear abruptly.

3.1 Detail Level

For each rendered object, we need to determine the fraction of
the elements to include during rendering. We call this the level-
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Figure 5: λ as a function of b for a few different values of h. Half
of the elements are used (i.e., λ = 1/2) at b = h.

of-detail parameter λ . Many factors can be considered when
determining λ ; in this section, we only consider size and blur and
ignore other possible factors such as contrast. We assume that λ is
the product of these factors:

λ = λsizeλblur (1)

Because more elements can be excluded as the object covers fewer
pixels, λsize depends on B, the size of the bounding box of the
object in pixels. We control λsize with two parameters: a bounding
box size B0 at which simplification begins and a bounding box
size hB0 at which half of the elements should be excluded (i.e., at
which λsize = 1/2), which provides control over how aggressively to
simplify as the object gets smaller. B0 should be where the shapes
of individual elements are no longer discernible, usually when they
are about the size of a pixel, but it also depends on the desired image
quality. If we let b = B/B0, then for b < 1 we set

λsize = blogh(1/2) (2)

Note that for h = 1/2, this becomes λsize = b and the average number
of included elements per pixel is constant. h should never be greater
than 1/2 because λsize would decrease faster than b; this would mean
using fewer elements per pixel as the object got smaller, and in
order to preserve the overall object area those elements would have
to get larger on the screen as the object got smaller.

We can also simplify more in regions that are blurred; this type of
simplification is important since motion-blurred and out-of-focus
elements are very expensive to render. The amount of simplification
should depend on the amount of blur relative to the element size.
We do not have a precise model for how λblur should change with
the amount of blur, but we can use a formula similar to Equation 2,
using blur amounts in place of b and h. Fortunately the exact
formula is not critical.

3.2 Rendering Priority

To avoid artifacts during animation, the elements must be excluded
in a consistent order. This rendering priority order should not
be correlated with geometric position, size, surface normal, color,
or other characteristics (e.g., excluding elements from top to
bottom would be objectionable). Some objects are constructed in
such a way that the rendering priority order can be determined
procedurally, but we have found it more general and useful to
determine the order stochastically. A simple technique is to assign
a random number to each element, then sort the elements by their
random numbers. This is usually sufficient in practice. Poisson disk
sampling or stratified sampling can be used to ensure that similar
elements (geometrically close, with similar normals, etc.) are not
close to each other in the rendering priority order; this spreads
out the visual effects of simplification during animation and allows
somewhat more aggressive simplification.

When N, the number of elements in the object, is large, the time
spent doing even trivial rejects can be significant, so it is important
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Figure 7: For smaller values of λ , more elements are excluded,
and the included elements are enlarged more. In (a), elements are
excluded abruptly; in (b) the exclusion is gradual.

that the excluded elements are never even referenced. This can
be done by storing the elements in a file in priority order, so that
only the first λN elements in the file need to be read at rendering
time (Figure 6). This file can be created as a post-process to any
modeling process. This works especially well in a film production
environment, where it is common to use a variety of specialized
modelers and scenes are often built up using random geometric
variations of a small number of pre-built topologies.

3.3 Area preservation

We preserve area in a manner related to [Deussen et al. 2002].
The total area of the object is Na, where a is the average surface
area of the individual elements. Excluding elements decreases the
total area to λNa; to compensate for this, the area of the included
elements should be scaled by an amount s so that (λN)(as) = Na,
which we solve to get:

s = 1/λ (3)

Figure 7a shows s as a function of x, the position of the element in
the priority order. s is 1/λ for the included elements (x ≤ λ ) and 0
for the excluded elements (x > λ ).

For example, the unsimplified plant in Figure 2a is noticeably less
dense when 90% of its leaves have been excluded, as shown in
Figure 2b. In Figure 2c, we correct for this by making the remaining
leaves 10 times larger so that the total area of the plant remains
the same. Depending on the type of element, this can be done by
scaling in one or two dimensions; in this example, the leaf widths
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Figure 8: ŝ from Equation 7 for different values of r. For example,
for an object with 100,000 elements and a depth complexity of 10,
r = .0001 and the approximation s = 1/λ is off by about 5% when
the object is simplified to 100 elements (λ = 0.001).

are scaled, as shown in close-up view in Figure 2c. The widening
visible in this magnified view is not noticeable in practice because
the elements are so small that their shapes are not discernible.

Equation 3 preserves the surface area, but what we really need to
preserve is the visible area. The ratio between these two areas
changes because reducing the number of elements changes the
depth complexity, though the change is small unless λ is very small.
For example, the total element surface area of an object with a depth
complexity of 2 is twice as great as the visible object area because
half of the element area is hidden. If the object were reduced to
a single element and we set s = 1/λ , then the visible area of the
scaled element would be twice the visible area of the object because
the depth complexity would have changed to 1.

To calculate s taking this into account, we first calculate the ratio
r = a/V of the average element area a to the total visible area of
the object V . The depth complexity D is total element area over
V , so D = Na/V and thus r = D/N. (D can be calculated from
the alpha values if the object is rendered with the elements partially
transparent.) This ratio r can be pre-calculated because it does not
change with scale. (It can change with orientation, but this effect is
usually small enough to be ignored.)

Next we calculate the expected visible area of n random elements.
The first element is completely visible, so it covers r of the visible
object area and leaves 1− r uncovered. The second element covers
r of that uncovered area, leaving 1− r of it uncovered, so the
uncovered area is now (1− r)2 and the visible part is 1− (1− r)2.
After n elements, the visible part of the area is:

1− (1− r)n (4)

When the object is simplified, the average element area is as, so it
covers rs of the visible object area. After λn elements, the visible
part of the area is:

1− (1− rs)λn (5)

Setting expressions (4) and (5) equal and solving for s, we get

s = 1−(1−r)1/λ

r (6)

This formula for s is only needed when the simplification is
extremely aggressive. This is evident if we use the binomial
theorem to get the following power series for s:

s =
1
λ

ŝ =
1
λ

(
1− (1−λ )

2!
( r

λ

)
+ (1−λ )(1−2λ )

3!
( r

λ

)2−·· ·
)

(7)

so that ŝ ≈ 1 and s ≈ 1/λ when λ is large compared to r. For
example, Figure 8 shows ŝ as a function of λ for various values of
r. The difference is small except for small values of λ , when the
object is so small on the screen that the difference is usually not
noticeable anyway.



Figure 9: Example of contrast change. Detailed geometry is
shown on the upper left and a simplified version on the upper
right. Triangles were set to one of two colors using a random
number generator. The squares indicate pixels, and the dots indicate
samples. The lower images show the resulting pixel colors. The
simplified version has more contrast because fewer triangles are
averaged.

3.4 Contrast preservation

From the central limit theorem, we know that sampling more
elements per pixel decreases the pixel variance (as illustrated in
Figure 9). As a result, excluding more elements from an object
increases its variance (i.e., contrast). Notice how the simplified
plant in Figure 2c has a higher contrast than the unsimplified plant
in Figure 2a.

Other methods compensate for this automatically because contrast
reduction is a side effect of averaging the properties of neighboring
elements. Our method compensates instead by averaging the
properties of each included element with the properties of the
overall population.

To see how this works, we start with the variance σ2
elem of the color

of the elements, which is

σ
2
elem =

n

∑
i=1

(ci− c̄)2 (8)

where ci is the color of the ith element and c̄ is the mean color.
When k elements are sampled per pixel, the expected variance of
the pixels is related to the variance of the elements by:

σ
2
pixel =

k

∑
i=1

(wi)2
σ

2
elem (9)

where the weight wi is the amount the ith element contributes to the
pixel. For this analysis, we assume that each element contributes
equally to the pixel with weight 1/k:

σ
2
pixel =

k

∑
i=1

(
1
k
)2

σ
2
elem = k(

1
k
)2

σ
2
elem = σ

2
elem/k (10)

The pixel variance when the unsimplified object is rendered is:

σ
2
unsimpli f ied = σ

2
elem/kunsimpli f ied (11)

and the pixel variance when the simplified object is rendered is:

σ
2
simpli f ied = σ

2
elem/ksimpli f ied (12)

We can make these variances the same by altering the colors of the
included elements to bring them closer to the mean:

c′i = c̄+α(ci− c̄) (13)

which equals the original color when α = 1 and the mean color
when α = 0. The variance of the elements is reduced to:

σ
′2
elem =

n

∑
i=1

(c′i− c̄)2 (14)

=
n

∑
i=1

(c̄+α(ci− c̄)− c̄)2 (15)

= α
2

n

∑
i=1

(ci− c̄)2 (16)

= α
2
σ

2
elem (17)

which in turn reduces the variance of the pixels to:
σ

′2
simpli f ied = σ

′2
elem/ksimpli f ied (18)

= σ
2
elemα

2/ksimpli f ied (19)

= σ
2
unsimpli f iedα

2kunsimpli f ied/ksimpli f ied (20)

We want σ
′2
simpli f ied = σ2

unsimpli f ied , which is true when

α
2 = ksimpli f ied/kunsimpli f ied (21)

An image of a simplified object with these altered element colors
will have the same variance as an image of the unsimplified object
with the original element colors.

Because the number of elements per pixel is inversely proportional
to the object size, kunsimpli f ied = k1/b, where k1 is the value of k
at b = 1 (which we can estimate by dividing N by the number of
pixels the object covers when b = 1). Similarly, ksimpli f ied = λk1/b.
Using these expressions in Equation 21 we get

α =
√

λ (22)

Many renderers, however, have a maximum number of visible
objects per pixel kmax (e.g., 121 if the renderer point-samples 11x11
locations per pixel). When the elements are small, this limit causes
the contrast of the non-simplified object to increase. We can alter
the contrast of the simplified object to match by using the following
formula for α:

α =
√

min(λk1/b,kmax)
min(k1/b,kmax)

(23)

Figure 10 shows α as a function of b for different values of h.
Notice that for smaller values of h, the Equation 23 contrast only
changes in the middle distance. When the object is close, the
contrast is unchanged because there is no simplification. When
the object is far away, the contrast is unchanged because there are
more than kmax included elements per pixel, so that kmax elements
contribute to the pixel in both the simplified and unsimplified cases.
The maximum contrast difference occurs at b = k1/kmax. The
smaller λ is at this distance, the greater this contrast difference will
be; contrast correction is thus more important with more aggressive
simplification (larger values of h in Figure 10). Figure 2d shows the
plant in Figure 2c with contrast correction.

If there are different types of elements in a scene (e.g. leaves and
grass), each type needs its own independent contrast correction.
Otherwise, blending across types could give colors not in either
type. This is also important for preserving the object’s appearance
when the colors are correlated with geometric position (e.g., if new
leaves near the tips of the branches are greener than older leaves in
the interior).

The value of c̄ should be based on the final shaded colors of the
elements; this can be difficult to compute in practice but it can often
be approximated by reducing the variance of the shader inputs.
This does not work well for surfaces with narrow, bright highlights;
at this point, our only remedy is to make the simplification less
aggressive - i.e., use a smaller h.
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3.5 Smooth Animation

The detail level of an object can change significantly during an
animation, so changes in simplification level need to be smooth
and continuous. As elements are excluded, they should gradually
fade out instead of just abruptly disappearing. This can be done by
gradually making the elements either more transparent or smaller
as they are excluded. The latter is shown in Figure 7b, where
the size t of the transition region is 0.1. The red line shows that
for a desired level of detail that excludes 70% of the elements
(λ = .3), the first 20% of the elements in the rendering priority
order (x <= λ − t = .2) are enlarged by 1/λ = 10/3 and the last
60% (x > λ + t = .4) are completely excluded. From x=.2 to x=.4,
the areas gradually decrease to 0. As we zoom in and λ increases,
the elements at x = .4 are gradually enlarged, reaching their fully-
enlarged size when λ = .5 (the yellow line). The area under each
line is the total surface area of the included elements and is constant.

4 Results

All of the sagebrushes in Figure 3 are variations of the single plant
in Figure 1. This plant was created with custom modeling code, and
its leaves were randomly reordered and written into a file. For each
plant in the scene, the number of leaves rendered was determined
by λ from Equation 2 using the screen size of the plant’s bounding
box. That number of leaves was read from the head of the file,
accessed through an RiProcedural call in the RenderMan Shading
Language [Apodaca and Gritz 1999]. Each plant was randomly
scaled and rotated, and its leaves were procedurally animated and
rendered as curved line segments called RiCurves [Apodaca and
Gritz 1999], which were thickened using Equation 6. Separate
contrast correction was done for the green leaves and the yellow
flower tips using Equation 23.

Figure 11 shows rendering statistics for an animation of the plant
in Figure 1 receding into the distance (available at [Cook et al.
2007]); the memory usage decreased from 409.3MB to 3.4MB
and the rendering time from 239.3 sec. to 1.7 sec. The same
shadow map was used for all frames; this does not produce artifacts
when the number of elements changes because preserving area

Figure 12: Some plants rendered with stochastic simplification.

Figure 13: A swarm of rats.

Figure 14: In the left image, simplification depends on motion
blur. In the right image, color indicates λblur; green areas are more
detailed, red areas are more simplified.

also preserves the probability of being in shadow. The scene in
Figure 3 contains over one hundred million leaves and requires so
much memory that without simplification it is unrenderable with
RenderMan. Figure 12 shows a variety of plants rendered with this
technique.

The scene in Figure 13 contains 240 million hairs and was
unrenderable without simplification, which reduced the hair count
by 94%. The hairs are computed at rendering time rather than
being precomputed and stored in a file. They are generated using
stratified sampling; this is done by dividing the body into patches
and generating the hairs for each patch independently. The number
of hairs in each patch depends on its screen size and the amount
of blur due to motion and depth of field. Figure 14 shows how
the amount of simplification varies with motion blur. Sometimes
one part of a rat moves quickly while other parts are still, so it
is important that λ be allowed to vary within each rat, unlike the
sagebrush model in which the level of detail did not vary within an
object. In rendering the rats in this image, stochastic simplification
reduced the number of hairs by 88%, the memory usage by 84%,
and the rendering time by 75%. Figures 15 and 16 are from a
shot with a rack focus, and λ depended on the depth-of-field blur.
In Figure 15, 97% of out-of-focus background rat’s hairs were
excluded (λsize = 0.14, λblur = 0.17). In Figure 16, 70% of the
out-of-focus foreground rat’s hairs were excluded (λsize = 0.39,
λblur = 0.78).



Figure 15: Depth of field with focus on the closer rat.

5 Discussion and Conclusions

We have found this stochastic approach to simplification effective
in reducing the complexity of scenes with large numbers of simple,
disconnected elements. It is easy to implement: just randomly
shuffle the elements into a file and use code like that in the
Appendix to read just the included elements. It also fits well
into a production pipeline. We have successfully used it on a
variety of models in highly complex scenes that we found otherwise
impossible to render at high quality.

This approach is designed for aggregate detail (e.g., snow, rain,
water spray, dust, sand, feathers, swarms of insects, schools of fish).
The method is not suitable for element detail because removing
surface elements would create holes in the surface. For scenes that
have both element and aggregate detail, this approach could be used
in conjunction with a surface filtering method.

The elements must be small enough that individual element shapes
are not more important than the shape of the whole, and there have
to be sets of elements that are roughly similar in appearance. If the
appearance factors such as size, normals, and color are more widely
varied, the simplification cannot be as aggressive.

This paper lays out the principles of contrast correction, but the
implementation is still ad-hoc; we would like a method that doesn’t
have to be tailored to each model. For example, we would like
to have a general method for dividing elements into groups of
similar characteristics, such as size or color. In addition, we
currently cannot simplify shiny objects as aggressively as matte
objects because we need a better way to preserve appearance when
brightness varies abruptly with normal direction. We believe local
characteristics such as neighboring colors, normal distribution,
local contrast, and proximity to the silhouette edge could be stored
in a volume texture and used to adapt the simplification to local
variations; the texture filter size would depend on λ so that a larger
texture region would be sampled as more elements were excluded.
Instead of determining the priority order randomly, we could use an
error metric, so that we start with the element closest to the mean
and successively select as the next element the one that gives the
best approximation to the statistics of the population.

We have presented a stochastic approach to the simplification of
aggregate detail for high-quality surface rendering. Because it is
statistically based and does not filter neighboring geometry, it can
be less locally accurate than other approaches; but this very lack
of local information makes the element calculations independent,
which is a significant advantage when handling very large amounts
of aggregate detail. We believe statistical approaches like this will
become increasingly important.

Acknowledgments

We would like to thank Eben Ostby, Tony Apodaca, and Brian
Smits for early feedback on this idea, Martin Reddy for reviewing

Figure 16: Depth of field with focus on the far rat.

our drafts, Marco DaSilva for help with the implementation, and
Paul Kanyuk for testing. All images c©2007 Disney/Pixar.

Appendix. Sample code
// This code was written as a compact example, not for speed or generality.

// For example, these are in-memory routines, but in practice the elements

// would be streamed in from a file. The "Simplify" routine takes an array

// "eIn" of elements in rendering priority order and returns an array of

// elements "eOut" to be rendered. The variable "L" is lambda. These

// diagrams illustrate how s and t change near L=0 and L=1:

//

// (when L-trans<0) (when L+trans>1)

// sMax-> s ...sss <- sMax ...sss <- sMax

// |s s . s

// | s s . s

// | s<t> or s<- t -> or .<-t->s <- sMin

// | s . s . |

// | s . s . |

// sMin=0-> +-----s- x ---+------sss... -----+-----+ x

// 0 L L L 1

Simplify( element *eIn, element *eOut, double b, double k1, int nIn, int *nOut ) {

double h=0.4, kmax=121, k=k1/b;

double L = (b>=1) ? 1 : pow(b,log(0.5,h));

double trans = 0.1; // halfsize of transition region

double t = (L-trans<0) ? L : (L+trans>1) 1-L : trans; // t is trans adjusted for ends

double sMax = (L+trans<1) ? 1/L : 1/(1-t*t/trans); // max area scaling for this L

double sMin = ( L + trans < 1 ) ? 0 : sMax*(1.0-t/trans); // min area scaling for this L

*nOut = (u+t) * nIn; // # used, included transition

for (i=0; i<*nOut; i++) {

double x = (i+0.5)/nIn; // position in priority order

double sLerp = (x<u-t) ? 1 : (x<L+t) ? (L+t-x)/(2*t) : 0;

double s = sMin + (sMax-sMin) * sLerp; // area scaling for this element

double alpha = sqrt(min(kmax,k*L)/min(kmax,k)); // contrast correction

eOut[i] = eIn[i];

eOut[i]->scaleAreaBy(s); // scales area of element

eOut[i]->scaleContrastBy(alpha); // scales contrast of element

}

}
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PHARR, M., AND PRUSINKIEWICZ, P. 1998. Realistic
modeling and rendering of plant ecosystems. In Proceedings
of ACM SIGGRAPH 1998, ACM, 275–286.

DEUSSEN, O., COLDITZ, C., STAMMINGER, M., AND
DRETTAKIS, G. 2002. Interactive visualization of complex plant
ecosystems. In Proceedings of the Conference on Visualization
2002, 219–226.

ERIKSON, C., AND MANOCHA, D. 1999. Gaps: General and
automatic polygonal simplification. In Proceedings of the 1999
symposium on Interactive 3D graphics, 79–88.

GARLAND, M., AND HECKBERT, P. 1997. Surface simplification
using quadric error meshes. In Proceedings of ACM SIGGRAPH
1997, ACM, 209–216.

GARLAND, M. 1999. Multiresolution modeling: Survey & future
opportunities. In Eurographics ’99 State of the Art Report.

GOBBETTI, E., AND MARTON, F. 2004. Layered point clouds. In
Symposium on Point-Based Graphics, 113–120.

HOPPE, H. 1996. Progressive meshes. In Proceedings of ACM
SIGGRAPH 1996, ACM, 99–108.

HOPPE, H. 1998. Smooth view-dependent level-of-detail control
and its application to terrain rendering. In IEEE Visualization,
35–42.

KALAIAH, A., AND VARSHNEY, A. 2003. Statistical point
geometry. In Proceedings of the 2003 Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing, 107–115.

KLEIN, J., KROKOWSKI, J., FISCHER, M., WAND, M., WANKA,
R., AND AUF DER HEIDE, F. M. 2002. The randomized
sample tree: a data structure for interactive walkthroughs in
externally stored virtual environments. In Proceedings of the
ACM symposium on Virtual reality software and technology,
137–146.

LACEWELL, J. D., EDWARDS, D., SHIRLEY, P., AND
THOMPSON, W. B. 2006. Stochastic billboard clouds for
interactive foliage rendering. Journal of Graphics Tools 11, 1,
1–12.

LOUNSBERY, M., DEROSE, T., AND WARREN, J. 1997.
Multiresolution analysis for surfaces of arbitrary topological
type. ACM Transactions on Graphics 16, 1 (January), 34–73.

LUEBKE, D., AND ERIKSON, C. 1997. View-dependent
simplification of arbitrary polygonal environments. In
Proceedings of ACM SIGGRAPH 1997, ACM, 199–208.

LUEBKE, D., AND HALLEN, B. 2001. Perceptually driven
simplification for interactive rendering. In Proceedings of the
Eurographics Workshop on Rendering, 223–234.

LUEBKE, D., REDDY, M., COHEN, J., VARSHNEY, A., WATSON,
B., AND HUEBNER, R. 2002. Level of Detail for 3D Graphics.
Morgan Kaufmann Publishers Inc.

NEYRET, F. 1995. Animated texels. In Computer Animation and
Simulation ’95, Eurographics, 97–103.

NEYRET, F. 1998. Modeling, animating, and rendering complex
scenes using volumetric textures. IEEE Transactions on
Visualization and Computer Graphics 4, 1 (January), 55–70.

PFISTER, H., ZWICKER, M., VAN BAAR, J., AND GROSS, M.
2000. Surfels: Surface elements as rendering primitives. In
Proceedings of ACM SIGGRAPH 2000, ACM, 335–342.

PRUSINKIEWICZ, P., JAMES, M., AND MECH, R. 1994. Synthetic
topiary. In Proceedings of ACM SIGGRAPH 1994, ACM, 351–
358.

REEVES, B. 1983. Particle systems - a technique for modeling
a class of fuzzy objects. ACM Transactions on Graphics 2, 2
(April), 91–108.

RUSINKIEWICZ, S., AND LEVOY, M. 2000. Qsplat: A
multiresolution point rendering system for large meshes. In
Proceedings of ACM SIGGRAPH 2000, ACM, 343–352.
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