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Figure 1: Example result of our method: A tight-fitting sweater exhibits wrinkles and torsoidal folds under the effects of gravity and as the
underlying torso is twisting. This example used only 12 adaptively chosen basis vectors and ran 18 times faster than a full simulation.

Abstract

We present a new approach to clothing simulation using low-
dimensional linear subspaces with temporally adaptive bases. Our
method exploits full-space simulation training data in order to
construct a pool of low-dimensional bases distributed across pose
space. For this purpose, we interpret the simulation data as offsets
from a kinematic deformation model that captures the global shape
of clothing due to body pose. During subspace simulation, we se-
lect low-dimensional sets of basis vectors according to the current
pose of the character and the state of its clothing. Thanks to this
adaptive basis selection scheme, our method is able to reproduce
diverse and detailed folding patterns with only a few basis vectors.
Our experiments demonstrate the feasibility of subspace clothing
simulation and indicate its potential in terms of quality and compu-
tational efficiency.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;
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1 Introduction

Clothing plays a central role in compelling animation by contribut-
ing to the style and personality of animated characters while evok-
ing the impression of realism and complexity that comes from de-
tailed folding patterns. On a practical level, a great deal of clothing
used in animated films consists of close-fitting garments that move
along with the body. For example, a sweater may not show notice-
able dynamics under normal body motion, but it will exhibit notice-
able buckling patterns at the arm bends and oblique torsional folds
rising up from the waist. Frictional contacts and the overall non-
linear nature of cloth mean that these quasi-static folds depend not
only on the current pose but also on the path taken in pose space to
arrive at the present body configuration. This property gives cloth-

ing an infinite source of diversity and detail—and also shows that
cloth simulation is an indispensable tool in feature animation, even
for close-fitting garments.

Although simulation systems can compute the deformation of cloth
at a remarkable level of realism and detail, they incur an extremely
high computational cost. Subspace methods have proven very ef-
fective at reducing computational cost for other applications such as
finite-element based solid simulation. These methods are most ef-
fective when deformations are small or predictable. In such cases,
one can construct a low-dimensional linear subspace whose basis
remains constant over time, thus delivering high computational ef-
ficiency. Unfortunately, due to hysteresis and its inherent nonlin-
ear nature, cloth deformations are generally neither small nor pre-
dictable, which is seemingly at odds with subspace simulation and
probably explains why so few attempts have been made so far in
this direction.

Our work explores subspace methods in the context of clothing sim-
ulation and demonstrates one approach to overcome the challenges
described above. Our method relies on two key insights. First,
we note that subspace simulation is effective only when it can take
advantage of structure in the simulation. And, although the move-
ment of free-flowing cloth is largely arbitrary and unstructured, the
movement of clothing—especially close-fitting clothing—does in-
deed contain a great deal of structure. We thus employ a kinematic
deformation model as reference state that takes advantage of the
structure of clothing simulation by capturing rotations that would
otherwise prevent a linear-subspace, ill-suited for modelling rota-
tional motions, from succeeding. Our second insight is that the
rich deformations seen in clothing cannot be reproduced adequately
with a global, low-dimensional basis. However, around a particular
pose, the local space of deformations is much lower-dimensional.
This observations motivates an adaptive, pose-dependent basis and
allows our system to represent a broad range of complex wrinkles
and folds while maintaining a small set of active basis vectors at
any point during the simulation.



With these core insights in hand, we present a subspace approach
to clothing simulation that uses a dynamically updated subspace
basis in order to best reflect the deformations around the current
pose. Our prototype implementation improves the performance of
state-of-the-art cloth simulation codes by a factor of up to 22 while
still reproducing the rich set of of wrinkles and folds evident in the
full-space solution.

2 Related Work

Cloth Simulation is a well-explored field and existing works are
far too numerous to be listed here. The work of Baraff and Witkin
[1998] was a major breakthrough in terms of computational effi-
ciency and even though the following 15 years have seen many
improvements, high-resolution cloth simulation is still very time-
consuming.

Nevertheless, there are many methods that aim for faster cloth simu-
lation. One line of work combines simulation on a coarse base mesh
with a fast method for adding geometric details. The method of
Rohmer et al. [2010] adds geometrically generated wrinkles based
on the strain field of the coarse simulation. Mueller and Chentanez
[2010] attach a high-resolution mesh to a coarse simulation, whose
deformation is determined using fast statics solves.

Another stream of work exploits precomputed data to avoid run-
time simulations altogether. De Aguiar et al. [2010] present a
technique for learning a linear conditional cloth model that can
be trained with data from physics-based simulations. The method
achieves very fast computation times, but it primarily targets low-
complexity cloth with little folding. The method of Guan et. [2012]
factors clothing deformations into components due to body shape
and pose. A linear model is learned in order to quickly dress dif-
ferent body shapes and pose without run-time simulations. A dif-
ferent way of exploiting precomputed data was suggested by Kim
et al. [2013], who create an exhaustive set of secondary motion to
accompany a given primary motion graph. Since no run-time simu-
lation is required, this method is very fast. However, the character’s
range of motion has to be small enough to fit a motion graph, which
is not the case for production-level character animations.

Yet another class of methods combines coarse simulations and pre-
computed data. Feng et al. [2010] describe an approach which
decomposes a high-res simulation into mid- and fine-scale defor-
mations. For the mid-scale deformations, the mesh is decomposed
into a set of bone clusters for which skinning weights are fit in a
way similar to [James and Twigg 2005], while fine-scale details
are added based on a PCA-analysis of residual vectors as in [Kry
et al. 2002]. Both mid- and fine-scale details are then driven by
a coarse scale simulation, which is fast enough to yield real-time
rates. Focussing on fitted clothing, Wang et al. [2010] present
an example-based approach that augments coarse simulations with
pose-dependent detail meshes obtained from a wrinkle database.
The wrinkle database stores per-joint wrinkle meshes that are pre-
computed from high-res simulations and merged together at run
time. Targeting the more general case of free-flowing cloth, Kavan
et al. [2011] describe a method for learning linear upsampling op-
erators from high-res simulations. With similar goals, Zurdo et al.
[2013] combine multi-resolution and pose space deformation (PSD)
techniques in order to augment coarse simulations with example-
based wrinkles.

Similar to these works, our method uses data from high-res simula-
tions, but rather than augmenting a coarse simulation, we construct
a low-dimensional subspace that allows for fast simulation of de-
tailed clothing deformations.

Finally, another option for performance improvements is to lever-

age the processing power of parallel architectures [Selle et al.
2009]. However, while significant acceleration factors have been
reported for large data (e.g. 2 million triangles [Selle et al. 2009]),
the improvements for typical problem sizes are rather modest.

Subspace Simulation is generally most attractive when high-
resolution models undergo low-rank deformations. The problem of
subspace intergration and model reduction for simulation of elastics
was originally formulated in the field of engineering [Krysl et al.
2001], but we focus on works from graphics for the sake of con-
ciseness. In this context, the method of Barbič and James [2005]
was the first to demonstrate, and unleash, the potential of model
reduction for accelerating elastic deformations on high-resolution
meshes. Subsequent work by An et al. [2008] showed that a se-
lective evaluation of elemental contributions (also known as cuba-
ture) can improve the asymptotic complexity of subspace methods.
While subspace methods can be very efficient for cases with small
or predictable deformations, the generalization is made difficult by
the discrepancy between a low-dimensional basis and a large range
of deformations. Kim et al. [2009] address this problem with a hy-
brid solution that combines subspace and fullspace simulation and,
for each step, decides which one to use. One technically interesting
aspect of this work is the use of an adaptive basis that is dynamically
updated with results from the full-space solver. Our method also re-
lies on a dynamically updated basis, but our updates are much more
frequent (once per Newton iteration) and do not require online full-
space simulation.While most subspace methods rely on a linear ba-
sis, the work of Hahn et al. [2012; 2013] simulates the deformation
of a character’s fat and muscles in the nonlinear subspace induced
by its rig.

The problem of detecting and resolving collisions in the context
of subspace simulation has recently gained attention. Barbič and
James [2010] showed how bounding volume hierarchies can be en-
hanced by certificates that allow aggressive culling over overlap-
ping tests, and Zheng and James [2012] extended this approach to
also consider deformation energy. Wong et al. [2013] propose a
method for efficient self collision culling for skeleton-driven de-
forming meshes. While we do not address subspace self-collision
culling in this work and simply resort to full-space collision resolu-
tion, we note that many of these ideas could also be applied to our
setting of subspace simulation using adaptive bases.

Harmon et al. [2013] dynamically augment the subspace basis with
analytical functions that model deformations due to individual con-
tact points. Since these augmentation vectors only add very local-
ized displacements, they are able to project their current subspace
coordinate vector into the new basis whenever it changes to ensure
temporal coherence. In our case, the basis regularly incurs drastic
changes which motivates the use of a more sophisticated approach
to obtain smooth transitions.

Pose-Space Deformation The concept of making shape depend
on positions in a pose space was originally proposed by Lewis
et al. [Lewis et al. 2000] and further extended in the context of
example-based deformations [Sloan et al. 2001], medical imaging
[Kurihara and Miyata 2004] and real-time applications [Kry et al.
2002]. Meyer and Anderson [2007] proposed Key Point Subspace
Acceleration and soft caching, which accelerate pose-dependent de-
formation queries. Zurdo et al. [2013] use PSDs to enhance a low-
res simulation with example-based wrinkle details. The quality of
pose-space deformation methods heavily depends on the way the
scattered-data interpolation problem in pose space is resolved. To
this end, Lee [2009] explored the space of basis functions, while
Bengio and Goldenthal [2013] propose a simplicial interpolation
scheme to make the interpolation space more controllable.



Similar to these works, our method is also based on the assump-
tion that deformations are inherently pose-dependent. However, in-
stead of interpolating deformations in pose space, we select them
automatically from nearby locations and let our solver handle the
transitions between them.

3 Overview

Our method consists of several stages, each of which we briefly
outline in this section.

Input We expect as input a linear blend skinning (LBS) rig for
the character, i.e., a rigid skeleton, an undeformed surface mesh,
and a set of skinning weights that determine how the surface mesh
deforms according to the pose of the character. Furthermore, we
assume that there are animation sequences provided that are repre-
sentative of the typical motion that is expected during animation. In
a production environment, these animation clips could correspond
to the calisthenics sequences that are typically set up for testing the
rig. Finally, we expect geometry for the clothing to be provided and
pre-positioned in a way that fits the neutral pose of the character.
Using the input rig and the pre-positioned clothing for the neutral
pose, we construct a kinematic deformation model for the clothing
that will serve as the reference state during subspace simulation.

Training Stage For each of the input animations, we perform a
full-space cloth simulation. The resulting cloth configurations are
associated with the corresponding poses of the character. Typically,
these animations will lead to multiple cloth configurations for the
same point in pose-space. For example, this will always be the case
when the same animation is run at different speeds. But also simple
motion like bending and straightening an arm will generally lead
to different cloth configurations due to collisions, friction, and the
overall nonlinear nature of clothing.

Pose-Space Database Construction The training stage pro-
vides us with a data structure that holds all simulation results as-
sociated with their corresponding points in pose space. However,
we eventually need a data structure that provides us with a sub-
space basis for any point in pose-space. To this end, we cluster the
simulation data in pose space and perform PCA on each cluster. We
keep the most important modes and associate them with the pose-
space point corresponding to the center of the cluster. We refer to
this location as a site.

Reduced-Space Simulation For each step of the simulation, we
want to retrieve a subspace basis according to the current pose of
the character and, potentially, the current state of the clothing. Since
the character’s pose will generally not coincide with any of the sites,
we need a way to construct the set of m basis vectors from its sur-
rounding sites. Our approach is to select basis vectors from neigh-
boring sites considering their distance in pose-space and how well
they match the current dynamic state of the clothing.

4 Pose-Space Database

As one of the key concepts of our approach, the pose-space database
(PSDB) is a data structure that holds bases (sites) distributed across
pose space. During subspace simulation, the PSDB is responsible
for providing a low-dimensional basis that describes the behavior
of the clothing around a given current pose.

There are a number of questions that we must answer in order to
design such a PSDB. We must find an adequate pose-space param-

eterization, we have to determine how to associate data with pose,
and we have to decide which information to extract and store from
the large amount of training data.

Relation between pose and clothing deformation A central
question that influences subsequent design decisions is whether we
should assume a locality relation between the character’s pose and
the deformation of its clothing. Clearly, the deformations induced
by moving the shoulder are most significant around the shoulder—
but how far do they extend? Wang et al. [2010] segment the cloth-
ing mesh into parts according to the body joints and assume that
each joint influences only the two clothing segments adjacent to
it. While this approach has the advantage that localized data can
be stored per joint, a disdavantage is that far-reaching deforma-
tion effects such as the torsional folds at the waist that arise when
moving the shoulder — which can be seen in Figure 1 or by self-
experimentation — are not captured. We consider such effects to be
essential for our target application and therefore assume that each
change in pose can potentially induce deformations everywhere in
the clothing. Consequently, we associate deformation data with
character poses represented by points in pose space.

Pose-space parameterization We assume an LBS rig as input,
which is parameterized by joint angles. The natural way of repre-
senting the pose of the character is thus by a vector j holding the
angle values for each joint. However, this approach is not with-
out problems: first, the number of angles required to describe the
pose of a character is typically quite large (already 57 for our torso
model). Sampling in such a high-dimensional space is impractable
since, unless there are truly redundant dimensions, the likelyhood
that two samples are far away frome each other is very high — a
phenomenon known as the curse of dimensionality. For another,
many rigs exhibit redundant controls around the clavicle and the
shoulder that can be convenient for an artist but problematic in our
context when associating deformations with poses.

Another approach is to measure the distance between two poses by
measuring the induced difference in geometry of the corresponding
meshes. This approach allows for more intuition as to what distance
means, and it avoids the problem of redundancies. We perform a
Principal Component Analysis (PCA) on all the posed meshes in
the training data, truncating the basis acoording to significance in
singular values and normalizing the dimensions to have equal vari-
ance. This results in a transformation to a coordinate space where
the L2-distance is such a desired measure.

Data generation and model reduction We perform simulation
runs for each of the input animations and associate the clothing
shape of each time step with its corresponding character pose. Stor-
ing such a massive amount of data is neither practical nor useful and
we would prefer a form which captures the diversity of deforma-
tions in a concise way. PCA with truncation is a natural candidate
for this purpose as it provides a principled way to balance between
the captured variability of the data and the dimensionality of the ap-
proximation. Rather than constructing a global basis, our approach
relies on many localized bases distributed across pose-space. In this
way, we can exploit the fact that, locally, deformations can be ap-
proximated with a low-dimensional basis but still account for the
large variability of deformations across pose-space.

Since PCA on the training data produces global deformation modes,
another option would be to use localized basis vectors. However,
while it would be possible to use localized basis vectors that only
affect single regions, it is unclear how to partition a given set of
global deformations into localized ones.



Basis creation In order to construct a set of distributed bases,
we must decide how many sites with corresponding local basis to
use, where to put them and what data to use for each site. We
note that, once the number of sites is determined, the question of
where to place the sites and which data points to associate with
them is answered in a natural way using Voronoi partitioning. We
found that two to three sites per input animation work well when us-
ing calisthenics-like input sequences that cycle through one specific
motion. We then run the k-means algorithm in order to compute the
desired number of clusters, obtaining the pose-space locations si of
the sites and the sets of data Di belonging to them.

Before we can analyse the clusters, there is one more transforma-
tion that needs to be applied to the data. If we were to perform
PCA directly on the geometry of the clothing as returned by the
full-space simulator, the variability would be dominated by the mo-
tion of the body, i.e., rotations of its joints. However, were are
not interested in changes that are captured by the kinematic model,
we want to analyze how the clothing changes its shape relative to
the kinematic model. For this reason, we first substract the state
of the kinematic model X(p) evaluated at the current pose p from
the clothing configuration x to obtain a world-space displacement
vector u(p) = x −X(p). This displacement vector is then trans-
formed back to the neutral pose p̄ of the character by applying the
inverse LBS transformations as ū = LBS−1(u).

Once we have applied this transformation to all data points in all
clusters, we are all set for analysing the data. For each cluster,
we perform PCA on Di and truncate the basis either after the d-th
vector or when the ratio between the corresponding singular value
and the largest singular value drops below a given threshold value
εPCA (we use εPCA = 0.01). The basis vectors bj

i of all sites are
then stored in the PSDB, indexed by the corresponding pose-space
location si of the sites.

Data Retrieval Once the PSDB is populated, the question is how
to retrieve data at run time: Given a pose for the character, what
data should be returned? Obviously, since the pose will generally
not coincide with one of the sites, we cannot just return one of the
bases but need a retrieval scheme for returning adequate inbetween
data that reflects the influence of neighboring sites.

One possibility for a such a retrieval scheme would be to interpo-
late between the bases of different sites. This bears the promise that
a smooth basis interpolation would translate into temporal smooth-
ness for the simulation. Unfortunately, constructing a principled
scheme for bases interpolation appears to be difficult. While in-
terpolating pairs of vectors can be done easily, extending this con-
cept to interpolating between sets of vectors (i.e., bases) is difficult
because it is unclear what the correspondence between vectors in
different sets should be. But even without this problem, it remains
questionable whether an interpolated basis is meaningful to begin
with.

For these reasons, we settled for an approach that only uses basis
vectors from the original sites. More concretely, when the database
is queried with a given pose pi, we create a pool of candidate basis
vectors that includes the vectors of all sites that are with in the sup-
port of a kernel function φ(pi) centered at the current pose. The
subspace simulator then selects a set of basis vectors from this can-
didate pool as explained in Section 5.2.

5 Subspace Cloth Simulation

5.1 Equations of Motion

Equations of Motion in Full Space The basis for our subspace
simulation method is a variational formulation of the implicit Euler
scheme similar to Martin et al. [2011]. We define the corresponding
objective function as

H(xt+1) =
1

2
aT
t+1Mat+1 + hW (xt+1) (1)

where xt+1 denotes end-of-time-step positions, h is the time step,
M is the diagonal mass matrix, and at+1 = 1

h2 (xt+1−2xt+xt−1)
are nodal accelerations. The potential energy W = Wel + Wext

consists of an elastic energy Wel due to cloth deformations and an
external energy Wext due to gravity. Our cloth model uses constant
strain triangles for stretching [Thomaszewski et al. 2008] and hinge
elements for bending [Grinspun et al. 2003]. Furthermore, we use
axis-aligned bounding boxes for collision detection and a combi-
nation of spring-like penalty forces and velocity filtering [Bridson
et al. 2002] for collision response.

Equation (1) provides a consistent formulation to perform simula-
tions in both full and reduced space: when doing full-space simula-
tion for generating training data, we directly minimize (1) for each
time step. In order to do subspace simulation, we restrict the end-
of-time-step positions xt+1 = x(qt+1) to a subspace described by
a basis matrix A and reduced coordinates q.

Kinematic Cloth Model The basis of our subspace simulator is a
kinematic cloth model, which we construct by extending the skin-
ning transformation of the LBS rig onto the clothing. In the neutral
pose p̄ of the character, we find for each vertex X0

i of the pre-
positioned clothing the closest point on the character’s surface. We
then determine skinning weights ωj

i corresponding to the bones of
the LBS rig using barycentric interpolation. The kinematic model
for any given pose p is then given by the usual LBS transformation

Xi(p) = ϕLBS(p, X̄)i =
∑
j

ωj
iT

T
j (p)X̄i, (2)

where Tj(p) is the transformation matrix of bone j corresponding
to the current pose. While (2) is a nonlinear function of body pose,
it is linear in positions and its Jacobian B = ∂ϕLBS

∂X̄i
with respect to

position is a block-diagonal matrix with 3×3-blocks given as

Bt
i =

∑
j

ωj
i ·T

T
j . (3)

Subspace Cloth Model The basic approach of our subspace
model is to extend the kinematic model with displacements com-
puted from a subspace. One approach would be to compute dis-
placements u directly in world-space as

x(p,q) = X(p) + u(q) , (4)

where q are the reduced coordinates. However, a world-space
displacement is only meaningful for the pose at which it was
computed—rotations induced by the rig by would immediately in-
validate the displacement. We therefore choose to compute dis-
placements ū with respect to the untransformed setting,

x(p,q) = ϕLBS(p, X̄ + ū) = ϕLBS(p, x̄) , (5)

where x̄ = X̄ + ū denotes the untransformed clothing state. This
formulation has the advantage that a displacement vector for a given
pose will look plausible throughout a certain region in pose-space.



Our approach uses a linear subspace, such that displacements
ū(q) = Aq are defined by a basis matrix A, whose columns cor-
respond to the basis vectors, and reduced coordinates q. For a fixed
A and q, the deformed configuration of the cloth is thus given as

x(p,q) = ϕLBS(p, X̄ + Aq) . (6)

Subspace Simulation Algorithm Algorithm 1 describes our
subspace integration method, which uses Newton’s method to min-
imize (1) with respect to the reduced coordinates q, and where K
and r are the reduced space Hessian and gradient. During subspace
simulation, we always preserve the invariant that the current cloth
deformation is the LBS-transform of the untransformed x̄.

Algorithm 1 Subspace integration with adaptive basis.
1: for i := 1 to niter do
2: update full-space state x = ϕLBS(p, x̄)
3: compute full-space gradient g(x)
4: selectBasisVectors(p,g,A)
5: computeReducedSystemMatrix(A,K)
6: solve Kq = −r
7: update untransformed state x̄ = x̄ + Aq
8: end for

System Assembly Algorithm 1 requires the assembly of the sys-
tem Kq = −r in each iteration. This involves computing the re-
duced system matrix K and the reduced gradient g. The expres-
sions for these components are obtained by using (6) in (1) and
differentiating with respect to q. We first note that, using (3) and
the chain rule, the Jacobian J of (6) follows as

J =
∂x

∂q
= B ·A . (7)

The reduced gradient and Hessian of (1) are obtained as

r = JT

(
Ma +

∂W

∂x

)
(8)

K = JT

(
1

h2
M +

∂2W

∂x2

)
J . (9)

The resulting system is dense but only of dimension r × r instead
of n × n for the full-space variant. For a typcial example like the
sweater, the dimension of the reduced space was r = 12, while the
full-space clothing had n = 80k degress of freedom. Indeed, the
cost of solving the reduced system is negligible, but the assembly
can take up a significant fraction of the overall computation time.
The main contributors are the computation of the full-space Hessian
H = ∂2W

∂x2 and the multiplications with the projection matrix J.

Solver Optimizations In our experiments, we found that simula-
tions in subspace exhibit very good convergence and are generally
much less susceptible to instabilities than in full-space. In particu-
lar, we never encountered indefinite systems—a major struggle for
full-space simulation—removing the need for line-search and ex-
pensive regularization altogether. Similar to Hahn et al [2013], we
also found that, even when reusing the same full-space Hessian over
many times steps, stability was not affected and the visual impact
on the simulation results was minimal. Our approach is therefore
to keep the Hessian constant and only do one Newton step by de-
fault. Only if the norm of the current basis vectors projected onto
the full-space gradient (see Section 5.2) is still above a threshold σ,
we recompute the H and perform further steps. Choosing σ = 0.1
worked well for all our examples.

Figure 2: Using a fixed basis of 100 vectors for the Torso Twist
sequence produces large jumps between different cloth poses. The
three frames shown here were captured whithin a short duration of
only 0.12 seconds.

Figure 3: One frame of the Torso Twist sequence when simulated
with only the gradient as basis (left), adaptive basis selection with-
out adding the gradient to the basis (middle), and our method using
the gradient in addition to the adaptive basis selection.

5.2 Basis Construction

Our subspace integration algorithm selects a new set of basis vec-
tors in every iteration of the Newton solver. We would like this
basis to be low-dimensional, and we want it to capture the defor-
mations that the clothing can undergo around the current character
pose. Given the current pose, the pose-space database provides a
pool of candidate vectors, typically much larger than the desired
dimension of the subspace. We therefore select a subset of vectors
according to how far the site is away from the current pose and how
well a given vector fits the current configuration.

Each iteration of Algorithm 1 solves the full-space linear problem
Hx = −g projected into to current subspace. Clearly, if we can
find a basis that spans the full-space solution H−1g, we will be
able to accurately solve the full-space linear problem in the sub-
space. How helpful is a given basis vector v for this purpose? As-
suming that H is positive definite, we know that v and g must have
a positive dot product for v to be a descent direction for (1). Put
differently, if this dot product is zero, v cannot help in solving the
full-space system. This observation motivates a selection scheme
that gives preference to basis vectors that are well-aligned with the
gradient at the current configuration. We therefore project all basis
vectors in our pool onto g and reorder according to score. In order
to give preference to vectors from sites close to the current pose, we
additionally scale the score with the inverse distance before sorting.
We note that there is no need to maintain an orthogonal basis since
potential redundancies do not cause any adverse effect.

In order to analyze the efficiency of our selection scheme, we com-
pared it to using a fixed basis created from extracting 100 PCA
vectors from the training data for simulation. We noticed that even
though the fixed basis is able to reproduce deformations for many
individual poses correctly, it tends to jump between them, making
the resulting animation not smooth as can be seen in Figure 2.



Adding the Gradient Using the same motivation as before, it
seems natural to add the full-space gradient g as a basis vector.
This ensures that the solution of the subspace problem will always
reduce (1) and at the same time enlarges the range of possible defor-
mations. We noticed that adding the gradient leads to significantly
improves simulation results, as can be seen in Figure 3.

Incremental State Updates & Undo Vector A particular aspect
of our approach is that we update the full-space configuration x
with subspace displacements Aq in each iteration of Algorithm 1.
As a notable difference to existing works, the full-space configura-
tion is generally not in the span of the current subspace basis. In-
deed, due to the large range of deformations observed in clothing,
we find that it is impractical to restrict the full-space solution in this
way while still obtaining the same degree of variability in clothing
shape. However, when the basis changes in every iteration, it is not
possible to change the component of the current state that is not
in the span of the current basis. We solve this problem by always
adding the difference vector x̄ − X̄ to the basis, thus allowing the
clothing to undo the solution of the previous step, if necessary.

6 Results

Setup & Validation For all results, we first ran a state-of-the-art
cloth simulation code on the Torso Shirt mesh with 29,510 vertices
and 58,660 triangles to generate around 10,000 frames of training
data for our method. Some of the deformations in our training data
can be seen in Figure 5. Using this training data, we automatically
created a PSDB using 18 sites with 10 to 20 basis vectors each,
resulting in a total number of 212 basis vectors. Four of the ba-
sis vectors are visualized in Figure 4 and can also be seen in the
accompanying video. We first validated our subspace simulation
method by running it on the same animations that were used to cre-
ate the training data. One such example for the Twist animation can
be seen in Figure 1. Using our fast subspace simulation method,
we were able to obtain total runtime speedups of up to 22x over the
full-space simulation. Comparing only the simulation time yields
a speedup of up to 60x. The timings and speedups for all tested
sequences are reported in Table 1.

We observed no visual differences between the naı̈ve subspace
solver and the optimized solver as described in Section 5.2. In-
creasing the size of our adaptive basis also only has small effects
on the resulting deformations when using the same PSDB. Increas-
ing the number of vectors per site in the PSDB by reducing εPCA
also has no noticeable effect unless combined with an increased
adaptive basis size. While we observed slightly more dynamics in
the formation of the wrinkles in the clothing, this gain comes at a
significant computational cost.

Generalization to Novel Poses Even though we use global ba-
sis to construct our subspaces, many of the basis vectors tend to be
sparse and local even though we do not ask for this explicitly. For
this reason, different basis vectors from different sites can combine
into new configurations that were not in the training data set. Thus,
one application of particular interest for our method is the ability to
generalize to new motions. To this end, we created two new anima-
tions that are not part of our training set and explore new portions
of pose space. Yo simultaneously combines both twisting and arm
bending, while Gym is a longer sequence that comprises a variety
of upper body motions. Figure 6 shows that our method is able
to generalize to these unseen animations and produce compelling
folds and wrinkles.

7 Limitations & Future Work

While we are able to faithfully reproduce wrinkles and folds for
the examples that we tested, one limitation of our method is the
limited ability to reproduce dynamics, which is best seen in the
accompanying video. The observation that wrinkles tend to move
semi-rigidly in the normal direction of their fold could motivate the
use of more sophisticated basis vector extraction than PCA. On a
related note, shaping the subspace vectors manually to reflect the
desired deformation could enable stylization and artist control.

Previous work by An et al. [2008] and Kim et al. [2009] showed
that the performance of subspace simulations can be significantly
increased using cubature. The underlying idea is to evaluate the
full-space energy and its derivatives approximately using a small
numer of key elements. However, compared to typical deforma-
tions for volumetric solids, the folds observed in cloth are large and
localized, making efficient cubature challenging and thus an inter-
esting avenue for future research.

We currently handle collisions uniformly on a per-vertex basis for
both our full-space and subspace simulation methods. Our initial
tests suggest that culling-based subspace collision techniques could
be adapted to our setting, promising an additional potential speedup
for our subspace method.

Another limitation is that it is currently not possible to adapt the ma-
terial properties of the clothing in the subspace. Consequentially,
the look of the cloth is determined by the full-space simulation that
was used to generate the training data. While changing stiffness and
bending coefficients would be easily possible, the physical interpre-
tation of this is unclear and the results would likely be difficult to
predict. That said, enabling fast subspace resimulation to explore
the effect of different material properties would be an interesting
application.
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tframe

Full space
tframe
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Table 1: Timings and speedups for the different sequences we simulated on an Intel Core i7-3930K 6 x 3.2Ghz where tframe is computation
time per frame in seconds, tsp is the total speedup over the full-space simulation and ssp is the simulation speedup (not counting collision
time) over the full-space simulation. Yo and Gym are generalization examples that did not appear in the training data, and we did not need
to run the full space solver for them.

Figure 4: Visualization of four basis vectors extracted from four different sites in our PSDB. The color intensity indicates the relative amount
by which regions move when exciting the respective basis vector (dark: no motion, bright green: strong motion).

Figure 5: Sample frames of the seven training sequences we used as input for our method. From left to right, top to bottom: Arms Bend,
Lean Forward, Plane, Twist, Arms Down, Lean Back, Arms Up.



Figure 6: Left: The Yo sequence exhibits both torsoidal folds and wrinkles around the elbows and armpits simultaneously, which was never
seen in the training data. Right: One frame of the Gym sequence showing the combined effect of leaning back and stretching out the arms of
the torso.
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