
Subspace Condensation: Full Space Adaptivity for Subspace Deformations

Yun Teng1,2, Mark Meyer2, Tony DeRose2 and Theodore Kim1

1University of California, Santa Barbara 2Pixar Animation Studios

Pixar Technical Memo #15-03

(a) (b) (c) (d)

Figure 1: (a) The simulation runs at 16 FPS, entirely within the subspace, 67× faster than a full space simulation over the entire mesh. (b)
Novel wall collisions begin, activating full space tets, shown in red in the inset. The simulation still runs at 2.1 FPS, a 7.7× speedup. (c)
Collisions produce a deformation far outside the basis, and 49% of the tets are simulated in full space. The step runs at 0.5 FPS; still a 1.9×
speedup. (d) The collisions are removed, and the 67× speedup returns.

Abstract

Subspace deformable body simulations can be very fast, but can
behave unrealistically when behaviors outside the prescribed sub-
space, such as novel external collisions, are encountered. We ad-
dress this limitation by presenting a fast, flexible new method that
allows full space computation to be activated in the neighborhood
of novel events while the rest of the body still computes in a sub-
space. We achieve this using a method we call subspace conden-
sation, a variant on the classic static condensation precomputation.
However, instead of a precomputation, we use the speed of sub-
space methods to perform the condensation at every frame. This
approach allows the full space regions to be specified arbitrarily at
runtime, and forms a natural two-way coupling with the subspace
regions. While condensation is usually only applicable to linear
materials, the speed of our technique enables its application to non-
linear materials as well. We show the effectiveness of our approach
by applying it to a variety of articulated character scenarios.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling
Keywords: character simulation, subspace integration, static con-
densation, cubature, collision resolution

1 Introduction

Subspace methods, also known as reduced-order, reduced coordi-
nate or model reduction methods, have recently made great strides
in accelerating deformable body simulations. In lieu of a full
space method, also known as a full-order or full-coordinate method,
which simulates every degree of freedom in a mesh, subspace meth-
ods instead constrain the motion to a subspace spanned by a com-
pact, but expressive, set of basis vectors. Since r basis vectors
are being simulated instead of N vertices, if r � N , very large
speedups can be realized.

An obvious limitation arises when the expressivity of the basis vec-

tors is insufficient, and the true, full space motion of the mesh lies

Figure 2: Novel collisions
cause extreme locking in a
subspace-only simulation.

outside the span of the sub-
space. A straightforward ex-
ample of this is an external
collision, such as a cannon-
ball hitting the mesh in a
novel location that was not ac-
counted for when constructing
the subspace. In these cases,
subspace methods can “lock”,
producing motions that are
both very different from the
full space solution and unreal-
istic in appearance (Fig. 2). A
variety of strategies have been
developed to account for this
situation, including basis en-
richment [Harmon and Zorin

2013], adaptive basis construction [Hahn et al. 2014], and falling
back to brute-force, full-order computation over the entire mesh
[Kim and James 2009].

In this paper, we present a distinctly different approach. We ob-
serve that in many cases, particularly when dealing with external
collisions, subspace methods only diverge from the full space solu-
tion in spatially localized patches. Unfortunately, there is no way to
know during the precomputation stage where these patches will be,
and how their locations will change over time. Therefore, we pro-
pose an approach that activates full space computation along these
patches at run-time, but allows the rest of the model, where the
subspace approximation is still valid, to continue computing effi-
ciently in the subspace. We accomplish this using a method we call
subspace condensation, which is a variation on the widely known
static condensation method from the domain decomposition liter-
ature [Bathe 2007]. While condensation has traditionally been de-
ployed as a precomputation for linear materials, we show that it
can be efficiently computed at runtime, even for non-linear materi-

als, by leveraging the reduced dimensionality of the subspace. The
method does not require any constraint mechanisms such as spring
forces [Kim and James 2011] or Lagrange multipliers [Yang et al.
2013], to couple the subspace and full space regions.

Our method allows subspace methods to be used in cases where
they previously would not have been considered. Even if it is known
in advance that novel behaviors will arise, we provide a mechanism
that allows the simulation to only “pay for” the novel components
in each frame, while other, more familiar behaviors are solved effi-
ciently. Our method gracefully degrades, so in the worst case sce-
nario, it merely falls back to a full space simulation over the entire
mesh. We demonstrate the effectiveness of our algorithm on a vari-
ety of character animation examples. Our main contributions are:

• Subspace condensation, a new method that combines the gen-
erality of full space deformations with the speed of subspace
computations.

• The main bottleneck of condensation methods is a large ma-
trix inverse. We design a solver that sidesteps this problem
using subspace coordinates, but still maintains a two-way cou-
pling between the full space and subspace regions.

• Condensation is usually only applicable to linear materials,
but the speed of our method allows it to be applied to non-
linear materials as well.

• We demonstrate our algorithm on a physics-based skinning
application. To this end, we propose several oracles that de-
tect the regions where full space computation is needed and
where the subspace approximation will suffice, and dynami-
cally partitions the mesh into these regions at every frame.

• By exploiting the forces along the boundary of the full space
regions, we show that an efficient, cubature-based method [An
et al. 2008; von Tycowicz et al. 2013] can be obtained for
evaluating the forces inside the subspace regions.

2 Related Work

Simulating deformable objects is a well-studied subject in computer
graphics, and excellent articles exist that discuss developments up
through the 1990s [Gibson and Mirtich 1997], the 2000s [Nealen
et al. 2005] and approaching the present day [Sifakis and Barbič
2012]. We are particularly interested in subspace methods, also
known as reduced-order, reduced coordinate, or model reduction
methods, for accelerating these simulations. These methods have
been known for some time in computer graphics [Pentland and
Williams 1989; Hauser et al. 2003], and have seen recent inter-
est due to successes in incorporating non-linear phenomena [Barbič
and James 2005; An et al. 2008; Li et al. 2014].

Subspace methods replace the N nodal degrees of freedom in a
deformable body with a subspace of r basis vectors. It has been
widely observed that when r � N , a broad span of relevant defor-
mations can still be efficiently captured. Inevitably, deformations
that are not well-captured by the subspace arise, particularly when
novel loadings are applied that were not accounted for during sub-
space construction.

A variety of strategies have been devised to address this limitation.
The basis vectors usually have global support, so domain decom-
position techniques, also known as substructuring techniques, have
been used to localize their influence and reduce the likelihood that
a novel local deformation will trigger a non-physical, global ar-
tifact [Barbič and Zhao 2011; Kim and James 2011; Yang et al.
2013]. To avoid confusion with other decompositions of the simu-
lation domain that we use in this paper, we will refer to these more

specifically as “skeletal decomposition” techniques.

Many enrichment techniques have also been proposed, such as the
use of approximate, analytic Boussinesq solutions [Harmon and
Zorin 2013], or the construction of a large database that is used
to build a custom subspace model at every frame [Hahn et al. 2014;
Xu et al. 2014b; Teng et al. 2014]. While these methods are suc-
cessful at making subspace methods more general, they can still
be defeated by novel deformations that are not well-captured by
the Boussinesq approximation, or not present in the database. Our
method complements these existing ones; it can be activated at the
moment that they fail.

Our method is based on static condensation, an algorithm that has
been known in structural mechanics and civil engineering for some
time [Guyan 1965; Irons 1965; Wilson 1974] and was originally de-
veloped for static vibration analysis, i.e. the eigenmodes of a struc-
ture. For this reason, the procedure is also sometimes referred to as
“eigenvalue economization” [Leung 1978]. Practitioners are nat-
urally also interested in dynamics, so dynamic condensation was
developed to take inertial effects into account [Leung 1978; Paz
1989]. In graphics, we are by no means the first researchers to
leverage this technique, as it was used successfully by Bro-Nielsen
and Cotin [1996] for real-time surgery. More recently, it was lever-
aged successfully in the context of physically-based skinning [Gao
et al. 2014], where a very nice connection to the Steklov-Poincaré
operator was also drawn, and was applied in a novel material opti-
mization context by Xu and colleagues [2014a]. Related techniques
exist that also explore the possibility of “surface-only” volumetric
simulations [James and Pai 2003].

Our work differs from the two most related graphics works [Bro-
Nielsen and Cotin 1996; Gao et al. 2014] in two key ways. First,
due to the presence of an expensive matrix inverse, they either per-
form the condensation as a pre-process or build a special material
model whose inverse is easier to compute. We show that by leverag-
ing fast subspace inverses, condensation can be performed quickly
and dynamically at run-time for an arbitrary material.

Second, they assume that the surface degrees of freedom (DOFs)
are the most important ones, and use condensation to project away
the interior DOFs. Our method allows any subset of nodes to be
designated as important, allows these designates to be changed at
every frame, and can quickly project away the complexity of their
complement. This distinction is significant, because in the case of
local, non-trivial contacts, DOFs on the interior of the mesh can
play a significant role in the appearance of the final deformation,
and should not always be be projected away. Our general approach
allows any subset of interior DOFs to be simulated as necessary,
and the surface-only variant becomes a special case. We elaborate
on these distinctions in the next section.

3 Combining Full Space and Subspace Sim-
ulations

Throughout this paper, we will use the following notation. Bold
lowercase symbols denote a vector, e.g. f , while bold uppercase de-
notes a matrix, e.g. K. Unbolded symbols represent scalars. The
reserved symbol N represents the full-order rank of a mesh, i.e. the
number of unconstrained vertices in a tetrahedral mesh, and the
symbol r denotes the subspace rank. The matrix U ∈ R3N×r then
represents the subspace basis that efficient operations are performed
in. Subspace quantities are denoted with a tilde, such as f̃ = UT f ,
which is in Rr , and K̃ = UTKU, which is in Rr×r .

3.1 Static Condensation

We will first review the basics of static condensation before describ-
ing our novel variant. For consistency, we adhere to the notation of
Bro-Nielsen and Cotin [1996] where possible. Let Ku = f be
the linearized, quasistatic system that models a solid object. Here,
K ∈ R3N×3N , u ∈ R3N , and f ∈ R3N . If we reorder the vertices
so that the external surface vertices (Ve) come before the internal
vertices (Vi), we can rewrite the system as a block structure:[

Kee Kei

Kie Kii

] [
ue

ui

]
=

[
fe
fi

]
(1)

Here, e indicates external (i.e. surface) vertices and i indicates in-
ternal vertices, where |Ve| + |Vi| = N . The Kie ∈ R3|Vi|×3|Ve|

and Kei ∈ R3|Ve|×3|Vi| blocks represent the couplings between the
two sets. By using 2 × 2 block Gaussian elimination, we obtain a
system that only involves the surface vertices,

K∗eeue = f∗e , (2)

where

K∗ee = Kee −KeiK
−1
ii Kie (3)

f∗e = fe −KeiK
−1
ii fi. (4)

Eqn. 3 is the well-known Schur complement, a widely used expres-
sion in domain decomposition, and Eqns. 3 and 4 together form its
standard application. After solving for ue, if ui is desired, it can
still be retreived via

ui = K−1
ii (fi −Kieue). (5)

However, if only the external surface positions ue are needed, the
degrees of freedom of the internal vertices have been condensed
away. In the case of linear materials, both Eqn. 3 and the KeiK

−1
ii

term in f∗e can be precomputed and reused at runtime [Bro-Nielsen
and Cotin 1996]. The runtime cost is then drastically reduced, as
the inverse at runtime now depends on |Ve|, the number of surface
vertices, not N , the number of total vertices. Adding dynamics
is then a straightforward application of the same block reordering
to the mass and damping matrices, M and C (see §2.4.2 in [Bro-
Nielsen and Cotin 1996]).

Discussion: Static condensation works best in the context of lin-
ear materials. In the non-linear case, K is no longer constant and
becomes K(u), and repeatedly computing the Kii(u)

−1 in Eqs. 3
and 4 can be prohibitively expensive. Some progress has been made
on this limitation, as Gao and colleagues [2014] recently formulated
an ex-rotated (extrinsically rotated) material model that is specifi-
cally tailored to efficiently approximate Kii(u)

−1. We instead take
this technique in a different direction. Broadly, the vertices can be
partitioned arbitrarily for any purpose, not just according to the in-
ternal and external vertices. The question we answer in the affirma-
tive is: is it possible to partition the vertices so that a select few are
simulated in the full space, while the remaining are simulated in a
subspace?

Partition Oracle: The issue of how the vertices are divided into full
space and subspace regions is a separate question that we delegate
to an external partition oracle. We will propose several oracles
in §4.2, but for now will put this issue aside and describe a generic
condensation technique that is not dependent on the specifics of any
particular oracle.

3.2 Subspace Condensation

The main bottleneck of static condensation is computing the in-
verse, K−1

ii (u) ∈ R3|Vi|×3|Vi|. Subspace methods excel at

quickly inverting compact approximations to these kinds of matri-
ces, K̃−1

ii (ũ) ∈ Rr×r . Their applicability looks promising, and
would enable static condensation for non-linear materials, but sev-
eral non-trivial issues must be addressed to make the algorithm
practical.

We define full vertices as those undergoing full space simulation,
and denote their set as Vf . The rest are referred to as subspace
vertices and denoted as Vs. Again, we assume that some exter-
nal partition oracle has provided these labels. Let us consider qua-
sistatic, non-linear deformations without any external forces. As-
suming that Vf is not empty, we reorder the vertices and write the
system Ku = f as[

Kff Kfs

Ksf Kss

] [
uf

us

]
=

[
ff
fs

]
, (6)

which can then be repeatedly solved iteratively inside a Newton
solver. Here we have abbreviated the non-linear terms K(u) = K,
Kff (u) = Kff , and so on, for brevity. The dimensions are then:
uf , ff ∈ R3|Vf |, us, fs ∈ R3|Vs|, Kff ∈ R3|Vf |×3|Vf |, Kss ∈
R3|Vs|×3|Vs|, Kfs = KT

sf ∈ R3|Vf |×3|Vs|. We now want to solve
for uf and us, and applying the condensation technique requires
the inversion of Kss, much like in Eqns. 3 and 4.

A Matrix Formulation: Fast subspace inverses can be directly, but
naı̈vely, applied to this problem. For example, an analog to Eqn. 4,

f∗f = ff −KfsK
−1
ss fs, (7)

can incorporate the subspace matrix K̃−1
ss (ũ) thusly,

f∗f ≈ ff −Kfs

(
UsK̃

−1
ss (ũ)UT

s

)
fs, (8)

where Us ∈ R3|Vs|×r is a basis matrix composed of the rows
of U that correspond to the vertices in Vs. Only a small matrix
now needs to be inverted, K̃−1

ss (ũ) ∈ Rr×r , which is quickly
done in the subspace, the result is expanded into a larger matrix
UsK̃

−1
ss (ũ)UT

s ∈ R3|Vs|×3|Vs|, and used to compute f∗f ∈ R3|Vs|.
An analogous method can be used for Eqn. 3.

Unfortunately, this formulation is highly inaccurate. The
KfsK

−1
ss fs ∈ R3|Vf | term in Eqn. 7 as a corrective force vector

to ff , so it is reasonable to expect that the vector K−1
ss fs ∈ R3|Vs|

lies in the column span of Us ∈ R3|Vs|×r . That corrective force,
or something similar, is exactly what was input into the SVD that
constructed the subspace Us.

However, the UsK̃
−1
ss (ũ)UT

s term in in Eqn. 8 is an expanded ver-
sion of K−1

ss , the Jacobian of fs. While Us may span the subspace
of important fs values, there is no reason to believe that it also spans
its Jacobian. If this were true, it would imply that K−1

ss has low
rank, and that Us spans its dominant eigenvectors. Simple numeri-
cal experiments verify that neither of these assumptions are true; if
Kss were not full rank, its inverse would not exist.

Instead, it is clear that K̃−1
ss (ũ) should not be expanded, as it is only

a meaningful Jacobian of the reduced force f̃s. Therefore, we need
to structure our algorithm so that not only the inverse is computed
quickly, but that the result is carried forward in the subspace until a
reduced version of the entire corrective force, K−1

ss fs, is obtained.

A Vector Formulation: We instead examine Eqn. 6 by expanding
it from its block form into

Kffuf +Kfsus = ff

Ksfuf +Kssus = fs.

If we project the entire second equation using UT
s , and perform the

substitution us ≈ Usũs on both equations, we obtain

Kffuf +KfsUsũs = ff (9)

UT
s Ksfuf + K̃ssũs = f̃s. (10)

The subspace regions now communicate with the full space through
ũs, namely the KfsUsũs product, not through a rank-deficient
expansion of the K̃−1

ss matrix. The system can be returned to block
form: [

Kff KfsUs

UT
s Ksf K̃ss

] [
uf

ũs

]
=

[
ff
f̃s

]
. (11)

Solving this new system (Eqn. 11) for uf and ũs yields exactly
the subspace-to-full space coupling that we seek. We perform all
computations in the subspace until a subspace displacement vector
ũs is obtained. Expanding ũs using Us then uses the basis matrix
for its intended purpose. In order to solve the system efficiently,
one additional component is needed, which we will now describe.

Efficient Force Evaluation: It is not immediately obvious how
to efficiently compute f̃s, the internal forces on the subspace ver-
tices. A brute-force method would be to compute and project the
full space force fs [Krysl et al. 2001]. However, this would make
its evaluation O(N), a complexity that we explicitly want to avoid.

One approach would be to quickly approximate the force over all
vertices, f̃ ∈ Rr , using an existing subspace method [Barbič and
James 2005; An et al. 2008], and subtract off the forces from the
full space vertices, ff , which should not participate in the sub-
space solve. We can express this as f̃s ≈ f̃ − UT

f ff , where
Uf ∈ R3|Vf |×r denotes the rows of U that correspond to the full
vertices, Vf . However, since the full space force can contain com-
ponents that are not well-captured by Uf , the projection produces
unusable results.

Fortunately, we are able to devise an efficient, alternative, cubature-
based [An et al. 2008; von Tycowicz et al. 2013] method. First, we
only evaluate the cubature tets that lie inside the set of subspace
tets, Ts. Second, we project the forces exerted by the tets on the
boundary between the full space and subspace region, which are
already available from evaluating ff . Unlike in the previous case,
these boundary forces are very likely to be well-captured by the ba-
sis, as they have already been partially constrained to the subspace
during previous timesteps. The remainder of the full space region
(Fig. 3, red), whose out-of-basis projections will likely just produce
locking artifacts, is correctly ignored. More formally:

f̃s ≈
∑
j∈Vb

UT
j fj +

∑
i∈Tc

δ · wi ·UT
i fi(ũ)

{
δ = 1 if i ∈ Ts

δ = 0 if i ∈ Tf
.

(12)

In the first summation, Vb is the set of subspace vertices on the
boundary between the full space and subspace regions, fj is the
internal force on the jth boundary vertex exerted by its adjacent
boundary tets, and Uj is the rows of U that correspond to that
vertex. The second summation is the cubature approximation [An
et al. 2008], where Tc is the set of cubature tets, wi denotes the
weight on cubature tet i, Ui the rows of U that correspond to the
vertices in tet i, and fi is the internal force function evaluated at
tet i. Fig. 3 shows a 2D illustration of this process. The total time
to evaluate Eqn. 12 is O(|Tc| + |Vb|), which is proportional to the
complexity of the subspace and the currently activated full vertices.
The stiffness matrix on the subspace vertices K̃ss can be computed
in the same manner. Any O(N) dependency on the full complexity
of the model has been removed.

Figure 3: A 2D illustration
of Eqn. 12. The f̃s vector
is computed by projecting the
force exerted by boundary tets
(yellow) onto the subspace re-
gion (blue) and adding the
weighted forces from the cu-
bature tets (green) that reside
completely in the subspace re-
gion (blue).

Solving the System: While it is be possible to apply the traditional
Schur complement to Eqn. 11, it is both undesirable and unneces-
sary. We always want to solve for ũs, as it is needed to update the
surface positions in the subspace region. Unlike the classic static
condensation case, ũs is very small, so computing it in addition
to uf does not add prohibitive complexity. This also allows us to
trivially apply the method to non-linear materials, as we can simply
solve a few Newton iterations of ũs.

We initially attempted to solve Eqn. 11 using a sparse direct solver,
but matrix assembly was taking up 25∼30% of the entire simu-
lation time, so we switched to preconditioned conjugate gradient
(PCG) instead. We use a Jacobi preconditioner for the upper di-
agonal block, and precondition the lower diagonal block with its
explicit inverse (K̃−1

ss). In our examples the solver typically con-
verges to a relative error of 0.01 in fewer than 100 iterations. Using
a more sophisticated preconditioner such as Incomplete Cholesky
(IC) is difficult, because each factorization sees limited re-use be-
fore Vf changes and it has to be recomputed. Ideally a multigrid
method would be applied to this system, but we leave this problem
as future work.

The entire solution procedure now depends on the rank r of the
subspace, and |Vf |, the number of active full space vertices. The
KfsUs product and its transpose in Eqn. 11 at first appears to be
O(N × r), but Kfs is very sparse, and contains O(|Vf |) non-zero
entries. Since Kfs encodes the coupling between O(|Vf |) vertices
and the rest of the mesh, this sparsity is to be expected. The over-
all solver is outlined in Algorithm 1, and it is clear that no O(N)
computation is needed at any stage.

Algorithm 1 Integration using subspace condensation

1: construct active full space region Vf

2: for i := 1 to n do . n = # of Newton iterations
3: if Vf 6= ∅ then
4: initialize ũs = 0
5: compute ff ,Kff ,U

T
s Ksf

(
= (KfsUs)

T
)

6: compute f̃s and K̃ss using cubature (Eqn. 12)
7: solve Eqn. 11 for uf and ũs.
8: update full space region using uf

9: update subspace region using ũs

10: else
11: perform subspace-only Newton step over entire mesh
12: end if
13: end for

4 Physics-Based Skinning

Our simulation technique is general enough to be applied to any
subspace deformable body simulation. As a proof-of-concept,
we have applied it to the problem of novel external collisions in

physics-based skinning. We will describe the features of the skin-
ning technique here, while noting that the subspace condensation
technique does not fundamentally rely on any of them.

4.1 Basis Construction

We elected to use a skinning correction basis, similar to that used by
EigenSkin [Kry et al. 2002] and the kinematic correction employed
by Hahn et al. [2014]. The basis is constructed by first subtract-
ing off the skinning transformation from the simulation result, and
then performing PCA. The subspace then serves as a physics-based
corrective to the purely “kinematic” skinning model. Keeping the
notation similar to the latter paper where possible, ϕ denotes a skin-
ning function, and the final deformed, world-space position x for a
single vertex m is

xm = xm + um

= ϕ(p,xm + um) = R(xm + um) + t.

Here, p is the current skeleton configuration, e.g. as expressed by
joint angles, xm denotes the rest pose, um is the world-space dis-
placement, and um is the same displacement prior to the skinning
transformation. R and t together represent the affine transforma-
tion determined by the skinning function. In order to obtain this
transform, we used dual-quaternion skinning [Kavan et al. 2007]
and volumetric heat diffusion [Baran and Popović 2007] to propa-
gate the weights throughout the tetrahedral mesh. One of the nice
properties of dual-quaternion skinning is that R is guaranteed to
be a pure rotation matrix. This will later be used to simplify the
skeletal decomposition forces.

In order to build our basis U, we first obtained samples of the global
displacement vector u using full space simulations over the entire
mesh. We then inverted the skinning transform ϕ−1 to pull each u
back to its untransformed version u. Our subspace basis U is then
constructed by performing a truncated PCA over these samples of
u. The world-space, full space position is then computed as:

x = ϕ(p,x+Uũ). (13)

As observed in previous work, this basis is significantly more flex-
ible than the one obtained by performing PCA directly over u. The
skinning transforms have been factored out, so the correctives that
remain can be applied over a wide range of scenarios.

Skeletal Decomposition: The role of the skinning transform ϕ in
the basis could potentially complicate the use of skeletal decom-
position techniques, such as the one from Kim and James [2011].
In that work, penalty springs were inserted between bone-centered
domains to ensure their compatibility. A 3rd-order “fast sandwich
transform” (FST) tensor had to be introduced to efficiently incorpo-
rate each domain’s local rotation into the subspace computation.

In our work, we found that the choice of a skinning correction basis
removes the need for any special transforms. To see why this is so,
we examine the penalty spring energy Em between two domains,
i and j. Let vm be an interface vertex between these two domains
with respective positions of xm

i and xm
j . The spring energy is then

written as:

Em =
1

2
k (xm

i − xm
j)T (xm

i − xm
j) (14)

=
1

2
k [ϕ(p,xm + um

i)− ϕ(p,xm + um
j)]T

[ϕ(p,xm + um
i)− ϕ(p,xm + um

j)]
(15)

=
1

2
k [Rm

j (Um
i ũi −Um

j ũj)]
T

[Rm
i (Um

i ũi −Um
j ũj)].

(16)

Here k is the spring constant, Um ∈ R3×r is the basis for vertex
vm, and Rm

i and Rm
j are the rotations for the vertex in partitions

i and j. The solver then requires the gradient (i.e. the spring force)
and the Hessian of Em with respect to ũi:

∂Em

∂ũi
= k(Um

i)T (Rm
j)TRm

i (Um
i ũi −Um

j ũj) (17)

∂2Em

∂ũ2
i

= k(Um
i)T (Rm

j)TRm
i Um

i . (18)

In the previous work [Kim and James 2011], the composition of ro-
tations, (Rm

i)TRm
j , was then fed into an FST tensor. However, un-

der the current basis, the skinning guarantees the two rotations will
always be the same, Rm

i = Rm
j , so the composition (Rm

i)TRm
j is

always the identity matrix. The gradient then becomes,

∂Em

∂ũi
= k((Um

i)TUm
i ũi − (Um

i)TUm
j ũj), (19)

where everything aside from ũi and ũj can be precomputed, and
the Hessian resolves to a constant matrix,

∂2Em

∂ũ2
i

= k(Um
i)TUm

i . (20)

Other gradient and Hessian terms can be deduced similarly.

4.2 Contact and Dynamics Oracles

We applied subspace condensation to the problem of contact han-
dling in both quasistatic and dynamic simulations, and used the
penalty-based collision force model from McAdams et al. [2011]
for both external and self-collisions.

Contact Oracle: As mentioned in §3.1, some form of partition or-
acle is needed to label the full space and subspace regions. When
contacts are the main source of novel deformations, it is natural to
build an oracle that is based on collisions. We labelled the vertices
that are in collision as belonging to the full space region, and ad-
ditionally applied a simple, distance-based criterion. Specifically,
we conducted a breadth-first search that started from each colliding
vertex and terminated when the vertices within an influence radius
ρ of the starting vertex had been included. All of the vertices en-
countered during this search were added to the full space region.
Consequently, all collision-related force and Hessian terms only
exist in the ff and Kff terms in Eqn. 11. The radius ρ provided
a speed-quality tradeoff that will be discussed in detail in §5.

When the mesh is recovering from a complex contact, we found
that it is inadvisable to deactivate the full space region as soon as
no collisions are detected. The subspace basis has no knowledge
of the deformation created by the collision, and can have trouble
generating the detailed, localized, restoring force necessary to un-
tangle a configuration, e.g. a fold that formed in the palm of a hand.
Therefore, the oracle was modified to also include the vertices dis-
covered by the breadth-first search from the previous frame. After
two frames, the search results time out, which allow the full space
region to shrink.

Dynamics Oracle: Our subspace condensation approach can be
applied to dynamics simulation by adding another modification to
the oracle. Even if a body is no longer in collision, accelerations
caused by the contact forces can lead to interesting deformations
that are not captured by the subspace basis. Therefore, when simu-
lating dynamics, the oracle only folds a full space region back into
the subspace if both the average velocity and acceleration for the
full vertices are below a certain threshold. We found this simple
strategy to be effective, though somewhat conservative.

(a) Full space solution (b) Subspace Condensation (ρ = .25) (c) Subspace Condensation (ρ = .08) (d) Subspace-only solution

Figure 4: For (b) and (c), activated full space region is shown in red in the inset. While the deformation in (c) is less pronounced than the
ground truth, the contact is still resolved. (d) Subspace-only simulation cannot resolve the contact. Locking artifacts are circled in red.

5 Results

We use Newton’s method as our non-linear solver and implicit Eu-
ler for our time discretization. Our full rank and subspace con-
densation solvers use Jacobi-preconditioned Conjugate Gradients
for solving the linearized systems (Table 1). Dense linear algebra
routines, such as the direct subspace inverse, use the Eigen [Guen-
nebaud et al. 2010] library. Except for Sullivan (Fig. 8), all simu-
lations were run on a relatively modest 8-core, 2.4 Ghz MacBook
Pro with 8 GB of RAM using 8 threads. OpenMP was used to par-
allelize the force and stiffness computation across different skeletal
domains, as well as collision detection in both the subspace and
full space simulations. All of our results used the co-rotational ma-
terial from McAdams et al. [2011]. A performance summary of all
the examples is shown in Table 2. The reported influence radii all
assume that the mesh has been normalized to a unit cube.

Example Influence Radius Max. PCG
Iterations

Avg. PCG
Iterations

Capsule 0.25 126 65
0.08 24 15

Hand 0.046 86 21
Cheb 0.39 76 29

Sullivan 0.03 (walk) 41 17
0.048 (belly pat) 53 17

Table 1: PCG iterations for each example. All examples converged
to a relative error of 0.01. Even with a simple Jacobi precondi-
tioner, the solver usually converges quickly.

Capsule: As an initial test case, we simulated a capsule containing
29,343 vertices and 160,960 tetrahedra. We rigged the capsule with
2 bones and trained the subspace using 12 bending poses, producing
a basis with rank 11. Fig. 4(a) shows the full space simulation of
the capsule bending and colliding against a pipe. The subspace-
only simulation cannot resolve the novel contact deformation, so
we observe severe locking (Fig. 4(d)).

Our subspace condensation method easily handles this situation by
adaptively activating full space vertices near the contact region.
With a small influence radius (ρ = 0.08) we obtain a useful ap-
proximation to the full solution with an average speedup of 76×
(Fig. 4(c)). Increasing the ρ to 0.25 refines the approximation fur-
ther (Fig. 4(b)) and still maintains an average speedup of nearly an
order of magnitude (9.4×). In the worst case, 50.6% of the vertices
are simulated in full space, but we still see a 3.5× speedup.

Hand: The hand mesh in Figs. 5 and 9 consists of 95,746 ver-
tices and 458,071 tetrahedra, and is rigged with 10 bones. The
subspace was constructed using a simple, sparse sampling of 53
snapshots obtained by actuating each bone in isolation. The basis

(a) Subspace Condensation (b) Subspace-only solution

Figure 5: Comparison between our approach with subspace-only
simulation on a highly novel contact configuration. The subspace-
only solution produces significant locking artifacts, circled in red.

has no knowledge of multiple bones moving in tandem. The total
rank of the subspace bases, summed over all the skeletal domains, is
156. Self-collisions were taken into account during training, so we
used these samples to compute self-collision cubature (SCC) [Teng
et al. 2014] in order to quickly compute similar joint collisions at
runtime. The SCC was quickly computed using the NN-HTP algo-
rithm [von Tycowicz et al. 2013].

We then put the hand through a quasistatic, calisthenic exercise reg-
imen. The complete sequence is shown in the supplement video.
The subspace-only simulation easily handled different combina-
tions of individual joint motions as long as there was no novel con-
tact. However, it immediately failed when novel collisions occurred
(Fig. 5(b)). In contrast, our approach was able to resolve arbitrary
contact by adaptively activating full space vertices near the con-
tact areas (Fig. 5(a)). Collisions seen during training were handled
using self-collision cubature unless they overlapped with the full
space region. In this case, the entire region was treated as a novel
contact. On average, our simulation ran at 0.28 s/frame, acceler-
ating the full space simulation by 48×. Even in the worst case,
the most novel collision-induced deformation was computed 8.1×
faster than a full space simulation over the entire mesh. Fig. 9 shows
the time per frame, as well as the percentage of vertices being sim-
ulated in full space, for a fist clenching sequence. The simulation
time is clearly proportional to the size of the full space region.

To test for convergence of our approach, we compared the simula-
tion errors of using different influence radii against the full space
simulation solution for a subsequence of the hand motion (Fig. 7).

We used relative L2 error. It is clear that the error decreases as the
influence radius increases.

Figure 6: In reading order, Cheb’s head is simulated in full space
(inset, in red) even after the walls are removed, because acceler-
ations still produce out-of-basis deformations. Once the dynamics
damp out (lower right), the subspace-only simulation re-activates.

Figure 7: The relative error of our approach using different influ-
ence radii, plotted with different colors, compared to the full simu-
lation. Full space regions start appearing at frame 9. The relative
error clearly decreases as the radius increases.

Cheb: The “Cheb” mesh [Baran and Popović 2007], shown in
Figs. 1, 2 and 6, contains 26,652 vertices and 123,464 tetrahedra,
and is rigged with 17 bones. We constructed the subspace using
38 evenly spaced samples of a walk cycle. The total rank of the
subspace basis, summed over all the skeletal domains, is 301. SCC
was used to resolve the predictable collisions between Cheb’s feet.

As an extreme collision test, we had three walls gradually crush
Cheb’s head. The forces caused extreme locking in the subspace-
only simulation (Fig. 2), while our simulation gracefully handled
the deformation by activating full space computation in half of the
vertices (Fig. 1). A large influence radius was needed in this exam-
ple (ρ = 0.39) due to the geometric and material properties of the
model: an impulse at the tip of the ear propagates quickly through

the entire ear. On average, this difficult scenario was accelerated by
a factor of 4.8×. Even when half of the mesh was being simulated
in full space, we saw a 1.9× speedup; the other half of the mesh
was simulated in the subspace for a negligible additional cost.

Dynamics were also enabled in this example, so the accelerations
caused by the contact forces also induced out-of-basis deforma-
tions. The dynamics oracle correctly kept the head in full space
until the motion had sufficiently damped out (Fig. 6).

(a) No collision handling (b) Subspace-only solution

(c) Subspace condensation (d) Visualization of the full region

Figure 8: Comparison of our approach with subspace-only simula-
tion in the presence of a non-local contact. The subspace-only sim-
ulation produces a locking artifact that causes the thumb to deflate
unnaturally, circled in red. Our subspace condensation technique
activates a subset of full space tets (in red, lower right) that re-
solves the novel contact while still preserving much of the speedup
from the subspace simulation. c©Disney/Pixar

Sullivan: We tested our algorithm on a production model, Sullivan
from Monsters University. The mesh contains 117,212 vertices and
611,348 tetrahedra, and is rigged with 52 bones. Similar to the hand
example, the subspace is constructed from 875 snapshots obtained
by actuating each bone in isolation. The total rank of the subspace
is 1345. Simulations were run on an 8-core, 3.0 Ghz MacBook Pro
with 16 GB of RAM using 8 threads. Local collisions such as those
near the shoulders and elbows are handled using SCC.

As a normal use case, we put Sullivan through a walk cycle. The
result is shown in the supplemental video. Subspace condensation
is used to handle occasional collisions between the tail, feet, and
thighs. Only a small influence radius (ρ = 0.03) is needed, and the
overall performance is close to that of a subspace-only simulation.

We then ran a more challenging test where Sullivan pats his belly.
Without collision handling, his right hand penetrates his body
(Fig. 8(a)). The subspace-only simulation tries to resolve the col-
lision using global deformation modes, which result in artifacts
around the hand and legs (Fig. 8(b)). A slightly larger influence
radius (ρ = 0.048) is used so that the entire hand is simulated in
full space (Figs. 8(c) and 8(d)). Our method correctly handles this
novel, non-local self-collision while still maintaining performance
that is on the same order as the subspace-only simulation.

Figure 9: Simulation time per frame for a fist clenching and unclenching. The fingers clench in a different sequence from which they unclench,
so many novel collision configurations that were not seen during training are encountered. The full space regions are drawn in red in the
gray silhouette images. The simulation time is clearly proportional to the size of the active full space.

Example Fullspace
Time/Frame

Subspace
Time/Frame

Best Case
Speedup

Influence
Radius

Average Worst Case
Fullsim % Time/Frame Speedup Fullsim % Time/Frame Speedup

Capsule 7.95 s 0.015 s 506× 0.25 18.6% 0.84 s 9.4× 50.6% 2.7 s 3.5×
0.08 2.6% 0.11 s 76× 10.2% 0.42 s 22×

Hand 13.54 s 0.1 s 135× 0.046 1.7% 0.28 s 48× 14.3% 1.67 s 8.1×
Cheb 3.69 s 0.055 s 67× 0.39 26% 0.77 s 4.8× 49.4% 1.90 s 1.9×

Sullivan 19.14 s 0.37 s 52× 0.03 (walk) 0.4% 0.83 s 23× 2.6% 1.37 s 14×
0.048 (pat) 5.7% 1.26 s 15× 11.4% 2.03 s 9.4×

Table 2: Performance of our subspace condensation algorithm compared to full space simulations over the entire mesh, and subspace-only
simulations. On the right, we report the % of vertices that were activated in full space (Fullsim %), the time/frame and the speedup averaged
over the entire sequence as well as in the worst, most complex frame. Note that Sullivan is run on a different machine from the other examples
and ρ=0.03 is used for the walk sequence while ρ= 0.048 is used for the belly-pat sequence.

6 Limitations and Future Work

We have presented an efficient algorithm that addresses a key lim-
itation of subspace simulations. When an out-of-basis event is
encountered, we activate full space computation on-the-fly in the
neighborhood of the event. Our method is fast, generic and applies
to non-linear materials.

While our condensation algorithm allows subspace acceleration to
be applied to new scenarios, some of the usual limitations of sub-
space methods still remain. If there are global deformations that
are not well-captured by the subspace, some artifacts can appear.
For example, collisions that produced near-rigid translations of the
capsule sometimes produced slight swimming in the checkerboard
texture if an equivalent quasi-translation was not captured by the
basis. So, while basis construction becomes less onerous with our
method, the subspace must still be constructed with care.

Our method can support any oracle, but the quality of that oracle
will directly determine the amount of acceleration experienced by
the simulation. We have proposed two oracles based on spherical
distance and global velocity and acceleration. More sophisticated
approaches are almost certainly possible, and their design is a di-
rection for future work.

We used penalty forces to resolve collisions, but full space adaptiv-
ity opens the door to constraint mechanisms that subspace methods
have had trouble with in the past. The degrees of freedom needed
for hard constraints can now be added on the fly, and enable such

phenomena as adhesive contact [Gascón et al. 2010].

Finally, the coupling mechanism at the core of our method arises
from applying a projection to a specific matrix partitioning. This
projected partition approach could be applied in other coupling con-
texts as well, such solid to fluid coupling. Consequently, subspace
condensation may provide a natural method of coupling subspace
deformation and subspace fluid simulation [Wicke et al. 2009; Kim
and Delaney 2013] methods.

Acknowledgements

The authors would like to thank the anonymous reviewers for their
thorough and conscientious feedback. YT and TK are supported by
a National Science Foundation CAREER award (IIS-1253948).

References

AN, S. S., KIM, T., AND JAMES, D. L. 2008. Optimizing Cu-
bature for Efficient Integration of Subspace Deformations. ACM
Trans. Graph. 27, 5 (Dec.), 165.

BARAN, I., AND POPOVIĆ, J. 2007. Automatic rigging and ani-
mation of 3d characters. In ACM Trans. Graph., vol. 26, 72.

BARBIČ, J., AND JAMES, D. L. 2005. Real-Time Subspace In-
tegration for St. Venant-Kirchhoff Deformable Models. ACM
Trans. on Graphics 24, 3 (Aug.), 982–990.

BARBIČ, J., AND ZHAO, Y. 2011. Real-time large-deformation
substructuring. ACM Trans. on Graphics 30.

BATHE, K.-J. 2007. Finite Element Procedures. Prentice Hall.

BRO-NIELSEN, M., AND COTIN, S. 1996. Real-time volumetric
deformable models for surgery simulation using finite elements
and condensation. In Computer graphics forum, vol. 15, Wiley
Online Library, 57–66.

GAO, M., MITCHELL, N., AND SIFAKIS, E. 2014. Steklov-
poincaré skinning. In Eurographics/ACM SIGGRAPH Sympo-
sium on Computer Animation, 139–148.

GASCÓN, J., ZURDO, J. S., AND OTADUY, M. A. 2010.
Constraint-based simulation of adhesive contact. In Proc. of the
ACM SIGGRAPH / Eurographics Symposium on Computer Ani-
mation.

GIBSON, S. F., AND MIRTICH, B. 1997. A Survey of Deformable
Models in Computer Graphics. Tech. Rep. TR-97-19, Mitsubishi
Electric Research Laboratories, Cambridge, MA, November.

GUENNEBAUD, G., JACOB, B., ET AL., 2010. Eigen v3.
http://eigen.tuxfamily.org.

GUYAN, R. J. 1965. Reduction of stiffness and mass matrices.
AIAA journal 3, 2, 380–380.

HAHN, F., THOMASZEWSKI, B., COROS, S., SUMNER, R. W.,
COLE, F., MEYER, M., DEROSE, T., AND GROSS, M. 2014.
Subspace clothing simulation using adaptive bases. ACM Trans.
Graph. 33, 4 (July), 105:1–105:9.

HARMON, D., AND ZORIN, D. 2013. Subspace integration with
local deformations. ACM Trans. Graph. 32, 4, 107.

HAUSER, K. K., SHEN, C., AND O’BRIEN, J. F. 2003. Interactive
deformation using modal analysis with constraints. In Graphics
Interface, vol. 3, 16–17.

IRONS, B. 1965. Structural eigenvalue problems-elimination of
unwanted variables. AIAA journal 3, 5, 961–962.

JAMES, D. L., AND PAI, D. K. 2003. Multiresolution green’s func-
tion methods for interactive simulation of large-scale elastostatic
objects. ACM Trans. Graph. 22, 1 (Jan.), 47–82.

KAVAN, L., COLLINS, S., ŽÁRA, J., AND O’SULLIVAN, C. 2007.
Skinning with dual quaternions. In Proceedings of the Sympo-
sium on Interactive 3D Graphics and Games, ACM, 39–46.

KIM, T., AND DELANEY, J. 2013. Subspace fluid re-simulation.
ACM Trans. Graph. 32 (July).

KIM, T., AND JAMES, D. L. 2009. Skipping steps in deformable
simulation with online model reduction. ACM Trans. Graph. 28,
5 (Dec.), 123:1–123:9.

KIM, T., AND JAMES, D. L. 2011. Physics-based character skin-
ning using multi-domain subspace deformations. In ACM SIG-
GRAPH/Eurographics Sym. on Computer Animation, 63–72.

KRY, P. G., JAMES, D. L., AND PAI, D. K. 2002. EigenSkin:
Real Time Large Deformation Character Skinning in Hardware.
In ACM SIGGRAPH Sym. on Computer Animation, 153–160.

KRYSL, P., LALL, S., AND MARSDEN, J. E. 2001. Dimensional
model reduction in non-linear finite element dynamics of solids
and structures. Int. J. Numer. Meth. Eng. 51, 479–504.

LEUNG, A. Y.-T. 1978. An accurate method of dynamic conden-
sation in structural analysis. Int. J. Numer. Meth. Eng. 12, 11,
1705–1715.

LI, S., HUANG, J., DE GOES, F., JIN, X., BAO, H., AND DES-
BRUN, M. 2014. Space-time editing of elastic motion through
material optimization and reduction. ACM Transactions on
Graphics 33, 4.

MCADAMS, A., ZHU, Y., SELLE, A., EMPEY, M., TAMSTORF,
R., TERAN, J., AND SIFAKIS, E. 2011. Efficient elasticity
for character skinning with contact and collisions. ACM Trans.
Graph. 30, 4 (July), 37:1–37:12.

NEALEN, A., MULLER, M., KEISER, R., BOXERMAN, E., AND
CARLSON, M. 2005. Physically based deformable models in
computer graphics. In Eurographics: State of the Art Report.

PAZ, M. 1989. Modified dynamic condensation method. Journal
of Structural Engineering 115, 1, 234–238.

PENTLAND, A., AND WILLIAMS, J. 1989. Good vibrations:
Modal dynamics for graphics and animation. In Computer
Graphics (Proceedings of SIGGRAPH 89), 215–222.

SIFAKIS, E., AND BARBIČ, J. 2012. Fem simulation of 3d de-
formable solids: a practitioner’s guide to theory, discretization
and model reduction. In ACM SIGGRAPH Courses, 20:1–20:50.

TENG, Y., OTADUY, M. A., AND KIM, T. 2014. Simulating ar-
ticulated subspace self-contact. ACM Trans. Graph. 33, 4 (July),
106:1–106:9.

VON TYCOWICZ, C., SCHULZ, C., SEIDEL, H.-P., AND HILDE-
BRANDT, K. 2013. An efficient construction of reduced de-
formable objects. ACM Trans. Graph. 32, 6, 213.

WICKE, M., STANTON, M., AND TREUILLE, A. 2009. Modular
bases for fluid dynamics. In ACM Trans. Graph., vol. 28, ACM,
39.

WILSON, E. L. 1974. The static condensation algorithm. Int. J.
Numer. Meth. Eng. 8, 1, 198–203.

XU, H., LI, Y., CHEN, Y., AND BARBIC, J. 2014. Interactive ma-
terial design using model reduction. ACM Trans. on Graphics.

XU, W., UMENTANI, N., CHAO, Q., MAO, J., JIN, X., AND
TONG, X. 2014. Sensitivity-optimized rigging for example-
based real-time clothing synthesis. ACM Trans. Graph. 33, 4
(July), 107:1–107:11.

YANG, Y., XU, W., GUO, X., ZHOU, K., AND GUO, B. 2013.
Boundary-aware multi-domain subspace deformation. IEEE
Transactions on Visualization and Computer Graphics.

