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Abstract

Deficient cloth-to-cloth collision response is the most serious short-
coming of most cloth simulation systems. Past approaches to cloth-
cloth collision have used history to decide whether nearby cloth
regions have interpenetrated. The biggest pitfall of history-based
methods is that an error anywhere along the way can give rise to
persistent tangles. This is a particularly serious issue for produc-
tion character animation, because characters’ bodies routinely self-
intersect, for instance in the bend of an elbow or knee, or where the
arm or hand rests against the body. Cloth that becomes pinched in
these regions is often forced into jagged self-intersections that de-
feat history-based methods, leaving a tangled mess when the body
parts separate. This paper describes a history-free cloth collision
response algorithm based on global intersection analysis of cloth
meshes at each simulation step. The algorithm resolves tangles that
arise during pinching as soon as the surrounding geometry permits,
and also resolves tangled initial conditions. The ability to untan-
gle cloth after pinching is not sufficient, because standard cloth-
solid collision algorithms handle pinches so poorly that they often
give rise to visible flutters and other simulation artifacts during the
pinch. As a companion to the global intersection analysis method,
we present a cloth-solid collision algorithm called collision flypa-
pering, that eliminates these artifacts. The two algorithms presented
have been used together extensively and successfully in a produc-
tion animation environment.

1 Introduction

Five years ago, the use of dynamically-simulated cloth by produc-
tion animation studios was a novelty. Today, it has become a neces-
sity. In production animation, cloth behavior must be plausible but
strict physical accuracy is not a requirement. In this regard, simu-
latingunconstrainedcloth is largely a solved problem[Terzopoulos
et al. 1987; Terzopoulos and Fleischer 1988; Carignan et al. 1992;
Breen et al. 1994; Provot 1995; Eberhardt et al. 1996; Baraff and
Witkin 1998; DeRose et al. 1998; Meyer et al. 2001; Choi and Ko
2002], although innovative formulations and new algorithmic effi-
ciencies will always be welcome [Ascher and Boxerman 2002].

In contrast, handling collision and contact continues to be a se-
rious problem for production cloth simulation, especially since col-
lision behavior must be almost perfect: out of tens of thousands
of vertices on a garment mesh, a single vertex wiggling for a few
frames can ruin an entire simulation run. To achieve visually flaw-
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less results, early adopters of cloth-simulation technology have re-
sorted to extensive pre-simulation tweaking of simulation parame-
ters, collision geometry, and animation, as well as a variety of post-
simulation fix-up techniques. All this extra work has made cloth
simulation very expensive and painful as an animation tool [Berney
and Redd 2000].

Successful cloth simulation methods must deal with collisions
between cloth and non-simulated objects like characters and props
as well as collisions of cloth with itself. In the case of collisions
between cloth and non-simulated objects, it is usually possible to
determine whether or not a cloth point is inside a non-simulated
object, and apply forces or impulses to keep the cloth point outside
or eject it. Consequently, the collision problem has been treated one
particle at a time using techniques that are very well known to the
computer graphics community[Terzopoulos et al. 1987; Carignan
et al. 1992; Volino et al. 1995; Baraff and Witkin 1998; Bridson
et al. 2002].

The problem of handling collisions of cloth with itself, however,
has proved more vexing. If it is discovered that a cloth surface
intersects itself, fixing the situation is not a simple matter. Given a
point on the cloth near an intersection, there is no way to determine
locally and instantaneously whether or not the particle is on the
“wrong” side and must be pushed back through.

All past approaches of which we are aware use history to decide
if a particle is on the wrong side. Bridson et al. [2002], for ex-
ample, recently described a history-based approach that takes great
care to guarantee that each new state is intersection free, provided
its predecessor state was also intersection free. Volino et al. [1995]
describes a history-based approach which makes no such guaran-
tee, but applies penalty forces to push cloth points in a direction
intended to untangle the cloth-cloth collision.

The biggest pitfall of history-based methods is that an error any-
where along the way can introduce permanent tangles: if a cloth
point is on the “wrong” side but the simulator thinks it isn’t, the
simulator will dutifully apply penalty forces to keep it on the wrong
side forever. To avoid this difficulty, we have developed what we
believe is the first collision algorithm to use global geometric analy-
sis without history to undo tangles. As a consequence, if extraordi-
nary circumstances cause a tangle, the simulator can usually resolve
it and keep going.

Given the kind of guarantees that Bridson’s method provides,
the ability to untangle cloth geometry may seem unnecessary: if
you start Bridson’s algorithm with no intersections, it will maintain
that invariant. A problem, however, is that if outside constraints
force cloth to intersect, the method can never recover. In production
animation, this happens all the time, when cloth becomes pinched
between intersecting character geometries.

Although real solid objects never intersect each other, animated
character’s bodies do so routinely, exhibiting all sorts of pathologi-
cal geometry as they move and deform (figure 1). Particularly com-
mon are deep interpenetrations as when a character’s arm sinks into
her side or knees bend sharply (figures 2 and 10). Many of these in-
terpenetrations are intended by the animators, who are animating to
the viewpoint of a particular camera, and so they cannot be avoided
or corrected without placing unacceptable constraints and artistic
limitations on the animation process. Techniques that automati-
cally prevent or correct[Cordier et al. 2002] intersections remain
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Figure 1: (right) Typical severe interpenetration of production CG characters. (left) Flypapering and GIA nonetheless deliver visually
pleasing cloth simulation results.

too expensive and unreliable for production use.
Conventional cloth/solid collision techniques do not handle in-

tersecting solids well. Cloth points that become sandwiched in ar-
eas of intersection get pulled in various directions, producing ex-
treme stretch and shear, as well as tangling. Although the pinched
areas themselves are hidden from view by the body, the effects are
visible and disastrous: the cloth elastic forces that result from the
stretch and shear can create visible artifacts such as large-scale flut-
ter, and with conventional history-dependent techniques the tangles
persist for the rest of the shot.

In order to handle this type of collision, we have developed a col-
lision response technique we callcollision flypaperingwhich yields
yields temporally smooth cloth behavior in regions of body inter-
section. Flypapering eliminates nearly all visible artifacts during
the intersection by carefully controlling the motion of any trapped
or pinched cloth points.

While flypapering avoids visual artifacts during severe charac-
ter interpenetrations, it cannot guarantee that the affected cloth will
be free from self intersections after the interpenetration is over. As
a consequence it cannot be used effectively with an algorithm like
Bridson’s. It must be used in concert with an algorithm which al-
lows recovery from tangled states. We have developed such an al-
gorithm, which we regard as the main contribution of the paper. It
is a cloth/cloth collision technique that analyzes intersections glob-
ally but instantaneously, rather than locally with history. The al-
gorithm performs aglobal intersection analysis(GIA) of the inter-
acting cloth meshes, characterizing the current intersection state in
order to guide the cloth back to an untangled state when intersec-
tions occur.

2 Fixing Cloth Self-Intersections

All cloth simulators we know of handle cloth-to-cloth collisions by
introducing repulsive forces or impulses between interacting por-
tions of cloth. If two regions of cloth get too close, the repulsive
forces attempt to prevent them from passing through each other.

This approach works very well in relatively unconstrained situa-
tions where the forces are generally able to maintain the invariant
that the cloth never self-intersects.

Bridson et al. [2002]’s recent work shows impressive results for
crumpling cloth where the invariant is actually guaranteed. They
use a combination of repulsive impulses and forces to establish and
maintain consistent velocities between nearby cloth particles. In
highly constrained situations, however, repulsive forces are far less
effective. Bridson et al. note that even their algorithm cannot pre-
vent a self-intersecting state from occurring in the case of severe
pinching contact by solids. With constraining geometry typical of
production character animation there is no guarantee, in fact no ex-
pectation that repulsive forces alone can prevent self intersections.
One must therefore confront the problem of untangling a cloth sur-
face after it has passed through itself. Repulsive forces need to be
disabled, or better, replaced by attractive forces, in areas that have
interpenetrated. This means that interpenetrated regions must first
be detected.

Volino et al. [1995] recognize this fundamental problem, and de-
scribe a method that applies either attractive or repulsive forces
to nearby surface elements based on a decision about the pair’s
orientation—whether they are on the “right” or “wrong” side of
each other. Orientations are first assigned using local geometry and
the history of nearby vertex/face and edge/edge pairs. Specifics
of the assignment algorithm are not given except to say that it in-
volves detecting crossing of the elements. The authors state that
the local technique cannot handle intersected initial conditions or
“a situation that has become inconsistent after some severe simula-
tion trouble” [Volino et al. 1995]. To deal with these situations they
describe a further technique in which colliding pairs are grouped
into connected components and a single orientation assigned to the
group based on statistics of the locally assigned orientations.

Volino et al. showed impressive results for cloth-cloth collision
geometries, such as a falling ribbon, that were not strongly con-
strained by surrounding solid collision geometry. While visually
complex, simulations with modest external forces and weakly con-
straining collision objects are far easier to handle from a collision
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standpoint than the crumpling with tight contact that our method
was designed to handle. We would not expect Volino et al.’s method
to succeed in the presence of severe pinching by surrounding solid
objects. During pinching, cloth often becomes so jagged that the
measured normals on which Volino et al. rely are all but mean-
ingless. In addition, we would expect the reliability of the local
history-based orientation assignments to degrade as the duration
of interpenetration increases. In effect, the method would lose its
memory.

The conclusion we draw from examining the methods of Bridson
et al. and Volino et al., is that carrying collision history through
extended, forced interpenetration events is a very difficult problem.
Rather than trying to solve it, we present a method that makes no
use of history, but instead draws on global topological analysis of
intersections. While it does not uniquely determine a solution, this
global analysis constrains the local attract/repel decisions strongly
enough that we can solve the problem with high reliability.

3 Simulation Method

The underlying dynamics of our cloth simulation system largely
follow that of Baraff and Witkin[1998] with elements from
DeRose et al. [1998]. Cloth is modeled as a triangle mesh of parti-
cles, with stretch and shear forces formulated per mesh triangle, and
bend forces formulated per pair of edge-adjacent triangles. Com-
panion damping forces and external forces are present as well. The
system is time-stepped using a single-step implicit Euler method.

Each cloth/solid contact is handled by directly enforcing a “hard”
one-dimensional constraint on the contacting cloth particle; these
hard constraints override any other forces in the system and al-
ways enforce a desired position and velocity (normal to the con-
tact plane) for a particle in one simulation step. We use Baraff
and Witkin’s[1998] projection method which enforces constraints
as part of the linear equation solver which time-steps the system
forward.

When a cloth point is pinched between multiple surfaces, we
employ a method called “flypapering.” Instead of constraining one
dimension of a particle’s freedom, as we do during contact with a
single surface, the collision flypapering method completely dictates
a flypapered particle’s position and velocity. These positions and
velocities are calculated to yield realistic-appearing cloth behavior
while allowing for graceful recovery when pinching ceases.

Collision flypapering is described in detail in section 4. Our
global intersection analysis (GIA) method for cloth/cloth collision
is described in section 5.

4 Collision Flypapering

Intersection of solid objects, and in particular self-intersection, is
the major difficulty in dealing with cloth/solid collisions. Figure 2a
shows simulated pants being pinched near a character’s knees as she
squats down; a cut-away view (figure 2b) shows that the character’s
legs greatly intersect as her knees bend. Clearly, cloth caught near
the knee will be forced to intersect through part of the leg as long
as the knee is sharply bent.

Despite this physically unrealistic intersection, the cloth motion
can still appear realistic. Our experience has been that realistic cloth
motion in the presence of pinching is critically dependent on the
ability of the pinched cloth particle to remain motionless whenever
the solid surfaces they are pinched by are motionless. Addition-
ally, pinched cloth needs to lie roughly midway between pinched
objects, as in figure 2. Finally, pinched cloth should not undergo
abrupt transitions when pinching starts, stops, or when the number
of surfaces pinching the cloth changes.

a b

Figure 2: (a) An extreme pose resulting in strongly pinched
pants. (Note: the cloth is deliberately low-resolution; this is an
early preproduction example, not a finished result.) (b) Closeup
cut-away view shows cloth flypapered between the legs. Note
the extreme intersection between legs near the knees; collision
flypapering produces a response resulting in the cloth neatly ly-
ing midway between the intersecting leg areas.

4.1 Approaches That Do Not Work

Since we already use hard constraints to enforce contact with a cloth
particle and a single solid surface, we considered extending this ap-
proach to handle pinching behavior. Given a set of pinching sur-
faces, we attempted to distill the multiple contacting surfaces into
a single planar constraint, approximately midway between the sur-
faces. We found, however, that even for pinching between a pair of
solids, the opposing surface normals were rarely opposite enough
for this to be effective; moreover, there was a great lack of consis-
tency in the constraints generated for neighboring pinched particles.
This led to unnatural distortions of the pinched cloth, with pinched
particles still free to move in a plane. The resulting particle move-
ments caused the planar constraints on a particle to vary from step
to step, even if the pinched solid objects were motionless. In other
words, everything wiggled.1

We next considered abandoning constraints and simply using
standard repulsive forces to push particles away from surfaces. This
has intuitive appeal, since it naturally handles any number of pinch-
ing solid surfaces; we hoped the generated repulsive forces would
balance, leaving cloth roughly midway between solid surfaces with-
out any computational effort at all. This approach failed as well;
the cloth/solid repulsive forces were left to compete with all other
forces in the system (and most notable with the cloth/cloth forces).
The result was again a system which often wiggled even when the
solid objects were motionless.

4.2 Flypapered Particles

If we simply consider the case of cloth particles pinched be-
tween motionless solid objects, an obvious solution presents itself:
pinched particles should not move. The rationale for this is that
the friction forces generated by the pinch are a match for any other
forces acting on the cloth, and adjust to eliminate any motion. From
an algorithmic standpoint, enforcing a hard constraint which “fly-
papers” these particles so that they remain in place is trivial.

The problem, of course, is defining the behavior for flypapered
particles when the solid objects that flypaper them are in relative
motion. Suppose that a cloth particle came into contact with a sin-
gle “sticky” solid object. If the cloth particle adhered to the solid
object, we could define a constraint on the particle as follows. Let
S denote the solid object surface and letWS(b, t) map pointsb in

1Adding insult to injury, the instigators of the wiggles—the pinched
particles—tended to be hidden from view by the solid objects. Thus, the
wiggling pinched particles were not directly seen, but they induced wiggles
in their neighbors. Tracking down the actual culprits became complicated.
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some body-space coordinate system to world-space coordinates at
time t . The mapping from world space back toS’s body space is
W−1

S (w, t) wherew ∈ IR3 is a point in world space. If the cloth
particle adhered toS at time t0, then the particle remains attached
to S at future timest by requiring that the particle’s positionp(t)
satisfy

p(t) = WS(b, t) where b = W−1
S (p(t0), t0).

Note that we only need to construct these mappings locally, that is,
nearp(t0).

However, a flypapered particle needs to be attached to multiple
solid objects, which may be in relative motion. At timet0, we fly-
paper a particle with positionp(t0) to multiple solid surfacesS1
throughSn by first defining body-space coordinatesbi relative to
each surfaceSi nearp(t0). We also define “goal” positionsgi (t)
for the particle relative to each surface at timet . The body-space
and goal positions are simply computed as

bi = W−1
Si

(p(t0), t0) and gi (t) = WSi (bi , t); (1)

note in particular thatgi (t0) = p(t0) for all i . Given these defi-
nitions, a collision flypapered particle’s position at timet1 is con-
strained by enforcing

p(t1) = 1

n

∑

i

gi (t1). (2)

Several properties regarding this constraint onp(t1) are immedi-
ately apparent. First, if none of the surfaces are in motion,p(t1) is
constrained to be equal top(t0) since eachgi (t1) = p(t0). More
strongly, if the pinching surfaces move together as if they were a
single rigid body, the pinched particle moves as it was firmly at-
tached to this rigid body. Thus, equation (2) satisfies the property
that motionless pinching objects yield motionless flypapered cloth
particles.

Equation (2) also tends to position flypaper particles roughly
midway between pinching surfaces. To see this, consider a sin-
gle pair of surfacesS1 and S2 that pinch a particle, and imagine
that S1 is motionless whileS2 moves inward towardS1. Then
g1(t1) = g1(t0) = p(t0) which means that

p(t1) = g1(t1) + g2(t1)

2
= p(t0) + g2(t1)

2

which, sinceg2(t0) = p(t0), yields

p(t1) − p(t0) = p(t0) + g2(t1)

2
− p(t0) = g2(t1) − g2(t0)

2
.

In other words, the particle inherits exactly half ofS2’s motion.
Over time, the flypapered particle tends to lie midway betweenS1
andS2.

While equation (1) seems to imply that the simulator needs
history—a memory of the body-space coordinate vectorsbi when
pinching was initiated at timet0—collision flypapering is better im-
plemented without such history. In particular, we deliberately re-
compute the vectorsbi at each time step. This is an improvement,
because over time, the initial body-space coordinates when flypa-
pering was first initiated become irrelevant. It matters only that for a
given current state of particles and solid objects, the particles move
when the solid objects do and stop when they stop. Additionally,
by ignoring history, flypapered cloth particles are not affected ad-
versely if the number of solid object surfaces participating in the
flypapering changes abruptly.

4.3 Nonuniform Weighting

Equation (2) defines flypapering by giving equal weight to all solid
object surfaces. We can select among a range of behaviors by mod-
ifying the constraint imposed by equation (2) to be instead

p(t1) =
∑

i

αi gi (t1).

whereαi are a set ofn nonnegative weights satisfying
∑

αi = 1.
Taken to an extreme, we might chooseα1 = 1 and set all otherαi

to zero. In this case, when flypapered, a particle will exactly track
the motion of surfaceS1, and will ignore the motion of the other
surfaces. When might we do this? Consider a character with pants,
skidding on the floor. If we wish the pants to remain glued to the
legs, butonly when the pants are pinched between the legs and the
floor, then we choose weights so that the pants track exactly with
the legs, while ignoring the floor. (The reverse, in which the pants
stick to the floor while the character slides out of them, is typically
not desirable.)

A more moderate scenario occurs when we wish some particles
to track one collision surface closely, while being somewhat influ-
enced by another. For a character wearing a shirt and rubbing her
stomach, we might want the cloth to stay 98% stuck to the torso
and follow the hands at only a 2% value; but if we want the hand
rubbing to appear more vigorous, we could set the weights so that
the shirt follows the torso at 90% and the hands at 10%. Of course,
the weighting values can vary from particle to particle; for example,
if the character is wearing gloves, the gloves would want to track
the fingers closely, and pay little attention to other parts of the body.
Figure 9 shows the result of identical animated character motions
with different flypapering weightings.

4.4 Pinch Determination

The actual determination that a cloth particle needs to be flypapered
is straightforward for the most part; if a particle is in close proxim-
ity to multiple distinct surfaces flypapering is in general warranted.
However, given that a single solid object surface can deform so as to
create pinches with itself (for example, under the knees in figure 2)
the matter does require some attention.

A single solid surface should induce flypapering if the surface
folds back on itself so that two distinct portions of the surface (with
reasonably opposing surface normals) contact a cloth particle. Un-
fortunately, any sort of bump in the character’s skin, or “thin” fea-
ture, such as a finger, involves some portion of the skin surface
being near another portion, with each surface’s inward normal be-
ing nearly opposite. Yet cloth that merely touches a finger, or slides
over a bump in the skin should not be flypapered. Fortunately, the
global intersection analysis (GIA) described in section 5 gives us a
simple way of distinguishing between these two cases.

Consider figure 3. Suppose cloth particlex is found to be inside a
solid object, near distinct surface regionsA andB, although closer
to A than toB. Applying the GIA algorithm to the solid object’s
triangle mesh tells us whether or not to flypaper: if portions of the
mesh nearx on surfaceA are reported to be intersecting the mesh
nearx on surfaceB, then the two surfaces have intersected in the
neighborhood ofx. The situation is then as shown in the lower
right of figure 3, with particlex being pinched between the two
intersecting surface regionsA and B. In this case,x should be
flypapered.

However, if the GIA algorithm reports no such intersections then
the situation is as shown in the lower left of figure 3. Here, particle
x is merely in contact with a surface whose surface normal varies
rapidly, and there is no reason to make use of flypapering. Instead,
the usual contact constraint is applied to the particle.
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Figure 3: A particle x that is interior with respect to both A
and B is either being pinched between intersecting surface (the
situation in the lower right) or is merely near a “thin” feature
(lower left).

5 Global Intersection Analysis

5.1 Synopsis

The details of our cloth/cloth collision algorithm are split between
this section and section 6. Before diving into the details, a short
synopsis of the entire method is helpful. Consider figure 4a which
shows an intersection curve (in red) between two meshes. To disen-
tangle the two meshes, we want the white vertices on the top mesh
(see the exploded view, figure 4b) to pass back through the white
vertices of the bottom mesh. If these were cloth meshes, we would
want the two sets of white vertices to exchange attractive forces.
However, particles on the two meshes that arenot surrounded by
the intersection path should exchange standard repulsive forces.

Similarly, if we have multiple regions of intersection (figure 4c)
then we need to set up multiple correspondences. The vertices
bounded by the green paths exchange attractive forces to disentan-
gle, as do the vertices bounded by the green paths.

One complication however is that there may be multiple ways
of untangling. We can eliminate the intersection in figure 4a either
by moving the top of the sphere down through the sheet, or the
bottom up through the sheet; we could even move the sheet inside
the sphere! The reason for the ambiguity is that the intersection
curve on each mesh partitions that mesh into two distinct regions. In
figure 4b we have marked the smaller of each region with the white
vertices. While this is of course an arbitrary choice, it is the obvious
choice for cloth simulation. We are on very safe ground choosing
the smaller regions as the interpenetrated ones, since intersections
that arise during simulation are generally tiny compared to the sizes
of the meshes. (Put another way, this decision will only be wrong
if the time step is ridiculously large, i.e. if an intersection is noticed
only after it has grown so large that the smaller region is the only
unintersected portion of the mesh.)

We summarize the GIA process and then consider some details:

1. Find intersection curves between pairs of meshes (and a mesh
with itself).

2. For each curve found, use a flood-fill algorithm to color both
sides of the intersection curve, and keep the smaller size.
(This is done on both of the intersecting meshes, for each
curve).

3. Hand off the sets of corresponding vertices to the dynamics
engine, so that it can decide whether or not proximate cloth
vertices should attract or repel.

a b

c d

Figure 4: (a) Intersecting meshes with intersection path marked
in red. (b) Exploded view. (c) Two separate intersections be-
tween a pair of meshes. (d) Exploded view.

5.2 Meshes and Intersections

The meshes we consider in this paper are triangle meshes with man-
ifold geometry. The “curve” of intersection between two such tri-
angle meshes is formed by pairwise intersections of triangles from
the two meshes (figure 5). Robustly computing intersections be-
tween curved surfaces has been a long-standing concern in com-
puter graphics and is in general quite difficult. For triangle meshes
however, it is a rather trivial problem.

Generically, a pair of intersecting triangles generates a line seg-
ment of intersection. This line segment begins and ends where a
mesh edge intersects a face. We assume that meshes are in gen-
eral position; that is, no mesh vertex lies exactly in the plane of
any non-neighboring mesh face, and no mesh edge intersects any
non-neighboring mesh edge (over both its own mesh and all other
meshes). We probablistically guarantee general position by adding
a small amount of random noise to all vertex positions, and per-
forming computations using standard double-precision arithmetic.
Freedom from degeneracy makes the computation of the intersec-
tion path simple: finding line segments involves no special geomet-
ric cases, since there is no degeneracy, and the geometric operations
are trivial (computing line/plane interesections and point/plane dis-
tance evaluations).

The only special circumstance not excluded by general position
is the situation in figure 5 where the intersection begins at a vertex
v shared by the two triangles and ends at an edge/face intersec-
tion. We call such a vertexv a loop vertex(for reasons that will
become clear shortly). Note that this particular case concerns a tri-
angle mesh with self intersections, since trianglesA and B are in
the same mesh. To emphasize that the intersection curve is describ-
able by finitely many line segments, we will use instead the term
intersection path. We precompute a hierarchical bounding box tree
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Figure 5: Possible triangle intersections.

[Bridson et al. 2002; Gottschalk et al. 1996] for each cloth mesh at
the simulation and update the bounds during simulation to quickly
find all edge/triangle intersections.

Ignoring the issue of mesh boundaries momentarily, intersec-
tions between a pair of meshes are easily classified. The meshes
may not intersect, the meshes may intersect once (figure 4a) or they
may intersect multiple times (figure 4c). A mesh may also intersect
itself; however, self-intersections come in two very different forms.
The self-intersection may result in two closed intersection paths, as
shown in figure 6. This occurs when the mesh deforms so that two
distinct regions of the mesh intersect, and is essentially the same
case as figure 4, except that the two regions happen to be on the
same mesh. In contrast however figure 7 shows a self-intersection
that results in only one closed intersection path. In this case, the
mesh has deformed so that a single region has been folded on top
of itself, forming a loop. The intersection path in figure 7 origi-
nates from and terminates in a loop vertex (hence the name). Note
that this particular casecannotarise for smooth (i.e.C1) surfaces
because it would require the folded mesh to become nondifferen-
tiable at the loop vertices. As a result, we have not encountered a
description of this case in any previous literature.2

a b

Figure 6: (a) Self-intersection. (b) By unbending the mesh
somewhat, two distinct intersection paths are seen.

5.3 Finding Intersection Paths

With the above in mind, the analysis of a pair of meshesM1 and
M2 (with M1 = M2 when checking for self-intersections) begins
as follows. We start by tracing an intersection path betweenM1 and

2It is not surprising that this case has not been encountered before; in-
tersection of triangular meshes is a trivial result. Most research on surface
intersections involvesC1 surfaces. Patrikalakis [1993] gives a survey of
work and results in this area; also, see Krishnan and Manocha [1997] for a
basic characterization of the types of intersection usually studied.

a b

Figure 7: (a) A severely bent arm, with self-intersection. (b)
Unbending the arm to better see the intersection path, reveals
that the intersection path consists of only a single closed path.

M2. Intersection paths are found by first checking all mesh edges of
meshM1 to see if they intersect any triangle faces ofM2 and vice
versa. Standard hierarchical bounding volume schemes are used to
find all such intersections quickly, and this is computationally in-
expensive. Assuming that there are face/edge intersections, there
is at least one intersection path. Choosing an arbitrary edge/face
intersection as a starting point, we begin to walk along the intersec-
tion path in a consistent direction, consuming edge/face intersec-
tions until we arrive back at the initial edge/face intersection. At
this point, we have completely explored this particular intersection
path. If there are any remaining unvisited edge/face intersections,
we choose one such intersection as a new starting point and trace
another path. This continues until all intersection paths have been
found. For meshes with boundaries (for example, the sheet in fig-
ure 4a), an intersection path can begin or end on a mesh boundary.
If the traversal of the path encounters a boundary, it simply com-
pletes the path by returning to the starting edge/face intersection
and walking the path in the opposite direction.

If the intersection region is as shown in figure 7 then the intersec-
tion path both begins and ends with a loop vertex. (Because of the
nondegeneracy assumption, the only way for the path to reverse di-
rection and begin to double-back on itself in three space is by a loop
vertex, as shown in figure 5. As shown in figure 7a, when folded
the path appears to have two ends, which are in reality the two lo-
cations where the path reverses direction. Thus, there are two loop
vertices.) Assuming that the search for the intersection path starts
on the path between the two loop vertices, we will walk the path
until we terminate at one loop vertex, return to the start, and walk
the path until the other loop vertex is reached. The two searches
are pieced together to form one path that begins and ends at a loop
vertex. In the case of a mesh with boundaries, the path can have
one loop-vertex if the path begins and ends on a mesh boundary.

5.4 Mesh Coloring

After each intersection path is found we perform mesh coloring,
using a standard flood-fill algorithm, to decide which vertices are
the interior of the intersection path. As we noted earlier, it is topo-
logically ambiguous which side we should perform the flood-fill
on, so we elect to choose the smaller region as the interior. This
requires that we perform two flood fills, measure the area of the
mesh visited by both, and declare the smaller such region the inte-
rior. Visiting the entire mesh for each intersection path (there can
be many) is needlessly expensive however. A simple speedup is to
perform both flood fills simultaneously, advancing each one vertex
at a time and then continuing with the other. Which ever finishes
first has explored the smaller region. Of course, this assumes that
mesh triangles are approximately the same size. If not, each vertex
encountered represents some amount of the surface explored. The
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flood fills are alternated when the active fill exceeds the area found
by the inactive fill.

Note that boundary/boundary intersections between meshes can
result in intersection paths that are not closedanddo not terminate
on a boundary. Such intersection paths do not partition the mesh;
this is detected by the two flood fills attempting to fill the same por-
tion of the mesh. Cloth/cloth intersections that define a curve (but
not an area) of intersection are problematic. Our current system
forms no strategy for actively trying to untangle boundary intersec-
tions; this is clearly an area calling for additional development.

Suppose that we are currently examining thei th intersection
path. If this intersection path arises from a situation as depicted
in either figure 4b or figure 6b, then the intersection path in space
traces two distinct closed paths on the mesh or meshes involved.
We arbitrarily color the interior vertices of the first path with color
“blacki ” while coloring the interior vertices of the second path
with color “whitei .” Remember that if the intersection is a self-
intersection that yields only a single region as in figure 7, when
unfolded the path bounds a closed region of the mesh. In this case,
all the vertices in the interior of this region are marked as having
color “redi .” As more intersection paths are discovered, a vertex
may be found to belong to multiple regions; accordingly, a vertex
is allowed to have an arbitrary number of colors.

All vertices colored blacki have intersected through the corre-
sponding vertices colored whitei and vice versa; the vertices col-
ored redi have passed through themselves to form a looping self-
intersection of the mesh. The colors assigned to the vertices are the
output of the GIA method; in the next section we describe how to
make use of this coloring information to actively untangle cloth.

6 Cloth-to-Cloth Collision Response

Given the information provided by GIA, the final implementation
of our cloth-to-cloth collision-response algorithm is very simple.
Once the intersections between cloth meshes have been found us-
ing GIA, we handle cloth/cloth collisions by introducing interaction
forces between a cloth particlep and a nearby cloth triangleT .

The GIA data determine the interaction forces as follows:

1. If for somei the particlep has been colored blacki and all
three particles in the cloth triangleT have been colored whitei
then p and T inhabit cloth regions that intersected one an-
other. Accordingly,p andT are attracted so as to remove the
intersection. Symmetrically, the same occurs ifp has been
colored whitei andT has been colored blacki .

2. If p has been colored redi , for somei , and any particle in
T has been colored redi , then those two particles are on a
portion of cloth which has self-intersected in the manner of
figure 7. Neither attraction nor repulsion is applied (neither is
necessarily correct)—instead, this section of the cloth is free
to move through itself in any manner. Typically other sections
of the cloth which do not fall into this category will move to
pull the cloth back apart.

3. If none of the above hold, thenp and T inhabit regions of
the cloth which have not intersected. A repulsive interaction
force is applied.

Note that a mesh which self intersects, yielding white and black
colored vertices will exert forces to repair itself; it is only self inter-
sections of a mesh which lead to “red” coloring that lead to passive
behavior on the part of the mesh. Self intersections leading to “red”
coloring as in figure 7 often happen when cloth is pinched in bent
elbows, knees, and under arms. Because each one these intersec-
tions forms a single connected region on the same mesh, it is dif-
ficult to apply non-conflicting interaction forces that untangle the

cloth. In particular, it is manifestly ambiguous which portions of
such an intersection region need to move back through each other
to untangle. By doing nothing, we prevent the cloth from snagging
on itself; forces on the rest of the cloth tend to quickly untangle the
mesh as soon as an opportunity presents itself (figure 10e).

Clearly, there are no proofs or guarantees to be had with the
above algorithm. Whenever one is forced into an intersection, there
will be a period of time during which the mesh must attempt to un-
tangle. While approaches which guarantee correct behavior such as
Bridson et al.’s [2002] are naturally more appealing from a theoreti-
cal perspective, they place serious conditions on the input animation
and solid surfaces. Given that solid meshes with serious intersec-
tions are currently a fact of life, algorithms which do their best to
repair the “damage,” when given the chance, seem to be the only
practical choice at present.

7 Implementation and Results

The cloth/cloth and flypapering algorithms described in this paper
were used extensively for dynamics simulations of cloth and fur
in Pixar/Disney’sMonsters, Inc.. The vast majority of the simula-
tions run for this movie delivered acceptable results with little to
no “tweaking”; in fact, most resimulations were for artistic reasons,
and not due to simulation defects. Note that to control costs, it is
vital in a production environment to produce an acceptable result
with a very small number of simulation runs. The video examples
for this paper are all the results of simulations that ran to comple-
tion the first time, without any adjustment of simulation parameters
or input. Running time is also critical; however, the additional cost
of using flypapering and GIA is negligible. For a garment with 18K
vertices in a typical shot, this translates into an additional cost of
less than 0.5 seconds per frame of animation, running on a 2Ghz
Pentium-4 processor.

Computational geometry algorithms are sometimes difficult to
implement from the standpoint of adjusting tolerances and dealing
with boundary cases. The methods described in this paper, happily,
require no such adjustment. In fact, the only continuum decisions
made are based on point/plane evaluations, where only the sign of
the result matters. The assumption of general position guarantees
that each of these evaluations will be nonzero.

Figures 1, 8, 9, and 10 show simulation output making use of
GIA and collision flypapering. In figure 8a, a shirt is tortured with-
out making use of GIA until it is in a tangled and pinched state.
When GIA is turned on in figure 8b the shirt immediately untangles.
Figure 9 shows Boo rubbing her stomach with different flypapering
weights applied to her hands. The same animated motion yields
a distinct variety of shirt motions. Figure 10 shows Boo pulling
her arm in tightly against her body until a large amount of intersec-
tion occurs; however, the resulting cloth motion does not betray any
cloth intersections from the camera’s viewpoint.

Of course, even with flypapering and GIA there are limits to what
the simulator will tolerate. Solid mesh intersections in which a limb
passes halfway through another limb will pull the cloth off the char-
acter. Similarly, insufficient cloth resolution (when cloth triangles
become large compared with the diameter of a limb) can also pro-
duce bad results. As noted in section 5.4, boundary/boundary in-
tersections (e.g. cuff-to-cuff intersections between sleeves) are still
not handled particularly well in our current implementation. Cloth
simulation for animation, even with the improvements described in
this paper, still takes skill and experience to achieve high-quality re-
sults. However, the collision response algorithms described by this
paper tolerate substantially worse solid mesh intersections than any
other simulation systems that the authors are aware of. In combi-
nation, GIA and flypapering handle the extreme pinching typical of
production character animation, while avoiding worrisome visual
artifacts such as wiggling cloth and persistent tangles.
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Figure 8: (a) Tortured shirt without benefit of GIA to disambiguate intersections. (b) Starting with the initial conditions in (a), GIA
is turned on and the shirt immediately recovers.
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Figure 9: The same animated hand motion but with different flypapering weightings on the hands. From left to right, the hands are
weighted atα = 10%, α = 50%and α = 100%.

a

b c

d e

Figure 10: (a) Starting pose. (b) Arm moves in tightly. (c) Close-up view of (b) with right arm invisible. Note how the arm position
forces cloth to intersect both itself and the body. (d) Without GIA, a cloth/cloth intersection persists as the arm pulls out, snagging
the sleeve. (e) The same frame as (d), but using GIA, the cloth doesn’t snag as the arm pulls out.
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