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Figure 1: Comparing the current studio denoiser with the improved version proposed by this paper. It is clear that our new
volume denoiser output is visibly crisper around edges and results in higher level of details (e.g., enhanced sharpness on
the pink cloud boundaries, the fire characters, and the checkered object in the background). We produce these results from
volumetric render passes (thick FX volumes and thin fogs) in Disney and Pixar’s films Turning Red and Elemental. ©Pixar

ABSTRACT
Denoising is an integral part of production rendering pipelines
that use Monte-Carlo (MC) path tracing. Machine learning based
denoisers have been proven to effectively remove the residual noise
and produce a clean image. However, denoising volumetric ren-
dering remains a problem due to the lack of useful features and
large-scale volume datasets. As a result, we have seen issues such
as over-blurring and temporal flickering in the denoised sequence.
In this work, we modify the production renderer to generate many
types of potential volume-specific features that might improve the
denoising quality, and then run a state-of-the-art feature selection
algorithm to detect the best combination of those features. To train
the denoiser for production use, we collect thousands of unique
volumetric scenes from our recent films, and augment the inputs
to create a large dataset for training. Our evaluation shows a good
amount of quality gain compared to the version currently in use.
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1 INTRODUCTION
In the context of MC denoising, deep learning is widely considered
as the state-of-the-art approach thanks to its ability to produce
sharp and clean image. We choose Kernel-Predicting Convolutional
Network (KPCN) proposed by [Bako et al. 2017; Vogels et al. 2018]
to be used in the studio since it is more robust than regressing
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the pixel color directly. In addition, we further adjusted the neural
architecture by leveraging U-Nets with scale-level kernel predictors,
achieving considerably shallower design and faster inference.

Auxiliary feature buffers (such as albedo, depth, normals, etc.)
are important for the neural network denoiser because they are
much less noisy and provide necessary information of colors and
shapes for objects contained in the rendered image. As a result,
these features often improve the denoising quality by retaining
more spatial details. For volumetric scenes, we are facing two main
challenges: First, we need to find a set of available features for
volumes that do not have hard surfaces. Second, keeping a large
number of features adds unnecessary cost to the render time and
disk storage especially for film production, thus we need to select
a few most useful features to minimize such overhead. To reach a
solution, we borrow the progressive feature selection method by
[Zhang et al. 2022] and find it quite effective to generate a subset
of candidate features that can perform well on volume denoising.

2 METHOD
Denoising Architecture. We use an improved KPCN architecture

with U-Net as the backbone. The predicted denoising kernels are
applied back to the input noisy image at multiple scales and results
are combined together to yield the denoised output. We choose
5 scales for single-frame denoising and 4 scales for cross-frame
(i.e., temporal) denoising considering there is extra cost of warping
neighboring frames to the center frame using motion vectors.

Feature Selection. We generate a large collection of 16 potentially
useful features, covering a wide range of lighting and physical
properties of volumetric objects in the scene. These additional in-
put layers are rendered simultaneously along with the primary
beauty image. It is clear that many input features are mutually cor-
related, and it is difficult to identify the best combination that we
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Table 1: List of selected volumetric denoising inputs (color is
always selected and excluded from the selection algorithm).

Layer Description
Color + Variance Noisy image and sample variance

Single/Multi-Scatter Lighting decomposition
Alpha Volume opacity

SampleCount Samples per pixel
Albedo Basic volume color
Distance Distance to scatter location
Density Volume extinction coefficient

DensityGrad Spatial extinction gradient
ScatterRatio Volume scatter probability

should use for the denoiser since the search space grows exponen-
tially with the size of candidate set. We implement the framework
presented by [Zhang et al. 2022] on our unique set of candidate
features, which only requires training of a single probe denoiser
and near-optimal solutions can be found progressively. This method
is efficient because it avoids training an ocean of denoisers with
different configurations. The full selected input set is presented in
Table 1. Furthermore, we can adjust the number of selected features
conveniently based on production storage requirement by tuning
the size parameter of the feature selection algorithm. For instance,
if a show can only afford having 4 auxiliary features due to space
limitations, we are able to further narrow down the list.

Loss Function. Following the tradition of KPCN, we supervise
the neural network training with a reconstruction loss. More specif-
ically, we use Symmetric Mean Absolute Percentage Error (SMAPE)
to compute the difference between the denoised image and the ref-
erence image. In addition, a temporal loss on the pixel derivatives
is added to penalize the inconsistency between successive frames.
These two losses are mixed together through weighted addition.

Training Details. For denoiser training, we implement the KPCN
framework using TensorFlow. Input channels that contain High
Dynamic Range (HDR) values are pre-processed by the log-modulus
transformation for range reduction. The denoiser is trained using
gradient descent for 15.2M steps with a learning rate decay from
10−4 on a Tesla V100 GPU installed on a NVIDIA DGX cluster.

3 PRODUCTION DATASET
Training Data Collection. Since there is no large-scale volume

dataset readily available, we build our own production dataset from
the recent Disney and Pixar’s films Turning Red, Lightyear, and
Elemental. We manually select more than 2,000 unique volumet-
ric renderings from hundreds of shots. These selections contain
all kinds of volumes but primarily 3 types: simulated FX volumes,
clouds, and fogs. Our production pipeline renders volumes in a sep-
arate pass where surfaces are matted out, and we combine elements
by final compositing. For each selected camera view, we render
both color and all the features listed in Table 1. In addition, we set 3
different target pixel variances on the adaptive sampler to generate
inputs with multiple noise levels for training data augmentation.
The reference image is rendered in between 8K (minimum) and
16K (maximum) samples per pixel chosen by the adaptive sampler.
To support cross-frame temporal denoising, we always render a

sequence of 5 consecutive frames for each selected center frame
and pre-compute the motion vectors in between using optical flow.

RenderMan Implementation. Wemodified the volume BxDF shader
in RenderMan 24 and 25 by adding the candidate features as Arbi-
trary Output Variables (AOVs). When path traced ray hits a volume,
the BxDF writes the queried values to individual layers in the out-
put EXR image file. We use Light Path Expressions (LPEs) to control
the ray depth when recording those features to an output EXR layer.
Non-illumination features are obtained from the primary ray hits.

4 RESULTS
With the selected features included as inputs, we successfully in-
crease the quality of the denoised images by recovering more details
and removing blotchiness more effectively, as presented in Figure
1. Additionally, re-training the denoiser using our dedicated vol-
umetric dataset further boosts the performance since it does not
need to account for hard surface denoising. We implement both
3-frame and 5-frame temporal denoisers with KPCN, which helps
reducing flickering between successive frames in a shot sequence
by warping the neighboring frames to the center one. The proposed
denoiser is now used by the studio to reduce the render time of
volumetric elements, including fogs, FX volumes, and clouds.

5 DISCUSSION AND CONCLUSION
We improve the denoising performance on volumetric renderings
by analyzing the contribution of various input features. By using an
advanced feature selection method and building a large-scale pro-
duction dataset, we demonstrate a superior volume denoiser with
reasonable cost. However, sometimes the extra sharpness from the
new denoiser becomes undesirable in some special cases likemotion
blur or depth of field effects, which needs to be addressed further.
Future research should also focus on improving the temporal con-
sistency and combining screen-space with path-space denoising. In
addition, we begin to see cases from production where hard surfaces
and volumes are mixed together within a single render pass, thus
our immediate next step is to find an unified solution combining
both worlds instead of having two separate denoisers, while con-
sistently expanding our dataset with volumetric renderings from
future shows to cover more diverse styles and looks.
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