
Vorticle Fluid Simulation

Technical Memo 15-01

Alexis Angelidis∗

Pixar Animation Studios

Figure 1: Left: gas simulation using 2000 vorticles. Right: particles of densities are emitted into the flow. For rendering, the particles density
and velocity are splatted into a volume. Vorticles outside of the frustum are simply deleted.

Abstract

We present a Lagrangian method for simulating incompressible
gases in 3 dimensions. Using the vorticity equation with La-
grangian particles, we create, modify and delete vortices of varying
size in a manner that handles buoyancy, boundaries, viscosity and
collision with deformable objects using monopoles. Our method
scales linearly for parallel processing and provides user controls
at varying resolutions. We address common problems of particle-
based vortex methods, and provide mathematical justification for
all terms. All implementation details are provided.

1 Related Work

The Navier-Stokes Equation [Aris 2012] generalizes Newton’s sec-
ond law to continuums and effectively models the motion of gases.
Foster and Metaxas [Foster and Metaxas 1997] and Stam [Stam
1999] solve velocity in an Eulerian frame of reference, with veloc-
ity stored in a uniformly voxelized grid. De Witt et al. model the
advection of gases using the Laplacian eigenvectors as a basis for
incompressible flow [De Witt et al. 2012]. The Navier-Stokes Equa-
tion can also be modeled in a Lagrangian frame of reference with
Smooth Particle Hydrodynamics [Desbrun and Gascuel 1996]. The
Vorticity Equation [Cottet and Koumoutsakos 2000] is obtained by
applying the curl operator to the Navier-Stokes Equation, and can
be solved with a Vortex Method using point samples [Park and Kim
2005; Zhang and Bridson 2014] or filaments [Angelidis et al. 2006].
Elcott et al. take an original approach, and use Kelvin’s theorem in-
stead of Navier-Stokes [Elcott et al. 2007].

To model different characteristics at different resolutions, multiple
approaches can be combined. Navier-Stokes and Vortex Methods
can be combined and applied to a selective range of scales within
the same method: Selle et al. advect vorticity carried by points
[Selle et al. 2005] and Pfaff et al. advect vorticity carried by sheets
[Pfaff et al. 2012]. Kim et al. advect procedurally generated detail
[Kim et al. 2008]. Zhang and Bridson use a voxel grid for large
distance flow interaction and particles for near flow interaction to
solve the Vorticity Equation [Zhang and Bridson 2014].

While it is now widely expected that a practical algorithm must

∗e-mail:silex@pixar.com

guarantee stability [Stam 1999], scalability in the number of threads
is also an imminent requirement for gas simulation algorithms: the
work of Gibou and Chohong [Gibou and Min 2012] and McAdams
et al. [McAdams et al. 2010] report that the present bottleneck of
methods that solve velocity in a voxelized grid is the Poisson equa-
tion. By avoiding the Poisson equation, our method avoids the bot-
tleneck altogether. A boost in computing performance improves the
creative iteration process.

The motivating application for this work is the animation of gases
for Visual Effects. Controlling the motion of a gas presents known
challenges: gases usually don’t have a well defined surface and of-
ten vary dramatically over time. To produce natural looking gases,
artists have to tweak the physical parameters of computational mod-
els. Expected controls include external forces, buoyancy, rigid and
deformable boundaries, and viscosity. Our model provides all of
those and more: user controls at arbitrary resolution, constant cost
across resolutions, spatially varying resolution, and decoupled res-
olutions for density, dynamics and boundary conditions. Our con-
tributions are:

• a new basis that accounts for stretching in a stable manner.

• a new model for viscosity that handles isolated particles.

• a new model for buoyancy.

• a new model for deformable boundaries.

• a new model for vortex shedding.

Our paper is organized as follows. In Section 2, we present the
equations from which we derive our model. In Section 2.1, we in-
troduce our vorticle basis. In Section 2.2, we present our vorticity
stretching technique. In Section 2.3, we present our viscosity model
that handles isolated particles. In Section 2.4, we present our buoy-
ancy model. In Section 2.5, we define the pressure field for bound-
aries. In Section 2.6 we present our model for vortex shedding.
In Section 3, we present our acceleration data structure, followed
by an overview of controls in Section 4 and algorithm summary in
Section 5.

Our method is implicitly incompressible as is inherent to vortex
methods, and does not require enforcing incompressibility by solv-
ing a compressible pressure term. The dynamics resolution is de-

coupled from the advected density resolution, thus the density reso-
lution can be modified while preserving the motion. Our method is
purely Lagrangian with local dynamic interaction, therefore man-
aging the simulation domain is as simple as managing points. Our
most costly step is a point cloud query.

2 Dynamic Model

To obtain our equation of motion, we apply the curl operator to
both sides of the following form of the Navier-Stokes Equation of
a viscous incompressible Newtonian fluid, divide both sides by ρ,

and replace ∇ρ
ρ

with ∇ log(ρ)

ρ
d~v

dt
= µ∇2~v + ρ~F −∇p (1)

We obtain the following equation that we solve for motion, where
the vorticity ~ω is defined as the curl of the velocity ~v.

d~ω

dt
= (~ω ·∇)~v+

µ

ρ
∇2~ω +∇ log(ρ)× (~F− d~v

dt
)+∇× ~F (2)

Eq. (2) means that the vorticity ~ω evolves over time by advecting a
Lagrangian frame of reference (particle) that carry ~ω, and stretch-
ing ~ω according to the velocity ~v, with dynamic viscosity µ, buoy-
ancy and boundary interaction specified by density ρ and external

forces ~F

~F(p) =



~g + ~e if p outside solid objects
~f otherwise

(3)

where ~g is the constant for gravity, ~f is the acceleration at the ob-
jects’ boundaries suitable for deformable objects, and ~e is user de-
fined external forces. The density is assumed strictly greater than
0. The velocity ~v is needed for advection, and is obtained from
~ω by inverting the curl operator with the Biot-Savart law and an

irrotational and solenoidal field ~h

~u(p) = 1
4π

�

x∈IR3

~ω(x)×(p−x)

‖p−x‖3 dx

~v = ~u + ~h
(4)

Eq. (4) means that the flow ~v is the sum of the velocity induced by
a continuum of rotations of center x, axis ~ω and angle ‖~ω‖/‖p −
x‖3, with a pressure field ~h that models the boundary condition.

The relation between ~h and ~f is given by Eq. (20) and the topic of
Section 2.5. Our nomenclature is provided in Appendix A.

Figure 2: Left: slice of the velocity field induced by a vorticle.
Right: slice of the vorticity field induced by a vorticle.

2.1 Vorticle and Stretchable Vorticle

This section introduces our basis. We keep the integral inside our
discretization of Eq. (4), and introduce with Eq. (5) a vorticle par-
titioning (Vi, ~ωi) where ~ωi denotes the vorticity field induced by
vorticle i

~u(p) =
1

4π

X

i

�

x∈Vi

~ωi(x) × (p − x)

‖p − x‖3
dx (5)

The singularity of Eq. (5) at p = x could be removed by integrat-
ing analytically the vorticity over the partition or with a regulariz-
ing constant. To avoid this laborious integral and avoid an arbitrary
post-simulation blurring filter size, we define instead the vorticity
field as the sum of the curl of the vorticle’s velocity field, as shown
in Figure 2, in contrast with other methods that define vorticity as
interpolated from point values. This guarantees a divergence free
vorticity and avoids instability from vorticity compression. A vor-
ticle is a vorticity particle defined by rotation strength ~wi, center
xi and falloff φi(p). The velocity and vorticity fields induced by a
vorticle are shown in Figure 2 and given by

~vi(p) = φi ~wi × (p − xi) (6a)

~ωi(p) = 2φi ~wi + ∇φi × (~wi × (p − xi)) (6b)

The falloff of a stretchable vorticle φi = sir
−5/2
i (1 +

‖µi((p−xi)/ri)‖2

2
)−3/2 and its gradient ∇φi are centered at xi,

where ri is the vorticle’s size, si is the stretching factor, and µi is

the stretching function µi(q) = 1
~w2

i
(s

−4/5
i (~wi ·q) ~wi+s

7/10
i ~wi×

q × ~wi). The following properties are satisfied by φi. First, φi

revolves around ~wi, and therefore ~vi is divergence-free since its
magnitude is constant along the streamlines of the rotation. Sec-
ond, when the stretching factor is increased from si to s′i, the vor-
ticity ~ωi is stretched by a factor s′i/si along ~wi and squashed by
p

si/s′i along any direction perpendicular to ~wi, in accordance
with the deformation induced by an incompressible flow, and sat-
isfying Kelvin’s circulation theorem. Third, stretching is conserva-
tive since the vorticle’s mean energy Ei is independent of si

Ei =
1

2

�

~v2
i dx =

√
2π2‖~wi‖2

(7)

A stretchable vorticle is thus defined by 4 variables {xi, ~wi, ri, si},
and we show in the next section how to handle si and reduce it to a
vorticle of 3 variables

{xi, ~wi, ri} (8)

The velocity field is defined by summing the velocity field of mul-
tiple vorticles, as shown in Figure 3.

Figure 3: A velocity field is induced by multiple vorticles, illus-
trated with three vorticles orthogonal to a plane.

2.2 Stretching

The term (~ω · ∇)~v in Eq. (2) models the stretching of vorticity.
We measure stretching at xi by applying the velocity gradient to

~ωi(xi) = 2r
−5/2
i ~wi, the self-induced vorticity at the center of an

unstretched vorticle. We obtain

d~ωi
dt

(xi) =
P

j ~wj ×
“

∇φj(xi) · ~ωi(xi)(xi − xj) + φj(xi)~ωi(xi)
”

(9)
Stretching produces a rotation of ~wi and scale of si. Let us call

~ω′
i = ~ωi + Dt

d~ωi
dt

. The new rotation strength and stretch factor
are:

~w′
i = ‖~wi‖

~ω′
i

‖~ω′
i‖

(10)

s′i =
‖~ω′

i‖
‖~ωi‖

(11)

The accumulation of stretching introduces increasingly high fre-
quency velocities by transferring large scale eddies to smaller scale
eddies [Frisch and Kolmogorov 1995]. Although the diffusion of
Section 2.3 filters eddies over long enough periods of time, insta-
bility is not an option and high frequency eddies must be filtered
explicitly in a predictable manner. We filter by unstretching the
stretchable vorticle in a manner that preserves both Ei and the en-
strophy Ωi of the stretched vorticle

Ωi =
1

2

�

~ω2
i dx =

3π2(1 + 4s′3i)

16
√

2r2
i s

′8/5
i

‖~wi‖2
(12)

Preserving Ei is trivial since Ei is independent of si and ri in
Eq. (7). To preserve Ωi, we adjust ri to a new size r′i

r′i = ri s
′4/5
i

s

5

1 + 4s′3i
(13)

With Eq. (13) the stretching factor can be restored to 1. This is
illustrated in Figure 4. The reader can verify that swapping {ri, s

′
i}

for {r′i, 1} preserves Ωi. This step is a resampling step, where we
use the same vorticle locations. Note that resampling introduces an
error, especially when squashing i.e. the stretching factor is below
1. Therefore if taking substeps, we recommend unstretching on full
frames to avoid overfiltering. We also set limit resolutions with a
lower threshold rmin and upper threshold rmax on the vorticle size
ri. This limit resolution loses enstrophy, but does not lose energy
because of Eq. (7). Thus Eq. (10), Eq. (11) and Eq. (13) provide the
way to apply stretching to a vorticle. The falloff and falloff gradient
for an unstretched vorticle are

φi =
√

ri(r
2
i + ‖p−xi‖2

2
)−3/2

∇φi = − 3
2

√
ri(r

2
i + ‖p−xi‖2

2
)−5/2 (p − xi)

(14)

When a vorticle becomes too small and approaches the fluid’s Kol-
mogorov length, viscous forces dominate, and the vorticle strength
is dissipated with ~w′

i = k~wi.

2.3 Viscosity

The term µ
ρ
∇2~ω in Eq. (2) is the diffusion of vorticity, and mod-

els viscosity. We approximate µ
ρ

with a constant kinematic viscos-

ity ν, and derive our viscous model from the modified PSE (parti-
cle strength exchange) method described by Cottet and Koumout-
sakos [Cottet and Koumoutsakos 2000] which normalizes the dis-
crete integral to avoid a blow up, and we add a term for handling

Figure 4: A vorticle (a) is stretched into vorticle (b): the mean
energy is preserved while the enstrophy changes. Vorticle (b) is
then resampled in an unstretched vorticle (c) with the same mean
energy and enstrophy as vorticle (b).

isolated particles to model effectively the leakage of vorticity into
the region of space with no vorticles. The PSE method is obtained
by a Taylor expansion of ~ω, reduced after multiplication with a nor-
malized regularization function ηǫ. The result of this term is similar
to the artificial damping of Park and Kim [Park and Kim 2005], but
within the scope of the diffusion

d~wi
dt

= ν
ǫ2

((1 − αi)
P

j Vjηǫ(xj−xi)(~wj−~wi)
P

j Vjηǫ(xj−xi)
− αi ~wi)

αi =
Q

j 6=i(1 − ηǫ(xj−xi)

ηǫ(0)
)

(15)
where αi is a measure of the isolation of particle i, ηǫ is the Gaus-
sian PSE kernel, and Vi is the volume associated with vorticle i

ηǫ(x) = 1√
2ǫ3π3/2

exp(− ‖x‖2

2ǫ2
)

Vi =
�

φidx = 2
√

2π2√ris
2/5
i

(16)

We use ǫ =
√

νDt, thus making viscosity cheaper for low ν and
small time steps. This result can also be interpreted as a convolution
with the heat kernel.

2.4 Buoyancy

When p is outside of solid objects, the term ∇ log(ρ)×(~F− d~v
dt

)+

∇× ~F in Eq. (2) reduces to ∇ log(ρ)× (~g +~e− d~v
dt

), and models
the vorticity induced by buoyancy. New vorticles are produced from
the density field ρ releasing potential energy, as shown in Figure 5.
We define ρ with a set of particles carrying density and an ambient
density ρA > 0, so the total density field ρ is strictly greater than 0,
as required by Eq. (2)

ρ = ρA +
X

ρj (17)

We use subscript j to denote density particles, as opposed to sub-
script i for vorticles. The falloff ρj of a density particle j is centered
at xj , and defined per Appendix B in local coordinates qj = p−xj

as

ρj = mj

exp((1 + κ1
qj ·qj

2r2

j
)−κ2) − 1

e − 1
(18)

where mj is a multiplier of the particle density field, and κi is given
in Eq. (37). The newly induced vorticles are located along a ring

of diameter rj perpendicular to ~g + ~e − d~v
dt

. Instead of advecting
an additional filament representation, we discretize the ring with
n new vorticles, equidistant for simplicity, and where n = 2 in

practice. Let us define orthogonal unit vectors ~a and ~b such that

~a× ~b has the direction of ~g + ~e− d~v
dt

. Given n randomly selected

samples αj , the new vorticles are, in the density particle’s local
coordinates

xαj = xj +
rj

2
(cos(αj)~a + sin(αj)~b)

~wαj = rj
√

rjκ0
π
n
‖~g + ~e − d~v

dt
‖ ρj(xα)+

mj
e−1

ρ(xα)

(− sin(αj)~a + cos(αj)~b)
rαj = rj

(19)

Figure 5: A density particle emits a ring of vorticles (red). We
sample the ring with vorticles of strengths that match the mass of
the density particles, as visualized on points (green lattice).

2.5 Boundary Pressure

In Eq. (4), the field ~h cancels the velocity field induced by the vor-

ticles without adding vorticity. To define ~h, we split IR3 with a
surface δΩ enclosing volume Ω with normal ~n pointing outside,
and volume Ωc the complementary of Ω. We show in Appendix C

that the Neumann boundary condition defines ~h restricted to Ωc

explicitly as

~hΩc(p) =

Æ

δΩ

~n · (~vΩc(x) − ~u(x))∇G(p,x)dx (20)

Here G(p,x) = −1
4π‖p−x‖ is the Green’s function of the Laplacian,

~vΩc is the velocity of the boundary. To the best of our knowledge,
we are not aware of this result in previous work, although this is
related to the method of Zhang and Bridson [Zhang and Bridson

2014] who solve ~h numerically using the single layer potential from
Potential theory. Using n panels of size ai and centroid xi, we

could discretize ~h using directly the falloffs

~hΩc(p) =
X

i

ai~ni · (~vΩc(xi) − ~u(xi))∇G(p,xi) (21)

To avoid the singularities of G when p approaches the bound-
ary samples xi, we use, instead of Eq. (21), the pathlines of the
monopole based on the deformer of Decaudin [Decaudin 1996].
For a point outside of the boundary

~hΩc(p) =
1

Dt

X

i

ζ(p−xi, Dtai~ni·(~vΩc(xi)−~u(xi)))−(p−xi)

(22)
where ζ defined below satisfies ζ(ζ(p, k0), k1) = ζ(p, k0 + k1)

ζ(p, k) =



(1 + 3 k
4π‖p‖3)1/3 p if r(k) < ‖p‖

0 otherwise

r(k) = (max(−k, 0) 3
4π

)1/3

(23)

This provides a geometric insight: a boundary opposing the flow is
akin to an insertion and removal of volume at the boundary propor-
tional to the boundary’s opposition to the flow. The discretization

of ~h is stable, but more accurate away from the boundary than near
the boundary. To remedy the problem of accuracy, we define the

solution ~hδΩ on the boundary. Since ~n · ~hδΩ = ~n · (~vΩc − ~u) and
~hδΩ is aligned with the normal

~hδΩ(p) = (~n · (~vΩc(p) − ~u(p))) ~n (24)

And finally, if a point p enters the boundary, it is pushed out to the
nearest position on the surface

~hΩ(p) = argmin
x∈δΩ

(‖p − x‖) (25)

We assemble Eq. (22), Eq. (24) and Eq. (25) to construct the full

definition of ~h, by blending ~hΩc and ~hδΩ with a smoothstep func-
tion based on the distance r̂ between the samples on the boundary

~h(p) =



~hΩ(p) if p ∈ Ω

mix(~hδΩ(p), ~hΩc(p)) otherwise
(26)

Where mix(~a, ~b) = ~a+smoothstep(d
r̂
)(~b−~a), given the distance

d from p to δΩ.

Figure 6: Left: initial position of a boundary object (red) moving
into points (green lattice). Right: the harmonic field warps space in
an incompressible and irrotational manner, with a slip boundary.

2.6 Vorticle Shedding

When p is at the boundary of a solid object, the term ∇ log(ρ) ×
(~F − d~v

dt
) + ∇ × ~F in Eq. (2) measures the change of vorticity at

the moving object’s boundary. This vorticity spreads into the flow
by a diffusion proportional to viscosity coefficient ν introduced in
Section 2.3. We show in Appendix D that the surface vorticity that

satisfies our boundary conditions is (~f −~e− d~v
dt

)×~n. The vorticity
shedding is the solution to a differential equation with boundary
condition

(

d~ω
dt

= ν∇2~ω

~ω =
p∈Ω

Dt (~f − ~e − d~v
dt

) × ~n (27)

We solve Eq. (27) by shedding vorticles: we divide the surface into
n panels of area ai and centroid xi, and emit per panel a vorticle
that approximates the heat kernel

~wi = ai
r5/2

8πDtν
(~f − ~e − d~v

dt
) × ~n

ri =
√

2
√

Dt ν
(28)

We use ‖(~f −~e− d~v
dt

)×~n‖ as a probability distribution function to

create samples at the locations that most affect the flow. Note that~f
is the surface acceleration, as opposed to the velocity. To compute
the acceleration, we store on the surface Eq. (4) at the previous

time, and use d~v
dt

≃ ~v(t)−~v(t−Dt)
Dt

. We show in Figure 7 that this

produces the expected behavior.

Figure 7: Left: a constant flow moves at 10ms−1 with ν = 0.1
around a static pole of radius 1 (red): the surface sheds vorticles
(black arrows). Right: a slice of the vorticity induced by the vorti-
cles reveals the emergent behavior of a von Kármán vortex street.

3 Data Structure

For efficiency, we introduce a vorticle cutoff proportional to the
vorticle size ri. This reduces the algorithmic complexity to O(N)
when neighbor cell lists are used. This accelerates the nearest vorti-
cle search while preserving an incompressible flow since the cutoff
is constant along the streamlines of rotation. Since vorticles are
band limited, we can further split the vorticles into groups of simi-
lar radius, and evaluate their displacement in sparse grids with cell
size proportional to the cutoff.

Vorticle cutoff We introduce the cutoff on both the falloff and its
gradient in a manner that preserves smoothness. Let us define a
vorticle’s cutoff distance mri. Using the following values

k0 = 4(1 + 2m2)ri

k1 = 2 + m2

k2 = k2
1

√
k1

a0 = ri

ri−
√

2k0/k2

a1 =
√

2 k0−6m‖p−xi‖
k2

√
rir3

i

a3 = 6
√

2
k2

√
rir4

i

(29)

Then the remapped falloff and gradient are

φ̃i = a0(φi − a1)

∇̃φi = ∇φi + a3(p − xi)
(30)

The vorticle cutoff provides an adjustable tradeoff between the
falloff’s physically based properties and spatially localized com-
putations, with defaults typically set to 6ri and ri/2.

Fusing vorticles Vorticles that are similar and close enough can
be fused in one vorticle. Vorticle are similar enough when ‖pi −
pj‖ and |ri − rj | are smaller than a distance threshold ǫ. Also, the
velocity induced by a group of far away vorticles can be obtained
by fusing the vorticles. The fused vorticle is given by the following
formula

x =
P

xi
n

r =

„

P

i r
−5/2

i
P

i
√

ri

«−1/3

~w =
P

i
√

ri ~wi√
r

(31)

where n is the number of vorticles in the cell and i is the vorticle
index. The above is asymptotic to the sum of vorticles, and exactly
equal to the sum when the vorticles have the same radius.

Lifespan Vorticles can be assigned an artificial decay rate, trig-
gered by an event controlled by a varying expression.

Band-limiting As stretching deforms vorticles outside of the
range (rmin, rmax), we reduce the vorticle’s strength ~wj instead

of scaling the vorticle’s radius ri. For shrinking small vorticles,
this models the fluid’s viscous behavior at small scales, and for ex-
panding large vorticles this reduces their contribution to velocity
artificially.

Radius paging Splitting the vorticles in groups of similar radius
leads to a more efficient use of acceleration structure for distance
queries. We use a logarithmic scale to split the vorticles in groups.

Cached velocity When the point density is particularly high
within a region of space, velocity can be evaluated at the vertices of
a lattice and interpolated in-between.

Figure 8: Left: 2400 vorticles, showing the vertical current and the
collider’s trail. Right: advected densities. Dynamics can be limited
to the visible areas simply by deleting points.

4 Controls

The number of samples of the colliders, shedding, sources, buoy-
ancy and density are controlled independently. Users can control
the flow by modifying existing vorticles with external forces ~e or

via the harmonic field ~h, or by creating new vorticles:

• A turbulent field is created by scattering vorticles with random
parameters.

• A gust of wind is created by placing vorticles aligned with the
tangent of a ring perpendicular to the direction of the desired
wind.

• An invisible collider can be moved to warp space.

• The amount of shedding and buoyancy can be artificially di-
aled up or down.

A number of additional dials can be tuned per vorticle:

Overshoot For advection of visible particles, the velocity can be
scaled lower or higher to create a drag or extra swirliness. Although
physically implausible, this helps creating styles.

Spin The axis of vorticles can be aligned with vector fields to
modify the fluid motion globally.

Artificial damping The strength of vorticles can be reduced arti-
ficially. This damping coefficient can be stored per vorticle.

5 Algorithm Summary

In this section we summarize our algorithm. Several integration
schemes may be used to advect particles along the induced velocity

field. A simple method, very stable for large time steps, relies on
the well understood circular pathlines of individual vorticles, and
we replace Eq. (6a) with

~kw = Dtφi(p − xi)~wi

~kx = ~kw × (p − xi)

~vi(p) = 1
Dt

(1−cos(‖~kw‖)
~k
2

w

~kw × ~kx + sin(‖~kw‖)
‖~kw‖

~kx)
(32)

In the following we distinguish between density particles for buoy-
ancy, vorticles for dynamics, and visual particles for rendering.

• Scatter point samples on boundaries using the probability dis-
tribution of Section 2.6.

• Compute and store the velocity ~u induced by vorticles on
boundary point samples using Eq. (4).

• Create new vorticles from vortex shedding, defined by
Eq. (28) of Section 2.6.

• Create new vorticles from buoyancy, defined by Eq. (19) of
Section 2.4.

• Emit new vorticles as defined by the user. Scattering vorticles
produces an initial condition. Emitting vorticles on a circle
with tangential strength produces a source of wind.

• Build a hierarchy by fusing vorticles, to accelerate evaluating
the velocity induced by groups of distant vorticles.

• Compute and store the velocity ~h induced by colliders on the
visual particles using Eq. (26) of Section 2.5. Compute and
store the velocity ~u induced by vorticles on the visual particles
using Eq. (4).

• Compute and store the velocity ~h induced by colliders on the
density particles using Eq. (26) of Section 2.5. Compute and
store the velocity ~u induced by vorticles on the density parti-
cles using Eq. (4).

• Compute and store the velocity ~h induced by colliders on the
vorticles using Eq. (26) of Section 2.5. Compute and store the
velocity ~u induced by vorticles on the vorticles using Eq. (4).

• Apply displacement Dt(~u + ~h) to visual particles, density
particles and vorticles.

• Fuse vorticles that can be fused using Eq. (31).

• Attenuate vorticles.

• Delete vorticles far from visual particles, outside of frustum,
or with a low strength.

6 Conclusion

We presented a method for simulating gases using vorticles. Our
method has no divergence by construction and avoids solving pres-
sure completely. The simulation is gridless and can span domains
of arbitrary size and resolution. The sampling resolution of den-
sity, dynamics, boundary condition and sources are decoupled from
each other, which opens many options for adaptive sampling strate-
gies. Although our method is similar to other point-based vortex
methods, a subtle difference is that instead of filtering a point vor-
ticity, we advect vorticles that carry a volume of vorticity. This
leads to stable stretching. Additional stability is achieved by inte-
grating streamlines instead of velocity. Also, we propose a model
for boundary pressure that does not require solving a linear system,
and we propose a model for buoyancy which plays a key role in

gas motion for producing more lively smokes and pyroclastic ef-
fects. Our method provides a full set of features expected from a
gas simulation while using only vorticles and monopoles, and was
used on a production. We believe that defining a vorticle in relation
to the Navier-Stokes equation provides a valuable insight for future
research in vorticity based dynamics.

A Nomenclature

t time Dt time step
p position xi vorticle center
~v velocity ~vi vorticle velocity
~ω vorticity ~ωi vorticle vorticity
~wi vorticle strength ri vorticle size

si vorticle stretching factor ~h harmonic field
ρ density ρA ambient density
ρj particle density mj particle density multiplier
ν kinematic viscosity µ dynamic viscosity
Ei vorticle mean energy Ωi vorticle enstrophy
~F external forces ~f solid objects acceleration
~g gravity δΩ boundary surface
Ω space inside boundary Ωc space outside boundary

(33)

B Buoyancy

The vorticity induced by buoyancy could be computed directly by
sampling everywhere in ℜ3, the buoyancy term with vorticles. But
this laborious integral can be avoided, since buoyancy vorticity is
concentrated near places of varying density and where the density
gradient and buoyant acceleration are perpendicular. First we asso-
ciate a set of vorticles with a single particle j which we will gener-
alize to multiple density particles. Let us define a local coordinate

system centered at xj such that ~z is aligned with ~g + ~e − d~v
dt

. For
a density particle or radius rj , we expect the vorticles induced by
buoyancy to be concentrated around a ring {xα, α ∈ 2π} of diam-
eter rj , perpendicular to vector unit ~z, with an axis ~nα. In local
coordinates

xα =
rj

2
(cos(α), sin(α), 0)

~nα = (− sin(α), cos(α), 0)
(34)

For a canonical density particle, we use the following density field

ρ̂j = exp((1 + κ1
x · x
2r2

j

)−κ2) (35)

We fit parameters κ0, κ1 and κ2 using the following equation

∇ log(ρ̂j) × ~z
= rj

√
rjκ0 ∇×

`�

α
φ(p − xα)~wα × (p − xα)dα

´

(36)
We obtain the following parameters. The left and right side of
Eq. (36) are compared in Figure 9

κ0 = 0.493483
κ1 = 0.572636
κ2 = 3.423340

(37)

To generalize to multiple particles, we remap ρ̂j to values in
(0, mj) so that densities can be added, and obtain the field of

a single particle density ρj = mj
ρ̂j−1

e−1
. Since ∇ρ

ρ
× ~z =

P mj

e−1

ρ̂j

ρ
∇ log(ρ̂j) × ~z, we obtain a set of weights that modu-

late the rotations of the vorticles induced by the density particle j,
that accounts for acceleration and multiple particles

~wα = rj
√

rjκ0
π

n
‖~g + ~e − d~v

dt
‖ mj

e − 1

ρ̂j(xα)

ρ(xα)
~nα (38)

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

Figure 9: Left: overlapping plot of the largest component of the left
(red) and right (blue) side of Eq. (36). Our density fits the closed
form integral with a third decimal accuracy on all 3 vector compo-
nents. Right: density field ρj for rj = 1 and mj = 1.

C Boundary Pressure

Let us call G the Green’s function of the Laplacian G(p,x) =
−1

4π‖p−x‖ . Let us denote δΩ a surface enclosing volume Ω, with

normal ~n pointing outside, and volume Ωc the complementary of
Ω.

Lemma 1 For any vector field ~v we can define the following ir-

rotational and incompressible vector field ~hΩc , such that ~v + ~hΩc

does not cross the surface δΩ

~hΩc(p) = −
Æ

δΩ

~n · ~v(x)∇G(p,x)dx (39)

Proof 1 Using the delta function

δ3(p − x) = ∇2G(p,x) (40)

and using the vector derivative identity

∇2~f = ∇(∇ ·~f) −∇× (∇×~f) (41)

for p ∈ Ωc we write the Helmholtz decomposition of ~hΩc , as the
sum of an irrotational field and solenoidal field

~hΩc(p) =
�

Ωc
~hΩc(x)δ3(p − x)dx

= ∇
�

Ωc ∇ · (G(p,x)~hΩc(x))dx

−∇×
�

Ωc ∇× (G(p,x)~hΩc(x))dx

= ∇
�

Ωc ∇G(p,x) · ~hΩc(x)dx

−∇×
�

Ωc ∇G(p,x) × ~hΩc(x)dx

(42)

With derivative notation ∇′ = d
dx

, we note that ∇G(p,x) =

−∇′G(p,x)

~hΩc(p) = −∇
�

Ωc ∇′G(p,x) · ~hΩc(x)dx

+∇×
�

Ωc ∇′G(p,x) × ~hΩc(x)dx
(43)

Then since ~hΩc is solenoidal and irrotational we can use identities
∇′G · ~hΩc = ∇′ · (G~hΩc) and ∇′G × ~hΩc = ∇′ × (G~hΩc) to
write

~hΩc(p) = −∇
�

Ωc ∇′ · (G(p,x)~hΩc(x))dx

+∇×
�

Ωc ∇′ × (G(p,x)~hΩc(x))dx
(44)

Then using the divergence theorem of the first term, assuming ~n
points outside and the field vanishes faster than 1/r as r → ∞

~hΩc(p) = ∇

δΩ
~n · (G(p,x)~hΩc(x))dx

+∇×
�

Ωc ∇′ × (G(p,x)~hΩc(x))dx
(45)

Field ~hΩc is irrotational, and if Ωc is simply connected we can then

write ~hΩc as the gradient of a scalar field, ~hΩc = ∇χ. Using the
identity ∇′ × (G∇′χ) = −∇′ × (χ∇′G) on the second term

~hΩc(p) = ∇

δΩ
~n · (G(p,x)~hΩc(x))dx

−∇×
�

Ωc ∇′ × (χ(x)∇′G(p,x))dx
(46)

Then using the curl theorem of the second term, assuming the field
vanishes faster than 1/r as r → ∞

~hΩc(p) = ∇

δΩ
~n · (G(p,x)~hΩc(x))dx

−∇×

δΩ
~n × (χ(x)∇′G(p,x))dx

(47)

We apply the gradient to the first term and the curl to the second
term

~hΩc(p) =

δΩ
~n · ~hΩc(x)∇G(p,x)dx

−

δΩ
χ(x)(~n · ∇)(∇′G(p,x))dx

(48)

Since the integrands are irrotational and solenoidal, so is their su-
perposition by the integral. If function χ takes a constant value on
the surface of the obstacle, say 0, then ∇χ is aligned with ~n and we

can impose the Neumann boundary condition ~v + ~hΩc = 0 on δΩ.
Note that if surface δΩ is topologically not simply connected, then
χ is only locally defined, but since we set χ to 0 on the boundary,
we can reconnect the branches of χ.

D Boundary Vorticity

The vorticity near the boundary Ω of a moving object is given

by ∇ log(ρ) × (~F − ~a) + ∇ × ~F, where ~a is the acceleration
near the boundary. To compute this term, we consider a coordi-
nate system where the half space z < 0 is inside the solid object,
z = 0 is on the object’s surface, and z > 0 is outside. Using
the Heaviside step function H, the nearby density is formally de-
fined as ρ = H(−z)ρ0 + H(z)ρ1, the external forces term is de-

fined as ~F = H(−z)~f + H(z)(~g + ~e), and the acceleration is

~a = H(−z)~f + H(z) d~v
dt

. Since we solve for vorticity, we can re-

place ~F with any ~F + ~G to satisfy the boundary condition as long

as ∇× ~G = 0 in Ωc. First let us consider the following ~G

~G = H(z)(
d~v

dt
− ~g − 1

2
~e) − 1

2
~e (49)

Although d~v
dt

may have curl, we discretize the object surface in re-

gions of constant d~v
dt

. To prevent the space inside objects from con-
tributing to the non-rigid fluid motion, we set ρ0 → ∞, thus enforc-

ing~f inside objects. We take the limit of the integral of the collision
term near the surface using the following limit to the heavyside step
function H(z) = lim

t→∞
1
2

+ 1
π

tan−1(zt), and obtain the surface

vorticity

lim
ρ0→∞

lim
t→∞

� h

−h
∇ log(ρ) × (~F + ~G − d~v

dt
)+

∇× (~F + ~G) dz

= (~f − ~e − ~a) × ~n

(50)

References

ANGELIDIS, A., NEYRET, F., SINGH, K., AND

NOWROUZEZAHRAI, D. 2006. A controllable, fast and
stable basis for vortex based smoke simulation. In Proceedings
of the 2006 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, Eurographics Association, SCA ’06,
25–32.

ARIS, R. 2012. Vectors, Tensors and the Basic Equations of Fluid
Mechanics. Dover Books on Mathematics. Dover Publications.

COTTET, G.-H., AND KOUMOUTSAKOS, P. D. 2000. Vortex
Methods: Theory and Practice. Cambridge University Press.

DE WITT, T., LESSIG, C., AND FIUME, E. 2012. Fluid simulation
using Laplacian eigenfunctions. ACM Trans. Graph. 31, 1 (Feb.),
10:1–10:11.

DECAUDIN, P. 1996. Geometric deformation by merging a 3D
object with a simple shape. In Graphics Interface, 55.

DESBRUN, M., AND GASCUEL, M.-P. 1996. Smoothed particles:
A new paradigm for animating highly deformable bodies. In Pro-
ceedings of the Eurographics Workshop on Computer Animation
and Simulation ’96, Springer-Verlag New York, Inc., 61–76.

ELCOTT, S., TONG, Y., KANSO, E., SCHRÖDER, P., AND DES-
BRUN, M. 2007. Stable, circulation-preserving, simplicial flu-
ids. ACM Trans. Graph. 26, 1 (Jan.).

FOSTER, N., AND METAXAS, D. 1997. Modeling the motion of
a hot, turbulent gas. In Proceedings of the 24th Annual Confer-
ence on Computer Graphics and Interactive Techniques, ACM
Press/Addison-Wesley Publishing Co., SIGGRAPH ’97, 181–
188.

FRISCH, U., AND KOLMOGOROV, A. 1995. Turbulence: The
Legacy of A. N. Kolmogorov. Turbulence: The Legacy of A.N.
Kolmogorov. Cambridge University Press.

GIBOU, F., AND MIN, C. 2012. On the performance of a simple
parallel implementation of the ilu-pcg for the Poisson equation
on irregular domains. Journal of Computational Physics.

KIM, T., THÜREY, N., JAMES, D., AND GROSS, M. 2008.
Wavelet turbulence for fluid simulation. ACM Trans. Graph. 27,
3 (Aug.), 50:1–50:6.

MCADAMS, A., SIFAKIS, E., AND TERAN, J. 2010. A paral-
lel multigrid Poisson solver for fluids simulation on large grids.
In Proceedings of the 2010 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, Eurographics Association,
SCA ’10, 65–74.

PARK, S. I., AND KIM, M. J. 2005. Vortex fluid for
gaseous phenomena. In Proceedings of the 2005 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
ACM, SCA ’05, 261–270.

PFAFF, T., THUEREY, N., AND GROSS, M. 2012. Lagrangian
vortex sheets for animating fluids. ACM Trans. Graph. 31, 4
(July), 112:1–112:8.

SELLE, A., RASMUSSEN, N., AND FEDKIW, R. 2005. A vor-
tex particle method for smoke, water and explosions. In ACM
SIGGRAPH 2005 Papers, ACM, SIGGRAPH ’05, 910–914.

STAM, J. 1999. Stable fluids. In Proceedings of the 26th Annual
Conference on Computer Graphics and Interactive Techniques,
ACM Press/Addison-Wesley Publishing Co., SIGGRAPH ’99,
121–128.

ZHANG, X., AND BRIDSON, R. 2014. A PPPM fast summation
method for fluids and beyond. ACM Trans. Graph. 33, 6 (Nov).

