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Abstract

Noise functions are an essential building block for writing proce-
dural shaders in 3D computer graphics. The original noise function
introduced by Ken Perlin is still the most popular because it is sim-
ple and fast, and many spectacular images have been made with it.
Nevertheless, it is prone to problems with aliasing and detail loss.
In this paper we analyze these problems and show that they are par-
ticularly severe when 3D noise is used to texture a 2D surface. We
use the theory of wavelets to create a new class of simple and fast
noise functions that avoid these problems.
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[I.3.7]: Three-Dimensional Graphics and Realism—Color, shad-
ing, shadowing, and texture
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1 Introduction

Ever since the introduction of Perlin noise in [Perlin 1985], noise
functions have been important for creating textures in 3D computer
graphics. Perlin constructs patterns from bands of noise, each of
which is limited to a range of frequencies. The bands are used as
building blocks to construct complex noise patterns, where the fre-
quency spectrum is controlled by weighting the contributions of dif-
ferent bands. For example, fractal noise can be produced by making
the amplitude of each band inversely proportional to its frequency.
Because this approach uses a single weight per band, it does not
support detailed spectral shaping. By contrast, [Lewis 1989] intro-
duced a Wiener interpolation method that is capable of constructing
a texture with an arbitrary spectrum. This provides more control
over the characteristics of the noise, but is considerably more ex-
pensive.

Despite a considerable amount of research into the definition and
construction of noise (see [Peachey 2003] for an excellent survey),
Perlin’s original version of noise has continued to be the workhorse
of the industry. There are good reasons for this: it is fast, it is
simple, and the bands provide sufficient spectral control for most
applications.

Each Perlin band is intended to be band-limited so that it contains
only frequencies in a power-of-2 range. But each band actually
contains a much wider range of frequencies; this is discussed in
detail in [Lewis 1989] and is evident in the Fourier transforms in
Figure 8. These weak band limits lead to some serious problems.
A Perlin band near the Nyquist limit contains both frequencies that
are low enough to be representable (i.e., they contain detail that
should be in the image) and frequencies that are high enough to be
unrepresentable (i.e, they can cause aliasing). Excluding the band

(a) (b)
Figure 1: A comparison between images created using (a) Perlin
noise and (b) wavelet noise. Image (a) represents best practices
use of Perlin noise at Pixar to achieve the optimal tradeoff between
detail and aliasing; notice how much detail is missing at high spatial
frequencies in the far distance.

causes loss-of-detail artifacts, but including it causes aliasing arti-
facts. Balancing this tradeoff between loss of detail and aliasing
has been a constant source of frustration for shader writers at Pixar
and elsewhere. Because aliasing is usually more unacceptable than
loss of detail in feature film production, bands are attenuated ag-
gressively. An unfortunate consequence of this is that as you zoom
into a scene the texture detail becomes visible later than the geom-
etry detail, so the texture doesn’t appear to be tied to its geometry.
Instead, the texture appears to fade in unnaturally as if there were
a haze that obscured only some aspects of the surface appearance
and only when it was farther away. This is illustrated in Figure 1. A
sparse convolution method was introduced in [Lewis 1989] to im-
prove the band-limited character of noise, but it too does not com-
pletely solve the loss-of-detail vs. aliasing problem.

There is, however, an even more fundamental problem — one that
plagues every existing noise creation method. When rendering, it
is common to texture 2D surfaces by sampling a 3D noise function,
but the resulting 2D texture will in general not be band-limited,
even if the 3D function is perfectly band-limited. This means that
the loss-of-detail vs. aliasing tradeoff cannot be solved simply by
constructing a band-limited 3D function. To our knowledge this
problem has never even been identified, much less addressed.

In this paper, we introduce a new noise technique called wavelet
noise that addresses all of these issues. Our approach is based on
the observation that Perlin’s construction using sums of scaled and
attenuated versions of a band-limited function was an early exam-
ple of what has come to be known as a multiresolution function.
Subsequent to Perlin’s work, wavelet analysis (cf. [Chui 1992;
Stollnitz et al. 1996]), also known as multiresolution analysis, has
emerged as a powerful way to analyze and construct such functions.
It is therefore natural to use this approach to analyze and construct
noise.

Wavelet noise is almost perfectly band-limited, providing good de-
tail with minimal aliasing, as demonstrated in Figure 1. Moreover,
3D wavelet noise can be used to texture a 2D surface in a way that
maintains its band-limited character. The technique is also easy to
implement and fast (an implementation is provided in the Appen-
dices).
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Figure 2: (a). Image R of random noise, (b) Half-size image R↓, (c)
Half-resolution image R↓↑, (d) Noise band image N = R−R↓↑.

2 Overview

To provide a context for the remainder of the paper and to empha-
size the simplicity of the basic algorithm, we begin by presenting
a high-level overview, using the two-dimensional case and gloss-
ing over the details. The essence of our algorithm consists of the
following four steps, which are illustrated in Figure 2:

1. Create an image R filled with random noise. (Figure 2a)

2. Downsample R to create the half-size image R↓. (Figure 2b)

3. Upsample R↓ to a full size image R↓↑. (Figure 2c)

4. Subtract R↓↑ from the original R to create N. (Figure 2d)

N is thus created by taking R and removing the part that is repre-
sentable at half-size. What’s left is the part that is not representable
at half-size, i.e., the band-limited part. N is then used just like Per-
lin noise to construct noise patterns. This construction is similar
in spirit to the procedural band-pass pyramids of [Perlin and Velho
1995].

The mathematics for deriving and justifying this approach, particu-
larly the filters used in the downsampling and upsampling steps, is
presented in Section 3. Practical implementation considerations are
then discussed in Section 4, and results are presented in Section 5.

3 Theory

In this section, we provide the mathematical underpinnings for our
algorithm. For now, we work in one dimension; the extension to
more dimensions is straightforward and is covered in Section 3.6.

Perhaps the most obvious way to construct band-limited noise
would be to use spectral methods, which are based on sinc filters.
Instead, the approach we take uses wavelets, which are more gen-
eral than spectral methods in that they work with a wide variety of
basis functions. This flexibility allows us to use basis functions that
have a finite extent and that more closely match the filters used in
renderers.

We construct our multiresolution noise M(x) in a fashion similar
to Perlin, that is, by summing scaled and attenuated versions of a
noise band N(x). Specifically,1

M(x) =
bmax

∑
b=bmin

wbN(2bx) (1)

where b indexes the band, and where the weights wb are free vari-
ables used to control the spectral character of M(x). We differ from
Perlin in the definition and construction of N(x).

We begin by modeling how noise is used in the rendering process.
Renderers typically use a filter kernel to turn a scene function into
pixels. In particular, the value of the i-th pixel is

Pixel(i) =
∫

S(x)K(x− i)dx (2)

where S(x) represents the scene being rendered and K(x− i) is the
renderer’s filter kernel K(x) translated so that it is centered at pixel i.
K(x) is usually a non-negative, locally supported function.

The scene function S(x) typically contains a mixture of declarative
data, such as the positions and orientations of geometric primitives,
together with procedural components, such as procedural shaders.
Since the scene can be an arbitrarily complicated function of noise,
no noise function can possibly prevent aliasing under all conditions.
(As an extreme example, consider a procedural shader that returns
white if the low order bit of M(x) is one, and black otherwise.)
Instead, we devise a method that guarantees no aliasing or loss of
detail under ideal conditions, and then show that it behaves well in
all but the most pathological of non-ideal conditions.

3.1 Orthogonality

Under our ideal conditions, the scene being rendered, when re-
stricted to the region contributing to pixel i, is locally well approx-
imated by a scaled and translated version of multiresolution noise.
If s is the scale of the scene at pixel i, and k is the offset, then our
assumption is that S(x)≈ M(2s(x− k)), in which case the value of
i-th pixel is given by:

Pixel(i) =
∫

M(2s(x− k))K(x− i)dx (3)

=
∫ bmax

∑
b=bmin

wbN(2s+b(x− k))K(x− i)dx (4)

=
bmax+s

∑
j=bmin+s

w j−s

∫
N(2 jx− `)K(x− i)dx (5)

where for notational convenience, in the last equation we substi-
tuted s+b → j and 2s+bk → `.

Our objective is to allow shader writers to safely truncate this sum-
mation without loss of detail and without aliasing. We assume with-
out loss of generality that the resolution of the image corresponds
to j =−1, so that the noise band at resolution j =−1 is fully repre-
sentable but noise bands at resolutions j ≥ 0 are not representable.
We want these unrepresentable bands to have no contribution to the
image, which means that:∫

N(2 jx− `)K(x− i)dx = 0 (6)

for all j ≥ 0 and for all i and `. This condition means that the fine
scale versions of N(x) are orthogonal to the renderer’s filter kernel
K(x). In other words, our method is based on the principle that
the contribution of the noise function to the image should vanish
exactly when aliasing would occur.

1A band-dependent translation is usually added to 2bx to de-correlate the
noise bands, but we can safely ignore this in our analysis.



We know of no technique that can find such an N(x) for an arbitrary
filter kernel K(x) and arbitrary parameters j and `. However, given
relatively mild restrictions on K(x), we can use wavelet analysis to
achieve exact orthogonality when j and ` are integers. With this
objective in mind, Sections 3.2 and 3.3 review some needed results
from wavelet analysis2 in preparation for constructing our orthog-
onal noise band N(x) in Section 3.4. We then show in Section 3.5
that the deviation of our noise function from orthogonality is small
in real-world situations.

3.2 Refinability and Upsampling

Much of computer graphics involves representing functions as a
weighted sum of basis functions. For example, B-spline curves
are represented as weighted sums of B-spline basis functions, and
a monitor approximates an image as a weighted sum of the spot
shapes of the pixels.

Starting with a basis function φ(x) centered at x = 0, other functions
F(x) can be built by taking linear combinations of φ(x) translated
by integer amounts i:

F(x) = ∑
i

fiφ(x− i) (7)

where φ(x− i) is a version of φ(x) centered around x = i, and where
the fi are the coefficients of the representation.

The set of all functions that can be represented by varying the co-
efficients fi forms a vector space that we call the resolution 0 space
and denote by S0:

S0 := {F(x)|F(x) = ∑
i

fiφ(x− i)} (8)

A larger, resolution 1 space S1 of functions can be represented by
scaling down the width of φ(x) by a factor of two (21), then trans-
lating along the half integers. Functions G(x) in this space take the
form

G(x) = ∑
i

giφ(2x− i) (9)

A key idea in wavelet analysis is to ensure that all the functions
in S0 are also in S1; that is, that S0 ⊂ S1. This guarantees that S1

enriches the space S0, rather than replacing it with a completely
different set of functions. This subset relationship is guaranteed if
there exist coefficients pk that allow φ(x) to be written in terms of
φ(2x− k):

φ(x) = ∑
k

pkφ(2x− k) (10)

When such coefficients do exist, φ(x) is said to be refinable. Exam-
ples of refinable functions include uniform B-spline basis functions
(of any degree), sinc functions, and Daubeschies basis functions.
Figure 3 illustrates the refinability of uniform quadratic B-splines.
Gaussians are good examples of functions that are not refinable.

We henceforth assume that φ(x) is refinable. Given the coefficients
fi that represent a function F(x) in S0 as in Equation 7, there exist
coefficients f ↑i that represent that function exactly in S1:

F(x) = ∑
i

f ↑i φ(2x− i) (11)

Using the refinement equation, Equation 10, it is straightforward to
show that

f ↑i = ∑
k

pi−2k fk (12)

2A number of texts, such as [Chui 1992] and [Stollnitz et al. 1996], de-
scribe this material in more detail.

Figure 3: Refinement of a uniform quadratic B-spline. The black
curve is the basis function φ(x). The red curves are φ(2x− k),
integer-offset half-width copies of φ(x) that have been attenuated
by the refinement coefficient pk. The blue dots show the pk val-
ues (1/4,3/4,3/4,1/4) for this basis. This basis function is refin-
able because the sum of the red curves is exactly equal to the black
curve.

The sequence (..., f ↑i , ...) is twice as long as the sequence
(..., fk, ...), so Equation 12 represents an upsampling filter; this is
in fact the upsampling filter used in Step 3 of our algorithm. This
filter, defined solely by the refinement coefficients and hence by
the basis function, describes how to convert a function represented
at resolution 0 to its resolution 1 representation. For quadratic B-
splines, all of the refinement coefficients pk are 0 except for:

p−1 = 1/4, p0 = 3/4 p1 = 3/4, p2 = 1/4 (13)

3.3 Wavelets and Downsampling

Above we established that refinability guarantees that every mem-
ber of S0 can be represented exactly as a member of the higher-
resolution space S1. The converse, however, is not true: not ev-
ery function G(x) in S1 can be represented exactly in the lower-
resolution space S0; in general there is some lost detail. However,
this loss of detail can be minimized in a least squares sense by di-
viding G(x) into two parts:

G(x) = G↓(x)+D(x) (14)
where

• G↓(x) is the least squares best approximation to G(x) in S0.

• D(x) is the least squares residual and contains the information
in S1 that cannot be represented in S0.

It follows that D(x) and all of its integer translates are orthogonal
to all functions in S0. That is,∫

D(x− `)φ(x− i)dx = 0 (15)

for all integers ` and i. The set of all such detail functions D(x)
forms a vector space called the wavelet space W0.

Given the coefficients gi for G(x), the coefficients g↓i for G↓(x)
can be determined using a standard result from wavelet analysis.
Specifically, there exist so-called analysis coefficients ak, again de-
pending only on the basis function φ(x), such that

g↓i = ∑
k

ak−2igk (16)

This is a downsampling filter that projects the coefficient sequence
(...,gk, ...) into a sequence (...,g↓i , ...) of half the length in a least
squares optimal way. The analysis coefficients ak comprise the
downsampling filter of Step 2 in our algorithm. For quadratic B-
splines, the sequence (...,ak, ...) is infinitely long, but it decays
quickly and is well approximated by a finite sequence. The variable
a in Appendix 1 contains this sequence for quadratic B-splines.

Because φ(x) is refinable, it can be represented exactly in terms of
φ(2 jx) for all integers j ≥ 0. From this and Equation 15, it can
readily be shown that∫

D(2 jx− `)φ(x− i)dx = 0 (17)



for all integers j ≥ 0 and all integers ` and i. This is exactly the
condition required for our noise band N(x) in Equation 6. Thus, if
we build our noise bands in the wavelet space W0, then they can be
scaled to any resolution j and be guaranteed to have no effect on
images at any resolution less than j.

3.4 Constructing noise bands

Now we are ready to construct our noise band N(x) so that it lies in
the wavelet space W0 generated by the filter kernel K(x). At this
point, we must choose a particular filter kernel K(x), which we take
to be the uniform quadratic B-spline basis function B(x). We do so
for several reasons:

• It is a good approximation to the filter kernels used by most
renderers (including Gaussians);

• it has a small support and low degree, which makes the eval-
uation of N(x) simple and computationally efficient; and

• it generates differentiable noise, meaning that noise gradients,
which are also useful in procedural shading, are continuous.

One could, however, use this same technique to create noise for any
other refinable basis function, such as uniform cubic B-splines or
sincs.

What follows here is a more detailed and precise version of the
algorithm presented in Section 2. Code to implement this algorithm
(in three dimensions) is provided in Appendix 1.

1. Create R(x) using a random number generator.

Use a random number generator to create a coefficient se-
quence R = (...,ri, ...). This sequence defines a function R(x)
in S1. Using the basis function B(x), Equation 9 becomes:

R(x) = ∑
i

riB(2x− i) (18)

An example of such a function is shown in Figure 4(a).

2. Compute R↓(x) by downsampling R(x).

As shown in Equation 14, R(x) can be decomposed into two
parts: a part in S0, denoted by R↓(x), and a detail part in W0,
which is the function N(x) whose coefficients we seek:

R(x) = R↓(x)+N(x) (19)

N(x) = R(x)−R↓(x) (20)

Using Equation 7, we get:

R↓(x) = ∑
i

r↓i B(x− i) (21)

The coefficients r↓ may be computed from the coefficients r
using Equation 16:

r↓i = ∑
k

ak−2irk (22)

An example of R↓(x) is shown in Figure 4(b).

3. Compute R↓↑(x) by upsampling R↓(x).

Using Equations 18 and 21, we can express Equation 20 as:

N(x) = ∑
i

riB(2x− i)−∑
i

r↓i B(x− i) (23)

The first sum in this equation is an S1 representation that uses
the basis function B(2x− i); the second sum is an S0 repre-
sentation that uses the basis function B(x− i). To combine
these sums, we need them to have a common basis, which is

(a) (b)

(c) (d)
Figure 4: An example of wavelet noise in one dimension: (a) a
function R(x) built using random coefficients with B-spline basis
functions; (b) the downsampled version R↓(x); (c) the re-upsampled
version R↓↑(x); (d) the noise function N(x) = R(x)−R↓↑(x). Func-
tions appear in black, their coefficients are plotted as blue dots, and
the basis functions multiplied by their corresponding coefficients
appear in red. Note that the basis functions in (b) are twice the
width of those in the other figures, and that the function R↓(x) in
(b) and the function R↓↑(x) in (c) are identical.

possible because by upsampling we can represent the S0 part
R↓(x) exactly in S1 as:

R↓↑(x) = ∑
i

r↓↑i B(2x− i) (24)

where the coefficients r↓↑ may be computed by upsampling
the coefficients r↓ using Equation 12:

r↓↑i = ∑
k

pi−2kr↓k (25)

An example of R↓↑(x) is shown in Figure 4(c).

4. Compute N(x) by subtracting R↓↑(x) from R(x).

Using Equation 24, we can now rewrite Equation 23 as:

N(x) = ∑
i

riB(2x− i)−∑
i

r↓↑i B(2x− i) (26)

= ∑
i

niB(2x− i) (27)

where the coefficients of N(x) are given by ni = ri − r↓↑i . An
example of the resulting noise band N(x) is shown in Fig-
ure 4(d).

Once the coefficients ni have been determined, a value of N(x) for a
given x can be computed using any evaluation method for quadratic
B-splines (cf. [Farin 2002]). The code in Appendix 2 shows this
computation in 3 dimensions.

As established in Section 3.3, this construction guarantees that all
bands of noise N(2 jx) for j ≥ 0 are orthogonal to S0, and hence do
not contribute to the image. Additionally, noise bands are orthogo-
nal to each other, which makes spectral shaping more controllable.

3.5 Fractional scales and translates

The noise band N(x) has been constructed so that N(2 jx− `) con-
tributes nothing to pixel values when ` is an arbitrary integer and
when j is a non-negative integer. However, in practice j and ` are
not always integers, and in these cases noise bands for which j ≥ 0
will have some contribution to the pixel; omitting them from the
summation will cause some detail to be lost. Fortunately the con-
tribution falls off very rapidly as j increases.

As an indication of this falloff, we have numerically studied the
contribution function

C( j, `) :=
∫

N(2 jx− `)B(x)dx (28)
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Figure 5: The contribution function C( j,1/2) for −2 ≤ j ≤ 3.

as a continuous function of j and `, using various instances of our
noise band N(x). For fixed j, the function reaches a maximum at
` = 1/2. The rate of falloff of the maximum contribution can there-
fore be seen by plotting C( j,1/2) as function of j, as is done in
Figure 5. The falloff is rapid, so we can safely truncate the summa-
tion at j = 0 with minimal loss of detail. (In practice, to ensure that
the contribution completely vanishes at j = 0 even for non-integer
`, we fade out the noise as we approach j = 0.)

3.6 Noise in multiple dimensions

The two-dimensional noise function N(x,y) is constructed from a
two-dimensional array nix,iy of coefficients that are blended together
to form a uniform quadratic tensor-product B-spline:

N(x,y) = ∑
ix,iy

nix,iy B(2x− ix)B(2y− iy) (29)

The coefficient array N = (...,nix,iy , ...) is obtained from an arbi-
trary array R = (...,rix,iy , ...) by applying the downsampling filter
and then the upsampling filter to each row of R to obtain an array
R↓↑. Next, the downsampling filter followed by the upsampling fil-
ter is applied to each of the columns of R↓↑ to obtain an array ↑↓R↓↑.
This array is then subtracted from the initial array R to produce the
noise coefficient array N. Generation of coefficients for noise in
three and higher dimensions is accomplished in a similar fashion,
as shown in the code in Appendix 1.

In analogy to the orthogonality condition for one-dimensional
noise, the two-dimensional noise function N(x,y) satisfies the two-
dimensional orthogonality condition:∫

N(2 jx,2 jy)B(x− ix)B(y− iy)dxdy = 0, j ≥ 0 (30)

meaning that bands of noise for j ≥ 0 can be safely truncated.

Similarly, in three dimensions, N(x,y,z) satisfies∫
N(2 jx,2 jy,2 jz)B(x− ix)B(y− iy)B(z− iz)dxdydz = 0 (31)

for j ≥ 0, meaning that bands of noise for j ≥ 0 can be safely trun-
cated. This integral is relevant when 3D noise is used to texture a
volume.

3.7 Projected noise

Texture values on a 2D surface are frequently determined by sam-
pling a 3D noise function. This approach runs into a fundamental
problem, however: a 2D slice through a 3D band-limited function
is in general not band-limited. As far as we are aware, this fact does
not seem to have been previously recognized in the texture synthe-
sis literature.3 As an example, Figures 8(a) and (b) show how 3D
Perlin noise is somewhat band-limited, but a planar slice through it
is not band-limited at all.

To see why this is so, we use the Fourier Slice Theorem (cf.
[Malzbender 1993]), which states that the Fourier transform of a

3[Lewis 1989] observed this phenomenon in a 1D slice through 2D Per-
lin noise but attributed it to Perlin’s interpolation method rather than the
slicing process itself.

(a) (b)
Figure 6: A band-limited function (a) and its Fourier transform (b).
The Fourier transform of the white slice in (a) is obtained by inte-
grating the 2D Fourier transform along the direction perpendicular
to the white slice shown in (b).

slice is obtained by integrating the Fourier transform along the di-
rection perpendicular to the slice. For example, the 1D Fourier
transform of the slice shown in Figure 6(a) is obtained by inte-
grating the 2D Fourier transform shown in Figure 6(b) along lines
perpendicular to each point on the white line. Notice that the slice
can contain arbitrarily low frequencies because the low-frequency
line integrals (i.e., near the origin of the Fourier transform) pick up
contributions from non-zero high-frequency parts of the 2D Fourier
transform. For example, the integral along the dotted line, which
determines a low frequency, is in general non-zero since it passes
through the higher frequencies in the band-pass.

Fortunately, we can use the wavelet orthogonality machinery to ad-
dress this issue. Consider first the case of a noise-axis-aligned pla-
nar slice such as the plane 2 jz = z0. Rather than texturing the plane
at (x,y) with the 3D function N(2 jx,2 jy,z0), we instead use the 2D
function Nz0(2

jx,2 jy), where

Nz0(2
jx,2 jy) :=

∫
N(2 jx,2 jy,2 jz)B(z− z0)dz (32)

This shows how to project wavelet noise onto a surface: instead of
simply point sampling the texture at the intersection point, we per-
form a line integral orthogonal to the surface, where the integrand
is the 3D noise weighted by a 1D filter kernel with its center at the
point of intersection. Using Equation 31, this definition guarantees
the orthogonality condition we desire:∫

Nz0(2
jx,2 jy)B(x− ix)B(y− iy)dxdy = 0 (33)

for all integer z0 and j ≥ 0.

Moreover, Equation 32 is a projection operator from the tri-variate
wavelet space W0(x,y,z) to the bi-variate wavelet space W0(x,y).
(This can be established by expanding N(x,y,z) in a wavelet ba-
sis for W0(x,y,z).) As a consequence, the other important prop-
erty, band orthogonality, is also preserved: i.e., Nz0(2

ix,2iy) and
Nz0(2

jx,2 jy) are orthogonal whenever i 6= j.

In some cases, this axis-aligned projection is just what we want.
For example, when projecting 4D noise (indexed by xyz and time)
onto 3D images (xyz) in an animated sequence, the projection is
along the time dimension so the integration is axis-aligned. But in
many cases the projection is not axis-aligned, so the integration is
not axis-aligned. In our numerical experiments that consider non-
integer j and non-axis alignment, we have found that the deviation
from orthogonality is small in the non-axis-aligned case and falls
off rapidly in j in a fashion similar to that shown in Figure 5.

4 Implementation

In this section we examine a variety of issues that arise in practical
implementations of wavelet noise.



4.1 Noise evaluation

In practice, renderers approximate the integral of Equation 2 using
a quadrature formula. In the case where S(x) = N(x) this becomes

Pixel(i)≈
Q

∑
q=1

BqN(xq) (34)

where the quadrature weights Bq are typically just set to B(xq), but
they could also be weights that provide higher order accuracy, us-
ing for instance Gaussian quadrature. If the renderer’s quadrature
formula is sufficiently accurate, we can use N(xq) directly. N(xq) is
calculated by interpolating the coefficients ni around x = xq using
B(x− xq), which is 3 noise coefficients wide.

However, if the number of samples Q is too small, a more accurate
value for the pixel can be obtained by replacing N(xq) by N̄(xq), a
weighted average of the value of N(x) in the vicinity of xq. In the
limit of one sample (Q = 1), we are setting Pixel(i) = N̄(i), so N̄(i)
would ideally be equal to the value of integral in Equation 2. The
optimal computation of N̄(xq) depends on the details of the quadra-
ture calculation of the renderer, but a reasonable and convenient
approximation is to use a widened version of B(x) for the finest
bands. For example, for Q = 1, we have had good success interpo-
lating the noise coefficients using B((1 + 2 j)(x− xq)), which is 6
noise coefficients wide at j = 0 and 4.5 wide at j = −1, and then
gradually unwidening the basis function in the region −2 < j ≤−1
so that for j ≤−2, we use the regular, unwidened B(x− xq).

The projected noise integral in Equation 32 can be expressed in
terms of the noise coefficients n as (taking j = 0 for simplicity):

Nz0(x,y) = ∑
ixiyiz

nixiyiz B(2x− ix)B(2y− iy)β (2z0− iz) (35)

where
β (z) =

∫
B(z′)B(2z′− z)dz′ (36)

is a piecewise quintic whose support covers 9 noise coefficients.
This quintic can be closely approximated by β (z) ≈ B( z+3/2

2 ),
which is a double-width quadratic B-spline, whose support covers
6 coefficients as shown in Figure 7. This allows us to combine pro-
jection and evaluation using a single asymmetric tri-variate basis
function. Note that if the normal is not parallel to one of the axes
of the noise coefficient grid, the computation will be less efficient
because the support of the basis function will not be aligned with
the grid. Code for this is included in Appendix 2.

4.2 Noise variance

Another issue with Perlin noise is that there is no model for the
expected statistical distribution of the intensity values or how that
distribution changes as a function of the number of bands and their
weights. By contrast, as we show in this section, the statistical
distribution of wavelet noise can be calculated and controlled.

Every step leading from the random variables ri to the noise coef-
ficients ni is linear, meaning that the noise coefficients ni are linear
combinations of the ri. A standard result from statistics says that a
linear combination of independent, identically distributed Gaussian
random variables is again a Gaussian random variable. Specifically,
let x1, ...,xn be Gaussian random variables with variance σ2

x . The
variable

y =
n

∑
i=1

wixi (37)

has variance

σ
2
y = σ

2
x

n

∑
i=1

w2
i (38)

Figure 7: The quintic projection function β (z) (in blue) can be
closely approximated by a quadratic basis function (in red).

Thus if the ri are Gaussian, the ni will be too. There are various
standard ways to generate such values ri; we use the polar form
of the Box-Muller transformation (cf. [Knuth 1997]) which gives
us a Gaussian distribution with a mean of 0 and a variance of 1.
The variance σ2

n of the ni can then be determined analytically using
the ri weights that are equivalent to the upsample, downsample,
subtract process; however, it is simpler to calculate σ2

n numerically
from the ni values.

N(x) is computed as a linear combination of the ni using a set of
basis functions evaluated at x. As a result, the variance σ2

N of N(x)
differs from σ2

n by the sum of squares of evaluated basis functions.
We could use a different variance for every x, but we have found
it preferable to use the average variance. The former allows a bit
more control over the variance; the latter preserves orthogonality.
The average variance can be determined analytically, but once again
it is simpler to evaluate it numerically. For quadratic B-splines, this
average σ2

N is 0.265 for 2D noise, 0.210 for 3D noise, and 0.296 for
3D noise projected onto a 2D surface.

As bands of noise are added, the variance is further changed by the
band weights wb. The variance of the final multiresolution noise
M(x) is:

σ
2
M = σ

2
N

0

∑
j= jmin

w2
j (39)

Because the values in M(x) have a Gaussian distribution with a pre-
dictable variance, we can change the values to match any desired
distribution. To match a Gaussian distribution with a different vari-
ance, we simply scale the results; for a white distribution, we use
the erf function (cf. [Abramowitz and Stegun 1970]); otherwise we
build a lookup table. This control is useful, but making the distribu-
tion non-Gaussian does violate the orthogonality assumption. Like
any extreme transformations applied to the noise, abrupt transitions
within the desired distribution can lead to aliasing during anima-
tion, but we have found that smoothly varying distributions do not
introduce any noticeable artifacts.

4.3 Noise tiles

The algorithm as described so far is not very efficient because the
width of the downsampling filter makes the generation of the noise
coefficients expensive. Instead of incurring this expense for every
noise sample during rendering, we can use a small pre-computed
volume of noise coefficients and then tile our space with that vol-
ume.4 The tile can optionally include a border the width of the
basis function so that tile boundary checks can be avoided in the
evaluation loop.

The downside of using noise tiles is that they introduce low-
frequency repeating patterns into the noise. Fortunately, because
the noise band contains only small-scale features, this large-scale
repetition is often not objectionable and can just be ignored. For
some applications, it may be appropriate to use a larger tile to make

4Although it isn’t immediately obvious, the tile size must be even; this
is because the period of R↓↑(x) is equal to the period of R(x) if the size is
even, but twice the period of R(x) if it is odd.



(a) 2d Perlin noise (d) 2d wavelet noise

(b) 2D slice through 3D Perlin noise (e) 2D slice through 3D wavelet noise

(c) 2D white noise (f) 3D wavelet noise projected onto 2D

Figure 8: Noise patterns (left) with their Fourier transforms (right). For Perlin noise, we use the RenderMan implementation of [Perlin 2002].

the repetition less obvious. For other applications, the repeating
pattern can be eliminated by using a hash function to select a dif-
ferent noise tile to use in each tile location. This strategy avoids
repetition but creates discontinuities at the tile boundaries. These
discontinuities can be avoided by overlapping the tiles slightly and
blending from one tile to the other, but this creates another artifact:
blending reduces the variance of the noise as noted in Section 4.2.
Using Equation 38, if the tiles are blended using α of one tile and
1−α of another, the variance of the blended value is reduced by a
factor of α2 +(1−α)2. This appears as areas of reduced contrast
along the tile borders. We can correct this simply by dividing the
blended tile values by the variance reduction. Since the α values
are a function of the location within the tile, we can pre-multiply
the noise coefficients by the variance-corrected α values at tile cre-
ation time, eliminating the run-time cost of the α multiplication
and variance correction. To reduce storage, we can store a single
tile pattern and create 48 different variations by permuting the x, y,
and z tile indices (6 possibilities) and by stepping through the co-
efficients in reverse order in x, y, or z (2x2x2 possibilities). This
requires storing only 4 numbers per variation: step sizes in x, y, and
z and a pointer to the (0,0,0) location.

Finally, we note that the upsampling and downsampling filters treat
the even and odd indexed coefficients differently, which introduces

a subtle variation in variance. This variation is easily eliminated
by adding two noise tiles offset by an odd number of coefficients
in each dimension. This can be done at tile creation time so that
there is no additional run-time cost. This was done prior to the
computation of the variances listed in Section 4.2.

5 Results

5.1 Fourier transforms

A comparison of Perlin and wavelet noise patterns and their Fourier
transforms is shown in Figure 8. The center of each Fourier trans-
form corresponds to the DC term, with x frequencies increasing to
the right and y frequencies increasing vertically. A bright spot at
x = 0.25, y = 0, for example, would indicate a signal that repeats
every 4 pixels in the x direction. The Fourier transform of a noise
band should be dark where |x| and |y| are both < 0.5, with no other
patterns. Wavelet noise (Figure 8(d)) has these characteristics. Per-
lin noise (Figure 8(a)), by contrast, contains significant energy in
the low frequency areas near the center of the Fourier transform.

When we look at the Fourier transform of a 2D slice through 3D
noise, Perlin noise (Figure 8(b)) becomes as non-band-limited as
2D white noise (Figure 8(c)). Wavelet noise (Figure 8(e)) fairs



(a) (b)
Figure 9: Fourier transforms of 3 bands of 3D noise projected onto
2D with (a) Perlin noise and (b) wavelet noise. In both images,
the middle band (magenta) should nestle exactly between the next
higher band (cyan) and the next lower band (yellow).

better, but low frequencies still leak through. When we project
wavelet noise onto a 2D surface using the technique described in
Section 3.7, however, the band limits are preserved (Figure 8(f)).
Figure 9 shows the Fourier transforms of three adjacent bands of
noise in different colors and illustrates the band-limiting character
of wavelet noise vs. Perlin noise.

The square nature of the wavelet noise Fourier transform reflects
the asymmetry of our separable quadratic B-spline basis function
and is less evident for non-axis-aligned views. We have not found
this asymmetry to be objectionable, but it can be reduced by either
(1) averaging multiple tiles with different orientations or (2) us-
ing a higher B-spline, thus more closely approximating a Gaussian,
which is symmetric.

5.2 Run-time cost

The run-time cost of noise depends on many factors of the specific
implementation, but a rough guide to the performance is the num-
ber of noise coefficients involved in the interpolation calculation.
The run-time cost of the basic wavelet noise algorithm involves 27
(3x3x3) noise coefficients compared to the 24 (2x2x2 triples) used
in Perlin noise. So we would expect the cost of the two techniques
to be similar.

In timing tests on a 1.4 GHz Macintosh G4, however, our mod-
erately optimized implementation of wavelet noise was about 30%
faster than the highly optimized RenderMan implementation of Per-
lin noise (0.81 µsec vs. 1.06 µsec per noise evaluation). When we
include tile meshing (Section 4.3) with a tile overlap of 1/16 of a
tile, the cost of wavelet noise increased to 0.97 µsec, which is still
about 10% faster than Perlin noise.

Wavelet noise uses more memory than Perlin noise, but even with a
relatively large tile the memory requirements are small by today’s
standards. For example, a 128x128x128 tile uses 8 Mb compared
to about 16 Kb for the RenderMan implementation of Perlin noise.

Using the optional parts of our technique adds additional cost. Pro-
jecting 3D noise onto a 2D surface (Sections 3.7 and 4.1) approx-
imately doubles the cost in the axis-aligned case; the non-axis-
aligned case is more expensive because the interpolation is less ef-
ficient. Basis function widening (Section 4.1) approximately triples
the cost of the finest band, doubles the cost of the second band, and
doesn’t affect coarser bands. The decision of which of these options
to use will depend on the application.

5.3 Examples

We have embedded our implementation of wavelet noise in a 2D
testbed with controls for shaping the weights of the bands and for

(a) (b)
Figure 10: 2D noise patterns with (a) 12 bands with a Gaussian
distribution and (b) 8 bands with a white distribution. The blue bars
are the band weights.

specifying the desired distribution of the result. Figure 10 shows
two patterns produced by this program. Because of the indepen-
dence of our noise bands, the spectral shape is accurately controlled
by the band weights so that we have not found it necessary to pro-
vide a lacunarity control. The disadvantage of values of lacunarity
less than 2 is that they make the bands overlap and lose their mutual
orthogonality.

We have also embedded our implementation of wavelet noise in a
RenderMan shader DSO. Figures 1(a) and 1(b) are stills from two
animations that compare Perlin and wavelet noise. The geometry is
the same in both animations; they differ only in the version of noise
used. The level of noise used in Figure 1(a) shows the amount of
detail obtainable using the RenderMan version of Perlin noise. Fig-
ure 1(b) shows the same scene rendered using wavelet noise using
the same noise band weights.

5.4 Infinite noise

Band weights usually correspond to fixed scales in world space.
Another option we have found useful is to make the weights rela-
tive to each location’s scale in screen space. This produces infinite
noise, the ability to zoom into a scene indefinitely, with low fre-
quencies gradually fading out as higher frequencies gradually fade
in. We have found that this trick works remarkably well and that
the fading out is not noticeable if it’s done over a few bands (as
in Figure 10(a), for example). We speculate that this is because it
echoes the way human perception adapts to the average intensity of
a scene.

6 Summary

The wavelet noise preprocessing calculations are:

• Create a tile of noise coefficients by filling the tile with ran-
dom noise, then downsampling, upsampling, and subtracting
(Section 3.4 and Appendix 1).

• (Optional) Add two such tiles together to correct for even vs.
odd variance (Section 4.3 and Appendix 1).

• (Optional) Adjust the tile borders to accommodate tile mesh-
ing (Section 4.3).

The run-time calculations for each band b, given a location and an
object scale s, are:

• Determine the noise resolution j from s and b (Section 3.1 and
Appendix 2).

• (Optional) Use a hash function to determine which tile pat-
tern(s) to use for this location (Section 4.3).



• (Optional) If the renderer undersamples, widen the basis func-
tion in the tangent directions in the last bands (Section 4.1).

• (Optional) Project the 3D noise onto the 2D surface by dou-
bling the support of the basis function in the direction normal
to the surface (Section 3.7 and Appendix 2).

• Evaluate the noise function by multiplying the noise coeffi-
cients by the basis function (Section 3.4 and Appendix 2).

• (Optional) Correct the noise for the desired distribution (Sec-
tion 4.2 and Appendix 2).

In conclusion, we have shown that wavelets are well suited to pro-
ducing noise for use in procedural textures. Because the bands
are orthogonal, they provide a set of independent controls over the
shape of the spectrum. The distribution of the final result can be
predicted and controlled. Most importantly, the noise is truly band-
limited, so that virtually all of the detail can be rendered with min-
imal aliasing, even when projecting 3D noise onto a 2D surface.
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Appendix 1. Noise tile generation
/* Note: this code is designed for brevity, not efficiency; many operations can be hoisted,

* precomputed, or vectorized. Some of the straightforward details, such as tile meshing,

* decorrelating bands and fading out the last band, are omitted in the interest of space.*/

static float *noiseTileData; static int noiseTileSize;

int Mod(int x, int n) {int m=x%n; return (m<0) ? m+n : m;}

#define ARAD 16

void Downsample (float *from, float *to, int n, int stride ) {

float *a, aCoeffs[2*ARAD] = {

0.000334,-0.001528, 0.000410, 0.003545,-0.000938,-0.008233, 0.002172, 0.019120,

-0.005040,-0.044412, 0.011655, 0.103311,-0.025936,-0.243780, 0.033979, 0.655340,

0.655340, 0.033979,-0.243780,-0.025936, 0.103311, 0.011655,-0.044412,-0.005040,

0.019120, 0.002172,-0.008233,-0.000938, 0.003546, 0.000410,-0.001528, 0.000334};

a = &aCoeffs[ARAD];

for (int i=0; i<n/2; i++) {

to[i*stride] = 0;

for (int k=2*i-ARAD; k<=2*i+ARAD; k++)

to[i*stride] += a[k-2*i] * from[Mod(k,n)*stride];

}

}

void Upsample( float *from, float *to, int n, int stride) {

float *p, pCoeffs[4] = { 0.25, 0.75, 0.75, 0.25 };

p = &pCoeffs[2];

for (int i=0; i<n; i++) {

to[i*stride] = 0;

for (int k=i/2; k<=i/2+1; k++)

to[i*stride] += p[i-2*k] * from[Mod(k,n/2)*stride];

}

}

void GenerateNoiseTile( int n, int olap) {

if (n%2) n++; /* tile size must be even */

int ix, iy, iz, i, sz=n*n*n*sizeof(float);

float *temp1=(float *)malloc(sz),*temp2=(float *)malloc(sz),*noise=(float *)malloc(sz);

/* Step 1. Fill the tile with random numbers in the range -1 to 1. */

for (i=0; i<n*n*n; i++) noise[i] = gaussianNoise();

/* Steps 2 and 3. Downsample and upsample the tile */

for (iy=0; iy<n; iy++) for (iz=0; iz<n; iz++) { /* each x row */

i = iy*n + iz*n*n; Downsample( &noise[i], &temp1[i], n, 1 );

Upsample( &temp1[i], &temp2[i], n, 1 );

}

for (ix=0; ix<n; ix++) for (iz=0; iz<n; iz++) { /* each y row */

i = ix + iz*n*n; Downsample( &temp2[i], &temp1[i], n, n );

Upsample( &temp1[i], &temp2[i], n, n );

}

for (ix=0; ix<n; ix++) for (iy=0; iy<n; iy++) { /* each z row */

i = ix + iy*n; Downsample( &temp2[i], &temp1[i], n, n*n );

Upsample( &temp1[i], &temp2[i], n, n*n );

}

/* Step 4. Subtract out the coarse-scale contribution */

for (i=0; i<n*n*n; i++) {noise[i]-=temp2[i];}

/* Avoid even/odd variance difference by adding odd-offset version of noise to itself.*/

int offset=n/2; if (offset%2==0) offset++;

for (i=0,ix=0; ix<n; ix++) for (iy=0; iy<n; iy++) for (iz=0; iz<n; iz++)

temp1[i++] = noise[ Mod(ix+offset,n) + Mod(iy+offset,n)*n + Mod(iz+offset,n)*n*n ];

for (i=0; i<n*n*n; i++) {noise[i]+=temp1[i];}

noiseTileData=noise; noiseTileSize=n; free(temp1); free(temp2);

}

Appendix 2. Noise evaluation
float WNoise( float p[3]) { /* Non-projected 3D noise */

int i, f[3], c[3], mid[3], n=noiseTileSize; /* f, c = filter, noise coeff indices */

float w[3][3], t, result =0;

/* Evaluate quadratic B-spline basis functions */

for (i=0; i<3; i++) {

mid[i]=ceil(p[i]-0.5); t=mid[i]-(p[i]-0.5);

w[i][0]=t*t/2; w[i][2]=(1-t)*(1-t)/2; w[i][1]=1-w[i][0]-w[i][2]; }

/* Evaluate noise by weighting noise coefficients by basis function values */

for(f[2]=-1;f[2]<=1;f[2]++) for(f[1]=-1;f[1]<=1;f[1]++) for(f[0]=-1;f[0]<=1;f[0]++) {

float weight=1;

for (i=0; i<3; i++) {c[i]=Mod(mid[i]+f[i],n); weight*=w[i][f[i]+1];}

result += weight * noiseTileData[c[2]*n*n+c[1]*n+c[0]]; }

return result;

}

float WProjectedNoise( float p[3], float normal[3]) { /* 3D noise projected onto 2D */

int i, c[3], min[3], max[3], n=noiseTileSize; /* c = noise coeff location */

float support, result=0;

/* Bound the support of the basis functions for this projection direction */

for (i=0; i<3; i++) {

support = 3*abs(normal[i]) + 3*sqrt((1-normal[i]*normal[i])/2);

min[i] = ceil( p[i] - (3*abs(normal[i]) + 3*sqrt((1-normal[i]*normal[i])/2)) );

max[i] = floor( p[i] + (3*abs(normal[i]) + 3*sqrt((1-normal[i]*normal[i])/2)) ); }

/* Loop over the noise coefficients within the bound. */

for(c[2]=min[2];c[2]<=max[2];c[2]++) {

for(c[1]=min[1];c[1]<=max[1];c[1]++) {

for(c[0]=min[0];c[0]<=max[0];c[0]++) {

float t, t1, t2, t3, dot=0, weight=1;

/* Dot the normal with the vector from c to p */

for (i=0; i<3; i++) {dot+=normal[i]*(p[i]-c[i]);}

/* Evaluate the basis function at c moved halfway to p along the normal. */

for (i=0; i<3; i++) {

t = (c[i]+normal[i]*dot/2)-(p[i]-1.5); t1=t-1; t2=2-t; t3=3-t;

weight*=(t<=0||t>=3)? 0 : (t<1) ? t*t/2 : (t<2)? 1-(t1*t1+t2*t2)/2 : t3*t3/2;}

/* Evaluate noise by weighting noise coefficients by basis function values. */

result += weight * noiseTileData[Mod(c[2],n)*n*n+Mod(c[1],n)*n+Mod(c[0],n)];

}}}

return result;

}

float WMultibandNoise( float p[3],float s,float *normal,int firstBand,int nbands,float *w) {

float q[3], result=0, variance=0; int i, b;

for (b=0; b<nbands && s+firstBand+b<0; b++) {

for (i=0; i<=2; i++) {q[i]=2*p[i]*pow(2,firstBand+b);}

result += (normal) ? w[b] * WProjectedNoise(q,normal) : w[b] * WNoise(q);}

for (b=0; b<nbands; b++) {variance+=w[b]*w[b];}

/* Adjust the noise so it has a variance of 1. */

if (variance) result /= sqrt(variance * ((normal) ? 0.296 : 0.210));

return result;

}


