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Figure 1: Our method is suited to wrap the mesh connectivity from a source model to target shapes. In this example, we used
our wrap tool to share a reference mesh between characters from various feature films. ©Disney/Pixar.

ABSTRACT
We present a new technique to transfer the mesh connectivity be-
tween 3D models of different shapes. In contrast to prior work, our
method is designed to wrap meshes under large, locally non-rigid
deformations, which are commonly found in feature animations.
To achieve this goal, we enrich the traditional iterative closest point
scheme with mesh coordinates that parametrize the edge spans of
a desired tessellation invariant to locally affine transformations. As
a result, we produce surfaces that wrap a target geometry accu-
rately, while resembling the patch layout of the source mesh. Our
implementation also offers an interactive workflow to assist the
authoring of curve correspondences. We employed this tool to wrap
600 humanoid assets to a reference mesh connectivity, spanning
characters modeled over the last 15 years at Pixar.
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1 OUTLINE
We start by outlining our algorithm that wraps the mesh connec-
tivity from a source model S to a target shape T . Our method
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ouputs a meshM that shares the same tessellation as S but fit to
the geometry of T (Figure 3). We denote the vertex positions in
M by {xi } and stack them rowwise in a matrix X. Similarly, we
indicate the original mesh vertices in S by {yi } and pack them
in the matrix Y. We also consider curve correspondences used as
sparse hints to drive the deformation from S to T (§2). Equipped
with this setup, we approach the task of wrapping a source mesh
to a target shape as an iterative optimization that updates mesh
vertices by alternating two steps (§5). The first step snaps X to T

and computes a score to each projection (§3), while the second step
relaxes X by minimizing the mesh distortion between S and M

(§4), weighted by the projection scores and corresponding curves.

2 CURVE CORRESPONDENCES
To guide the wrap optimization, we support shape correspondences
described by curves. We have found that curves are more descrip-
tive than point-based features, since we can infer local stretching by
comparing the arc-length parametrization between pairs of curves.
Our implementation uses Houdini [Side Effects 2019] to draw curve
strokes projected to the source and target shapes, and the corre-
spondence is defined based on the stroke ordering. For the common
case of humanoid models, we developed a custom user interface
that displays suggestions for the curve placement (Figure 2). Our
system tracks the selected suggestions and activates their correspon-
dences following a predefined indexing (see supplemental video).
We discretize corresponding curves with quadrature points sampled
evenly on both source and target shapes. The target samples are
represented by a matrix Q assigning each row to a sample location
on T . The source samples are encoded by a matrix B with rows
set to the (generalized) barycentric coordinates that associate each
sample with the vertices of S. We can then reconstruct the sample
positions on the wrap meshM by minimizing ∥BX − Q∥2.

3 FITTING
Our solver also accounts for the geometric discrepancy between the
wrap meshM and the target shape T . To this end, we abstract T by
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defining a projection operator Π that maps any mesh vertex xi to its
closest point pi =Π(xi ) on T , which can be implemented efficiently
using a bounding volume hierarchy. Similar to [Zhou et al. 2016],
we relate each vertex projection to a scoremi =1/

(
1+µ∥pi−xi ∥2

)
,

with values in the range [0, 1] based on the proximity to T . The
parameter µ is a scalar amount that stiffens the attachment between
xi and pi . By arranging the projection points rowwise in a matrix
P and their respective scores in a diagonal matrixM, we compute
the fitting error betweenM and T via ∥M (X−P)∥2.

4 MESH DISTORTION
A key component in our method is the distortion term that quan-
tifies the mesh deformation moving the points inM from Y to X.
Since Pixar characters are stylized and vary significantly between
shows (Figure 1), we sought for a distortion model that enables
locally non-rigid deformations. The distortion model should also
promote the layout of the source tessellation so that the artistically-
crafted edge flows can be resembled on the optimized mesh. To
address these conflicting goals, we adopted the affine-invariant
coordinates introduced by Budninskiy et al. [2017]. We compute
these coordinates once by preprocessing the source mesh S. For
every vertex i in S, we first collect a stencil of size n containing
every vertex j that shares a face with i , and then assemble a matrix
dYi =

[
· · · , yj − yi , · · ·

]
of size 3 × n. The local coordinates asso-

ciated with the vertex i are set to a matrix Wi of size n × (n−3)
that spans the nullspace of dYi , i.e., dYi Wi =0. The row-vectors in
Wi define a (n−3)-dimensional embedding of the vertices within
the stencil of i that captures its local structure agnostic to affine
transformations. We compute Wi by extracting the right-singular
vectors corresponding to zero singular values of the singular value
decomposition (SVD) of dYi . We then construct our distortion objec-
tive as a least-squares function

∑
i ∥dXiWi ∥

2 that evaluates how
the source local coordinates {Wi } conform to the wrapped ver-
tex stencils {dXi }. One can further expand this expression into a
quadratic form X⊤LX, where L is a Laplacian-like sparse matrix
containing the affine-invariant coordinates of S. Compared to prior
work, our formulation leads to a convex distortion minimization
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Figure 2:We developed a custom interface that provides sug-
gestions to place curve correspondences on humanoid faces
and bodies. ©Disney/Pixar.
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Figure 3: We produce a wrap model (right) by transferring a
source mesh (center) to a target shape (left). ©Disney/Pixar.

that supports a broader range of deformations, while preserving
the relative spacing between nearby vertices.

5 NUMERICS
We initialize our algorithm by setting X=Y. In every iteration, we
first compute P by projecting X to T , then we estimate the vertex
scores and set them to M, finally we update X by optimizing a mix
of mesh distortion, fitting error, and curve correspondences:

minX X⊤LX + µ∥M (X−P)∥2 + κ∥BX − Q∥2, (1)

where µ is the score parameter andκ is a stiffness amount (set to 0.1)
that enforces the curve correspondences. Since this is a quadratic
minimization, we compute X by solving the sparse linear system:(

L + µM⊤M + κB⊤B
)
X = µM⊤MP + κB⊤Q. (2)

We implemented this linear solve using a Cholesky factorization
followed by numerical updates at every iteration that incorporate
the latest projection scores. We also structured our alternating steps
in rounds in order to ramp the contribution of fitting term up as
the optimization progresses. We start with a small stiffness amount
(µ=0.1) and scale it up by an order of magnitude every 10 iterations.
Our optimization completes when the largest projection residual is
less than 10−4 or a maximum iteration count (set to 100) is reached.

6 RESULTS
Figure 1 presents a series of 3D faces collected from various Pixar
shows sharing the samemesh connectivity computed by ourmethod.
Observe that our results reproduce a broad range of shapes, while
retaining the underlying mesh structure. In the supplemental video,
we include an animation that blends the face shapes from several
Pixar characters wrapped by our solver. Figure 3 shows an example
of a body shape wrapped by our algorithm. We have employed
our tool to transfer show-specific assets to standard tessellations.
In particular, we have successfully wrapped a reference mesh to
every humanoid character from Pixar feature films starting from
the original Incredibles (2004), in a total of 600 models. By sharing
mesh connectivities, we have also assisted the generation of new
background characters. Our optimization takes in average 5 rounds
of 10 iterations to converge, reporting 3 seconds on meshes of 10k
vertices, clocked on a 2.3 GHz Intel Xeon E5-2699.
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