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This paper describes two algorithms for solving the following general problem: Given two polynomial 
maps f: 08” H RN and S: RN ++ [Wd in BBzier simplex form, find the composition map g = S 0 f in 
BBzier simplex form (typicall:y, n 5 N I d I 3). One algorithm is more appropriate for machine 
implementation, while the other provides somewhat more geometric intuition. The composition 
algorithms can be applied to the following problems: evaluation, subdivision, and polynomial repar- 
ameterization of Bizier simplexes; joining BBzier curves with geometric continuity of arbitrary order; 
and the determination of the control nets of BBzier curves and triangular BCzier surface patches after 
they have undergone free-form deformations. 
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1. INTRODUCTION 

This paper describes two algorithms for solving the following general problem: 
Given two polynomial maps f: l.Q” H RN and S: RN H Rd in B6zier simplex form, 
find the composition map 9 = S 0 f also in B6zier simplex form. 

A mathematician might find this problem interesting in its own right, especially 
since the solution will turn out to possess a certain degree of elegance. A 
practitioner, however, might well question the relevance of the problem to issues 
in computer-aided geometric design (CAGD). To provide evidence that functional 
composition is indeed useful in CAGD, we explicitly address several applications 
of it. 

Some simple applications of functional composition are the evaluation, 
subdivision, and polynomial reparameterization of B&ier simplexes (for now, 
think of a Bbzier simplex as a generalization of a triangular B6zier surface 
patch [7]). Evaluation can be viewed as composition with a constant function; 
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Fig. 1. Free-form deformation. 

reparameterization is, by definition, composition with a change of variables; 
subdivision [7, 81 is a special case of reparameterization where the change of 
variables is a linear function. 

Another interesting application arises from a method of geometric modeling 
that has recently been introduced by Sederberg and Parry [13]. In their scheme, 
geometric objects such as polyhedrons, spheres, and Bezier curves and surfaces 
are imagined to be embedded in a deformable medium. The objects can then be 
manipulated by deforming the medium that surrounds them. Sederberg and 
Parry note that deformations can be intuitively controlled by designers if they 
are represented as a polynomial map in Bernstein-Bezier form. For instance, 
suppose that Q is a Bezier curve in the plane and that D is the deformation from 
the plane onto itself. The deformed curve Q is defined to be D 0 Q, as depicted 
in Figure 1; thus, the deformed curve results from functional composition. 
(Historical note: Bezier [2] had, much earlier, proposed a very similar idea, but 
in a slightly different context than Sederberg and Parry. Instead of using 
composition as a basis for geometric modeling, Bezier’s idea was to use compo- 
sition to locally fine-tune a surface. In the same paper Bezier went some distance 
toward the problem posed herein in that he provided formulas for the monomial 
form of the composed object.) 

In some applications it may be acceptable to represent Q by maintaining Q 
and D independently, requiring the software to perform the composition sepa- 
rately for each point of Q that is required by the application. For instance, if Q 
is to be rendered on a computer graphics screen, special-purpose rendering 
software could be written to compute the points Qt = Q(t) for steadily increasing 
values of t; for each value of t, the point D(Qt) could then be computed and 
displayed on the screen. Alternatively, since composition is the mechanism by 
which deformation is accomplished, the algorithms presented herein can be used 
to compute directly the control polygon for the deformed curve (assuming the 
deformation is representable as a Bezier simplex), thereby allowing the use of 
standard Bezier rendering software. (Aside from computational issues, the second 
approach might be more desirable from a software-engineering standpoint since 
it promotes a definite, standard interface between the modeling and rendering 
phases of the design.) 

The last application of composition we examine concerns the problem of 
joining Bezier curves with geometric continuity [l, 5, 61 of arbitrary order. 
Geometric continuity is intimately related to reparameterization, and since 
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reparameterization is accomplished via composition, the study of functional 
composition is a natura:l outgrowth of the study of geometric continuity. 

It was with applications such as these in mind that we were led to the general 
composition problem posed above. A thorough study of the composition of Bkzier 
techniques would requke the examination of the composition of two B6zier 
simplexes, the composit.ion of two tensor product forms (the case considered in 
[2]), and the two possible ways of composing a B6zier simplex and a tensor 
product form. Each of these four possibilities has potential practical application, 
particularly as a method of free-form deformation. However, in the interests of 
brevity (and elegance), we have chosen to study only the composition of two 
B6zier simplexes in this paper; the treatment of the other cases will be left as a 
topic of a future paper. 

The presentation is organized as follows: Section 2 reviews some basic defini- 
tions and results concerning B6zier simplexes; in Section 3 the product algorithm 
for the composition of Bi5zier curves (BQzier simplexes of dimension 1) is 
developed and studied in some detail; this analysis leads to an alternative 
algorithm, called the bZossom algorithm, whose major strength is its geometric 
interpretation; in Sectio:n 4 the product and blossom algorithms are then extended 
to Bkzier simplexes of arbitrary dimension;’ finally, in Section 5 the application 
of the composition algorithms to free-form deformations and geometric continuity 
are presented. 

1 .l Notation 

Throughout this paper we adhere to the following notational conventions: 

-Scalar-valued quantities are set in italics. 
-Vector-valued quantities are set in boldface. 
-Multiindices are denoted by italic characters ornamented with a diacritical 

arrow, as in l. For our purposes, multiindices are tuples of nonnegative integers. 
We use the notation i’ E Z: to mean that i’ is a multiindex containing n + 1 
components subscripted 0 to n; that is, i’ = (iO, . . . , i,). The norm of l, denoted 
by 1 i’l, is defined to be the sum of the components of l. 

2. BCZIER SIMPLEXES 

This section provides a. brief review of the basic definitions and some useful 
results concerning B6zier simplexes. This is not a complete introduction to the 
subject; only those aspects of the theory that directly impact composition are 
discussed. The interested reader is encouraged to consult de Boor [4] for a 
particularly elegant development of much of the theory of B6zier simplexes 
(which de Boor calls B-forms). 

Every polynomial f(u) of degree less than or equal to k can be expressed in the 
Bernstein-B6zier basis, 

f(u) = i. Gxm, (2.1) 

1 Although the proofs of the algorithms for Bkzier simplexes of arbitrary dimension follow the same 
basic lines as the proofs for curves, the notation in the general case is somewhat more cumbersome; 
it was therefore felt that a more pedagogic presentation would result by treating curves separately. 

ACM Transactions on Graphics, Vol. 7, No. 3, July 1988. 



Composing Bkzier Simplexes 201 

where Bi( u) is the pth Bernstein polynomial of degree 12, defined explicitly by 

zP(1 - uy-p 

or recursively by 

1 if k=p=O, 
B;(u) = 0 if p < 0 or p > k, 

(1 - u)B;-‘(u) + uB;I:(u) otherwise. 

When a polynomial is expressed as in eq. (2.1), it is said to be given in Bernstein- 
B&ier form, and the scalars C,,, . . . , C, are called its Bernstein coefficients. 

To keep the equations from becoming overly cluttered, we make the notational 
convention that, when forming a linear combination of Bernstein polynomials, 
such as in eq. (2.1), the limits of summation will be dropped. This should pose 
no difficulty since the limits of summation can be inferred by the rule that the 
summation index is to take on all “sensible” values, that is, all values that keep 
the summand from vanishing. For example, in eq. (2.1) the indexp can be inferred 
to range over 0 to k since the Bernstein polynomial B:(u) vanishes for values of 
p outside this range. With this notation eq. (2.1) becomes simply 

f(u) = E ~pB~b). 
P 

We apply the same convention to summations over expressions containing 
binomial (or multinomial) coefficients. Thus, looking ahead to eq. (3.2), the 
summation index j is to take on all values such that neither of the binomial 
coefficients (k(js-*)) nor (r!j) vanishes. 

A B&ier curue is simply a parametric polynomial given in Bernstein-Bezier 
form, for example, 

S(u) = 1 VpB#4, u E 10, 11, (2.2) 
P 

and the control points VP E iRd are collectively called the Bezier control polygon 
of the curve. 

A Bezier curve (or a polynomial given in Bernstein-Bezier form) can be 
evaluated for any value of its parameter via the algorithm of de Casteljau [3] (see 
Figure 2). de Casteljau’s algorithm can be depicted schematically as a triangle, 
with the control polygon (or the Bernstein coefficients) appearing along the 
bottom edge of the triangle and the point of evaluation appearing at the apex, as 
shown in Figure 3. 

Bernstein polynomials of several variables can also be defined. In particular, 
the n-variate Bernstein polynomials of degree m are explicitly defined by 

B;(ua, ul, . . . , u,) = 
0 

T u&u: . . . u$ i = (iO, . . . , i,), ItI =m, 

where u. + u1 + . . . + u, = 1, and where 
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Input: A control polygon Vo, . . . . V, defining a Bkzier 

curve S, and a parameter value u. 

Output: The point S(u). 

for i + 0 to m do 
VP] , tVi 

endfor 
Fig. 2. de Casteljau’s algorithm. for s c 1 to m do 

foricotom-sdo 
VP1 + (1 - “)vy + uvI;;ll 

endfor 
endfor 
return Vl;“] 

Q(u) 

Fig. 3. Schematic of de Casteljau’s algorithm. 

vo . . ‘8 V, 

is the multinomial coefficient. The n-variate Bernstein polynomials can also be 
defined recursively by 

i 

1 if m= ITI =O, 
BpAo, . . . , u,) = 0 if ISI #m, 

c:=lJ u,B~;l(Uo, . . . , u,) otherwise, (I 

where & E Z: is the multiindex having 0 in each component, except for the c&h 
component, which is set to 1. 

We generally treat the Bernstein polynomials as being defined on uffine spaces. 
To do this, we need to introduce the notions of affine combinations, general 
position, and simplexes. 

First, we recall that, loosely speaking, an uffine space is a collection of elements, 
called points, that is closed under uffine combinations. An affine combination of 
points PO, . . . , P, has the form cyOPO + alPI + . . . + (Y,P,, where a0 + (Y~ + . . . 
+ cy, = 1. The points PO, . . . , P, are said to be in general position if none of them 
can be written as an affine combination of the others. The dimension of an affine 
space can be defined to be one less than the largest number of points in general 
position. For example, in an affine space of dimension 1 (a line), there are at 
most two points in general position; in an affine space of dimension 2 (a plane), 
there are at most three points in general position, and so on. Suppose -4 is an 
affine n-space (an affine space of dimension n) and PO, . . . , Pk, k 5 n, are points 
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in A that are in general position. The convex hull of these points is called a k- 
simplex, and the points are called the vertices of the simplex. Although it may 
not be immediately apparent from their definition, simplexes are rather familiar 
objects: A l-simplex is a line segment, a 2-simplex is a triangle, a 3-simplex is a 
tetrahedron, and so on. Simplexes play the same role in affine geometry that 
bases play in linear algebra. In particular, if A is an affine n-space and if S is an 
n-simplex with vertices PO, . . . , P,, then every point u E A can be uniquely 
represented as an affine combination u = uOPO + ulPl + . . . + u,P,. The numbers 
(uo, * * * , u,) are called the burycentric coordinates of u relative to S. 

We turn now to the use of these ideas to define Bernstein polynomials on 
affine spaces. If u is a point in an affine n-space whose barycentric coordinates 
relative to some n-simplex S are (uO, . . . , u,), then the Bernstein polynomials 
defined over S are given by the identification 

BY(u) = By&, . . . , LL,). 

In preparation for later sections, we state the following lemma showing that 
products of Bernstein polynomials are simply expressed as a Bernstein poly- 
nomial of higher degree: 

LEMMA 2.1. Products of multivariate Bernstein polynomials: 

By(u) B;(u) = 
(#) 
(T:;) 

B:;,!(u). 

PROOF. First, note that the Bernstein polynomial By(u) can be written 

succinctly as 

B;(u) = 7 u’, 
0 

where 

Armed with this notation, we can proceed with the proof of the lemma by simple 
manipulation of the explicit definition of the multivariate Bernstein polynomials: 

By(u)B;(u) = i u’ ; uJ’ 
0 0 

= 
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Finally, by a B&ier simplex of dimension n, we mean a map from an n-simplex 
Sgiven in Bernstein-Bezier form, as in 

S(u) = ; V@‘(u), u E 3, 

where, following our earlier convention concerning linear combinations of Bern- 
stein polynomials, the Isummation is to be taken over all multiindices i E Z: 
whose norm is m. A Bezier simplex of dimension 1 is called a Bezier curve, a 
Bezier simplex of dimension 2 is called a Bezier triangle, and a Bezier simplex of 
dimension 3 is called a 136zier tetrahedron. 

Note that we can express a Bezier curve in either of two ways: in “standard 
form,” as in eq. (2.2), or as a Bezier simplex of dimension 1, as in 

Wuo, ul) = c V(i,,i,J%o,i,)(~g, ~1). 
C&i,) 

3. COMPOSING BIiZIER CURVES 

In this section we address the general composition problem for Bezier curves; the 
problem may be stated as follows: 

Given: A Bbzier curve S(t) of degree m whose control points are VO, . . . , V,, 
and a polynomial function f(u) of degree k whose Bernstein coefficients are 
co, . . . ) Ck. 

Find: The Bezier control points fi,, . . . , Vmk of the composed (i.e., repara- 
meterized) curve S(u) = S( f (u)). 

The crux of the solution to this problem is provided by the following theorem: 

THEOREM 3.1. Let f: IW H R! and S: R H Rd be given in Bernstein-B&ier form; 
that is, 

f(u) =- E C,B;(u), u E P, 11, cp E R, 
P 

S(t) =I z ViBy(t), t E [Op 11, Vi E Rd. 

Then for any s E (0, . . . , m), 

g(u) =: S(f(u)) = 1 BY(‘f(u)) c V~$B:(u), (3.1) 
i r 

where the points Vf”!, i == 0 . . , m - s, r = 0, . . . , hs are defined recursively by 

if s=O, 

v!“] = v M-1) k W[“! _, 
)( ) 

(3.2) 

.i r-j w,r , otherwise, 

and where 

WY _. = (1 - w,r I Cr-j)Vp,“’ + C,-jVE”;1’,!. 

Discussion. A pictorial interpretation of eq. (3.1) is shown in Figure 4. Notice 
that the top triangle of Figure 4 is parameterized in terms off(u), whereas the 

ACM Transactions on Graphics, Vol. 7, No. 3, July 1988. 



. 

Composing BBzier Simplexes 205 

Fig. 4. Pictorial representation of Theorem 3.1. 

lower triangles are parameterized in terms of u. The essence of the theorem is 
that the points Vi:, can be computed if the points with superscript s - 1 are 
known. This relationship will be used to construct an algorithm for determining 
the control polygon of S. 

The proof of the theorem proceeds by induction on s, the parameter that 
controls how much of the representation is parameterized in u and how much is 
parameterized in f (u). Although the symbol manipulation becomes rather tedious, 
the proof relies on only two properties of the Bernstein polynomials: their 
recursive definition and the ability to easily raise their degree through the product 
formula given in Lemma 2.1. 

PROOF. By induction on s; the basis, s = 0, is trivially true. 

Inductive hypothesis 

B(u) = 1 By”+l(f(u)) c. v~~~%yl)( u), (3.3) 
i j 

where the points V$-‘] are defined recursively as in the statement of the theorem. 
For convenience, we define 

.I”-‘]( u) = z V~,:+$+--l)( u). (3.4) 

Using eq. (3.4) together with the recursive definition of the Bernstein polynomials 

w-“+‘(f(u)) = (1 - f(u)PT”(f(4) + f(umz(f(u)L (3.5) 

eq. (3.3) can be rewritten as 

f?+(u) = 1 &‘-“(f(u))((l - f(u))T:-‘l(u) + f(~)T~;“;l’~(u)). (3.6) 
i 
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By using the Bernstein representation of f(u) and the fact that the Bernstein 
polynomials form a partition of unity, the term in curly braces can be expressed 
as 

z( 
(1 - C,)Ty-‘l(u) + C,Tls;,‘](u) 

P 1 
B;(U). (3.7) 

Substituting eq. (3.4) into expression (3.7) yields 

4 
(1 -- c )v!“-ll + C,Vls;,‘, P bl 

J 

I?;‘“-l’(U)@(U). 
i.P 

(3.6) 

Substituting expression (3.8) in place of the term in curly braces in eq. (3.6) and 
using the definition of the points W$, result in 

S(u) = c By-“(f(u)) c wj.~~,,Bj”‘~-“(u,~~(u). (3.9) 
i ia 

Lemma 2.1, specialized to the case of univariate Bernstein polynomials, can now 
be used to rewrite eq. (3.9) as 

S(u) = :; Iy(f(u)) E (k(;{;y2) W~~jl,,Bj”,,(u). (3.10) 
HP 

The proof is completed by regrouping the terms in the inner two summations 
by choosing summation indices j and r = j + p. The resulting sequence of 
expressions is 

= F By-“(f(u)) c Vp:(u). (3.11) 
r 

0 

COROLLARY 3.2. Let f and S be as in Theorem 3.1. The control polygon oO, . . . , 
v,,,k for the composed (reparameterized) curve fi is given by 

6, = v;;, r = 0, . . . , mk, 

where the points V:: are as defined in Theorem 3.1. 

PROOF. Set s = m in Theorem 3.1. 0 

Theorem 3.1 and Corollary 3.2 together define an algorithm, called the pro$uct 
algorithm, for computing the control points of the reparameterized curve S = 
S 0 f. The name product algorithm was chosen to emphasize that the product 
formula from Lemma 2.3. plays a key role in the development of the algorithm. 

The algorithm proceeds by building a tetrahedral arrangement of points Vis,], 
as shown in Figure 5. The construction of the arrangement begins by placing the 
control polygon VO, . . . , V, along the bottom edge of the tetrahedron (i.e., the 
s = 0 level). The tetrahedron is then filled in one level at a time until the points 
ACM Transactions on Graphics, Vol. 7, No. 3, July 1988. 



Composing BBzier Simplexes l 207 

Fig. 5. Tetrahedral arrangement of points used in Theorem 3.1. 

on the edge of the tetrahedron corresponding to s = m are computed. The points 
appearing on this edge form the control polygon of S(U). For completeness, a 
pseudocode version is given in Figure 6. 

It is interesting to note that the Boehm-Sablonniere algorithm [ll] for 
computing the Bezier polygon for a B-spline curve has a similar computational 
structure: The B-spline polygon is placed along an edge of a tetrahedral arrange- 
ment of points, the tetrahedral arrangement is computed, and the Bezier polygon 
is retrieved from the skew edge of the tetrahedron. One should not attempt to 
read too much into this interpretation though since there are substantial differ- 
ences between the algorithms. For instance, the Boehm-Sablonniere algorithm 
uses two recurrence relations instead of one to build the tetrahedral arrangement 
of points. 

3.1 The Blossom Algorithm for Curves 

The product algorithm is relatively efficient computationally and quite easy to 
implement, but the geometric intuition it provides is somewhat limited. To gain 
more geometric intuition into the problem, we now informally describe a variant 
of the product algorithm called the blossom algorithm. The term blossom is 
explained shortly, and a rigorous proof of the algorithm appears later in this 
section. 

We begin by noting that the Bernstein coefficients of the function f can be 
viewed geometrically simply by plotting them as points in the domain interval of 
S, as shown in Figure 7a, where C,, = 0.2, C1 = 0.6, and CZ = 0.85. The blossom 
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Input: A control polygon V,, . . . , V, defining a Bezier curve S. 

and set of Bernstein coefficients C,, . . . , C, defining a polynomial f. 

Output: A control polygon VO, . . . , V,k defining the composed 

(reparameterized) curve S = S 0 / 

for i + 0 to m do 

VP! C Vi 

endfor 

for s + 1 to m do 

for r + 0 to ks do 

for i + 0 to m - s do 

VI”! t 0 

jmin = max{O, r - k} 

j,,, = min{r, k(s - 1)) 

for j t- jmin to j,,x do 

vy + vi;! + (y’) (&) ((1 - c,+)v~~;‘l + cr-jv$;y} 

endfor 

vl”] 
v!“] 

I,7 + fi 

end for 

endfor 

endfor 

for T + 0 to mk do 

VT + VQ 

endfor 

Fig. 6. The product algorithm for curves. 

algorithm proceeds as follows: 

(1) On each leg of the original polygon VO, . . . , V,, draw the images of Co, . . . , 
Ck, treated as points in S’s domain, under the affine map that carries 0 to 
the starting vertex of the leg and carries 1 to the ending vertex. Label the 
image of Cj, on the leg ViVi+l with Ai( Stated algebraically, A;(j,) = 
(1 - Cjl)Vi + Cj,Vi+l. Figure 7a depicts the case for m = k = 2, that is, for a 
quadratic reparameterization of a quadratic curve. 

(2) Connect corresponding images on adjacent legs. That is, for each i, draw a 
line segment between Ai( j,) and Ai+l( j,). This results in k + 1 polygons, 
each with m vertices. For the case of m = k = 2, there are 3 polygons, each 
with 2 vertices, as shown in Figure 7a. 

(3) For each of the polygons produced in step (2), repeat steps (1) and (2), 
labeling the newly constructed points with two arguments. For instance, 
A,(O, 2) is the image of CZ on the zeroth leg of the polygon produced by 
connecting the images of C,, as shown in Figure 7b. Algebraically, A,(O, 2) = 
(1 - GM,(O) + CA,(O). 

(4) Repeat the above steps of creating polygons, marking images of the C’s, etc., 
until points with m arguments Ao(jI, . . . , j,) are produced. 

(5) The rth control point of the reparameterized curve can now be constructed 
by forming a convex combination of all points with m arguments whose 
arguments sum to r. Thus, in the case of m = k = 2, the zeroth control point 
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(a) 

(b) 

Fig. 7. Quadratic reparameterization of a quadratic curve. 

V0 is simply the point Ao(O, 0). The first control point 0, is a convex 
combination of the points A,(O, 1) and A,(l, 0); however, it can be shown 
that the A’s are symmetric with respect to permutation of thejr arguments, 
implying that A,(O, 1) = A,(l, 0), which in turn implies that V, = Ao(O, l), 
as shown in Figure 7c. The situation for Vz is somewhat more interesting. 
It is formed by a convex combination of the points A,(O, 2), A,(l, l), and 
A0(2, 0), but owing to symmetry, this is equivalent to a convex combination 
of the two points A,(O, 2) and A,(l, 1). The specific convex combination 
in this case is such that 0, divides the segment A,(O, 2)A,(l, 1) into 
relative distances 2: 1, as shown in Figure 7c. The convex combination 
required in the general case will be described in Claim 3.3. 
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Remarks. One way to think of evaluation of a Bezier curve S(t) for a fixed 
value t = t* is to compose S with a constant function f(u) = t*. Indeed, when f 
is a constant function (i.e., when f(u) = Co), the blossom algorithm reduces to 
the de Casteljau algorithm for constructing the point S(CO); thus, the blossom 
algorithm is actually a generalization of the de Casteljau algorithm. 

When f is a linear function, the composition algorithms provide methods for 
performing arbitrary linear subdivision of the curve. In particular, if f has 
Bernstein coefficients C, and C1, the algorithms compute the control points for 
the portion of S generated when S’s parameter ranges over the interval [C,, C,]. 
Goldman [8] has previously described an alternative (more efficient) method for 
accomplishing this task based on degenerate Bezier tetrahedrons. 

To prove the correctness of the blossom algorithm, we begin by defining some 
new quantities Ai(al, . . . : a[;V) recursively by 

I 
(1 - al)Vi + &Vi+1 if 1=1, 

Ai(al, . . . , al; V) = 

1 
(1 - dAdal, . . . , al-l;V) (3.12) 

+ aA+l(al, . . . , al-l; V) otherwise. 

The A’s are actually quite closely related to the constructed points A in the above 
informal description. More precisely, for any 1> 0, 

Ai(jl, e e a 3 jl) = A,(Cj,, . . . 3 Cj,; V). 

Ramshaw [lo] calls Ai(ol, . . . , al; V) the blossom of the Bezier curve 
Cj V,+jB:( u). Indeed, when all a’s are identical and equal to u, we have the 
identity Ai( U, . . . , U; V) = Cj Vi+jBj(U). It was previously mentioned that the 
A’s are symmetric with respect to permutation of their arguments, which is 
equivalent to the fact, proved by Ramshaw [lo], that the blossom 

&Cal, . . . , al; V) is symmetric with respect to permutation of the a’s. 
The next claim is a precise statement and proof of the blossom algorithm: 

CLAIM 3.3. The point:; V$ from Theorem 3.1 are convex combinations of all 
points Ai (Ci,, . . . , (2,; V) where i, + iz + - - - + i, = r. More precisely, 

v!“] = I?- c. C,(il, . . . , is)&(G,, -. . , C,; V), 
i, ,.._, i,E(O ,..., k) 
i,+i,+...+i,=r 

where C,(i,, . . . , is) are combinatorial constants given by 

C,(&, . . . , i,) = 
e*><:*> * * * (“,I 

(!? . 

PROOF. By induction on s. The basis, s = 1, can be directly verified from the 
definition of V!l’* *,r* 

V!l’ = (1 - C ) V’ + C Vi+1 I7 
= A;(C,; i’, 

I r 

= C-(r)&(G VI 

= E cr(idAi(G,; V). 
i,=r 
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Inductive hypothesis 

v!“-11 = 
IJ c. G(il, . . . , Ll)Ai(G,, . . . , Cisel; V). 

i, is-,~lO,...,kl 
i,/i;+. +isml=r 

Into the recursive definition of Vi:,!, 

we substitute the inductive hypothesis, once for V&y’] and once for VkTy, to 
obtain 

c, cj(il, . . . , Ll) 
(k’sT”)(:j) 

j i, ,..., is-lE{O ,..., k) (3 
i,+i,+...+i,-,=j 

X {(I - Cr-j)Ai(Ci,, * * * 3 Ci,-l; V) + Cr-j&+l(Ci,, - * - 9 Ciswl; VI)* 

By definition of the A’s, this reduces to 

1 C(il, . . . , is-d 

(““~“)(,kj) 

j i, ,._., i,-,E(O ,_._, k) (3 
il+ip+. +i,-,=j 

By substituting r - is for j, we obtain 

If G-i,(il, . . . , Ll) 
(k!“-;‘,c~, 

$8 iI,...&-, ElO,...,kJ (9 
i,+i,+. +is-l=r-i, 

which can be equivalently written as 

VI”1 = 
1,r El0 ,,,,, k, C,-is(il, . . . , is-J (kPT;;(‘) If 

il,...,i. 
i,+i,+. +i,=r 

(3.13) 

By noting that 

G(i,, . . . , is) = C,-i,(il, . . . , isel) 
(k!“G81’)(~) 

(3 ’ 

eq. (3.13) becomes 

v!“] = w Iz GL, . . . , L)Ai(G,, . . . , G-,, Ci$; V), 
i, ,___, i,E{O ,_._, k) 
i,+i,+...+i,=r 

thus completing the proof. Cl 
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4. COMPOSITION OF Bii!lER SIMPLEXES 

In this section we generalize the results of Section 3 to the case in which Bbzier 
simplexes of arbitrary dimension are composed. 

THEOREM 4.1. If f: R” H RN and S: RN w Rd are Btkier simplexes of dimension 
n and N, respectively, 

f(u) = C CGB;(u), u E UP, 6 E z:, cc E RN, 
6 

S(t) = $ VS:(t), tERN, i’EZY, VIEbid, 

then,foranysE (0 ,..., ml, 

s(u) = S(f(u)) = 7 By-“(f(u)) c VF;B”(u), kz:, +EZ:, 
i 

where the points VEL,) i 1 = m - s, 1 r’ 1 = ks, are defined recursively by 

V; if s=O, 

vy = 
v & F ( k(\,l))( -..;)W$, otherwise, 

with]’ E Z:, and where 

whereci,..., Cr denote the burycentric coordinates of Cc relative to the domain 

simplex of S. 

Discussion. The following proof is essentially obtained by rewriting the proof 
of Theorem 3.1 using the Elbzier simplex formulation of a curve instead of the 
standard formulation. For completeness, we now sketch the following proof: 

PROOF. By induction on s. The basis, s = 0, is trivially true. 
For convenience, we define 

Inductive hypot?is 

g(u) = , ;,& By-““(f(u))T~-‘l(u). (4.2) 

If fob), fW, * * * , fN(u) d.enote the affine coordinates of f(u) relative to the 
domain simplex of S, then the recursive definition of the multivariate Bernstein 
polynomials states that 

By-“+.‘(f(u)) = ; f*(u)B”-;.(f(u)). (4.3) 
a=0 
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Using eq. (4.3), the Bernstein representation of f, eq. (4.1), and Lemma 2.1, 
eq. (4.2) can be manipulated as follows: 

g(u) = -1 By-“(f(u)) 5 f”(u)Tr2+(u) 
1 il=m-s a=0 

= _ x 
1 il=m-s 

T:;;‘(u) 

(4.4) 

The proof is completed by regrouping terms in much the same way as in the final 
steps of the proof of Theorem 3.1. In particular, introduce summation indices 3 
and r’ such that r’ = j+ 6, and then use the definition of the v’s in terms 
of the W’s. 0 

B(u)= S(f(u))= c. 3;BYk(U), UEW, ?EZ",, 
lil=mk 

where 

q- = v!“! r 0,r ’ 

and 6 E ZY is the multiindex consisting entirely of zeros, 

PROOF. Set s = m in Theorem 4.1. 0 

Theorem 4.1 and Corollary 4.2 together define the product algorithm for 
composing Bezier simplexes of arbitrary dimension. The corresponding blossom 
algorithm enjoys all the properties possessed by the blossom algorithm for curves 
(e.g., it generalizes de Casteljau’s algorithm) and is described by the following 
definition and claim. Before the blossom algorithm can be precisely stated, the 
blossom of a Bezier simplex S of arbitrary dimension N must be defined. Just as 
for curves, this is done recursively: 

Adal, . . . , al; V) = I?=0 aY;+;a if 1=1, 
cz==o aYAs+;a,(al, . . . , al-1; V) otherwise, 

iE ZY, 

and where a?, . . . , a? are the barycentric coordinates of a1 relative to the domain 
simplex of S. 

CLAIM 4.3. The points V!$ from Theorem 4.1 are convex combinations of all 

points A;(C;;, . . . , Q; V) where i; + & + . - . + i’, = i; More precisely, 

vy = v z , i;, =, & ,=...=, ;+k 
C;( i;, . . . , ;a)A;Q, . . . , Cz; V), 

;,+i;+. .+,&; 

SE zy, i+, ;I, . . . , ; E z:, 
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where CT;<&, . . . , lS) are comhinutorial constants given by 

PROOF. The proof is strictly analogous to the proof of Claim 3.3. 0 

A specific example for the case in which n = 1, N = 2, d = 2, and m = k = 2 is 
presented in Section 5.1. 

Remarks. Just as for curves, evaluation of a Bezier simplex can be accomplished 
by composition with a constant function. Also, linear subdivision, that is, the 
extraction of an arbitrary subsimplex, can be accomplished by composing with a 
degree 1 simplex of equal dimension. 

5. APPLICATIONS 

As mentioned in Section l., quite a number of problems in CAGD can be viewed 
as functional composition, implying that the composition algorithms can be used 
in their solution. As was pointed out earlier, some simple examples include 
evaluation, subdivision, and polynomial reparameterization. This section is 
devoted to describing more fully two other applications of the composition 
algorithms. 

5.1 Free-Form Deformations 

Bezier [2] and Sederberg and Parry [13] have described a method of geometric 
modeling in which objects are deformed by polynomial maps from R2 to LL!‘, or 
from R3 to R3. For instance, let Q be a BQzier curve in the plane, and D be a 
polynomial map from R2 to R2. The deformed curve Q is then defined to be 
D 0 Q, as depicted in Figure 1. Since deformations are accomplished via compo- 
sition, either the product algorithm or the blossom algorithm can be used to 
compute directly the control polygon for a curve that has undergone a free-form 
deformation, given that the deformation is represented as a Bezier simplex. 

As a specific example, consider the situation shown in Figure 8a for the case 
of a quadratic curve Q, having control points q(o,2), q(l,l), and qc2,0),2 deformed by 
a quadratic deformation D, having control points dcio,il,i2) and domain triangle 
uvw. The following steps are required by the blossom algorithm for composing a 
Bbzier triangle (N = 2) and a Bbzier curve (n = 1): 

(1) Draw the image of Q’s control polygon under the affine map that carries 
the triangle uvw into the triangle d~2,0,0~d~l,l,o~d~l,o,l), labeling the image of 
q(o,2), q(l,l), and m2,0) by Au,o,o)W, Ao,o,o)(~), and &LO,OG% respectively. Do the 

same for the trkmgles d~l,~,o)d~o,2,o~d~o,~,l~ and d(l,o,l)d(o,~,l)d(o,o,2), labeling the im- 
ages with A’s subscripted with (0, 1, 0) and (0, 0, l), respectively (the indices on 
the A’s have been chosen to correspond to the blossom values used in Claim 4.3). 
The result of this step is nine points labeled as shown in Figure 8b. 

* The Bizier simplex form of the curve is used here to emphasize the use of the blossom algorithm 
for simplexes. 
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(2) Find the image of Q’s control polygon under the affine map that carries 
the triangle uvw into the triangle A (I,o,o)(O)A(O,~,O)(O) A(o,o,~~). Label the images 
of q(o,2), al), and q2,0) with A(o,o,o)(~, Oh A (o,o,o)(~, 11, and Aco,o,o)(~, 21, respec- 
tively, as shown in Figure 8c. Do the same for triangles formed by A’s with 
arguments equal to 1 (as shown in Figure 8d) and 2. The result of this step is 
nine points A~~,~,~,(j,p ), with j = 0, 1, 2, and p = 0, 1, 2. Notice, however, that 
only six of the nine points are distinct, as shown in Figure 8e. This is due to the 
fact that the A’s are symmetric with respect to permutation of their arguments, 
a property that follows from their connection to blossom values. 

(3) The rth control point fi(r,4--r) for the deformed curve Q = D 0 Q is now 
constructed by forming an affine combination of all points Aco,o,o,(j,p) where 
j + p = r. Due to the large degree of symmetry in this case, most of the affine 
combinations collapse into simple assignment: 

ko,a = A(o,o,o)(O, 01, 
4~3) = A(o,o,o,(O, 11, 
42,2) = $Aco,o,o,(O, 2) + fAco,o,o,(l, l), 
ii(w) = A(o,o,o,(l, 3, 
i1~4.0) = Aco,o,o,(~, 21, 

as shown in Figure 8f. 

The more interesting case for applications is the deformation of Bezier triangles 
by Bezier tetrahedrons. For completeness, a pseudocode statement of the product 
algorithm is given in Figure 9, specialized to the computation of the control net 
of a Bezier triangle T deformed by a tetrahedron D. 

5.2 Geometric Continuity of Bbzier Curves 

The study of geometric continuity (a.k.a. visual continuity) is an active area of 
current research (see, e.g., [ 11, [6], and [9]), so we shall not belabor it here. 
Rather, the purpose of this section is to show how the algorithms for functional 
composition can be used in the solution of a problem in geometric continuity. 

Before the problem can be accurately stated, some terminology and a few 
definitions are required. Let Q(u) and P(t) be two Bezier curves of degree m 
meeting at a common point such that Q(1) = P(0). These curves are said to meet 
with parametric continuity of order k, denoted Ck, if their first k derivatives 
match at the common point; that is, if 

d’Q( 1) d’P(0) -=- 
du’ dt’ ’ 

i=l 
’ -“’ 

k. 

Parametric continuity can be generalized in the following way: Let f: R H R be 
a polynomial function of degree k satisfying 

(9 f(o) = 1, 
(ii) f’(0) > 0, 

where a prime denotes differentiation. Such a function is called a change of 
variables. We say that Q and P as above meet with geometric continuity of order 
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Input: A control net {F’p’}h+k describing a Bezier triangle T, 
and a control net {d;}l;,,, describing a Bbier tetrahedron D (the deformation). 

Output: A control net .[Pq}~+~k describing Do T (the deformed triangle). 

Comment: The multiindices 5 and Za have four components (z, ZO E 2:); 
all other multiindices have three components (E Z”,). 

Comment: Pi, . . . . Pj are the barycentric coordinates of Pa relative to 
the domain tetrahedron. of D. 

for all :such that / = m do 
dI”l 

i(O,O,O) 
c d; 

endforall 

for s + 1 to m do 
for all asuch that / = m - s do 

for all r’ such that Ifl = ks do 
dLsl t 0 

;i 
fo; all 3 such that /j’/ = k(.s - 1) do 

$1 
;; 4- dt; + (““7”) (,:;) C;=, Pi”_; d&!; 

endfoiall 

d? 
&I 

;,; + 65 
endforall 

endforall 
endforall 
for all t such that IF = mk do 

p; + d;b,o,o),i 
endforall 

Fig. 9. Product algorithm for free-form deformations. 

k, denoted Gk, with respect to f if the reparameterized curve Q = Q 0 f meets P 
with Ck continuity at the point Q(0) = Q(1) = P(0). Finally, we say simply that 
Q and P meet with Gk continuity if there exists a change of variables with respect 
to which they meet Gk continuously. 

The problem of particular interest in this section may now be stated as follows: 

Given: A control polygon VO, . . . , V, defining a Bezier curve Q of degree m, 
and a set of Bernstein coefficients Co, . . . , Ck defining a change of variables 
f of degree k (for f to satisfy properties (i) and (ii), Co must be 1, and Cl must 
be greater than 1). 

Find: The control points Wo, . . . , W, of a Bezier curve P of degree m so 
that Q and P meet with Gk continuity with respect to f at the point 
Q(1) = P(O). 

The case in which f is a linear polynomial has an elegant solution, due to Stark 
[14], based on de Casteljau’s algorithm (cf. [3]). Our solution to the general 
problem involves two steps: 

(1) Compute the first k t- 1 vertices VO, . . . , Vk of the reparameterized curve 
& = Q 0 f. These vertices are the only ones needed since we are only 
interested in the first k derivatives of $ at the point Q(0). 

ACM Transactions on Graphics, Vol. 7, No. 3, July 1988. 



Composing Bkzier Simplexes l 219 

(2) Compute the first k + 1 control points WO, . . . , WA of P so that the first K 
derivatives of P match the first k derivatives of Q at P(0) = Q(0). 

Step (1) can be solved using a version of either the product algorithm or the 
blossom algorithm that computes only the first k + 1 points of the reparameter- 
ized curve (since C,, = 1, 3, must be equal to V,; so only the K vertices 
91, . . . . 6, actually need to be computed). 

The solution to step (2) requires more effort. Recall that, if G(u) is a Bezier 
curve of degree m with control points go, . . . , g,, then d’G(O)/du’ can be written 
as in [12]: 

d’G(O)= m. 
dui 0 i 

2!6’g,, 

where the difference operator 6’ is defined recursively by 

&kj = {$-lgj+, _ Ai-lgj 
if i = 0, 
otherwise. 

(5.1) 

(5.2) 

The solution to step (2) requires that 

a = d’P(0) 

du’ dti ’ 

Into eq. (5.3) substitute the difference 
eq. (5.1) to obtain 

i=l , ***, k. (5.3) 

operator form of the derivatives from 

(~k)i!8iVo=(~)i!&iWo, i=l,...,k. 

Thus, we seek control points Wo, . . . , Wk, satisfying 

6iw _ (yk) ai0 
o (?I 0, i=l 9 - . . 9 k. 

Using the recursive definition of the difference operator, it can be verified (by 
induction) that 

6’WO = Wi - c. 6’-jWj-1. (5.5) 
j=l 

Substituting eq. (5.5) into eq. (5.4) and then solving for Wi result in 

w. = i ai-jw.- + (7),$j 
I 1 

(7) O* 
(5.6) 

j=l 

Equation (5.6) is quite useful in that the right side of the equation involves only 
the unknown points Wj, where j < i. Thus, the point Wi can be ca_lculated once 
the points Wo, . . . , Wi-1 are known. Since Wo must be equal to Vo, WI can be 
computed from eq. (5.6); then W, can be computed, and so on, until all k + 1 
points Wo, . . . , Wk are obtained. 

Using this procedure, Q and P are guaranteed to meet with Gk continuity with 
respect to f, regardless of the placement of the remaining control points 
W k+l, . . . , w, of P. 
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In the special case in which f is linear and step (1) is solved by the blossom 
algorithm, we find that the procedure above does not reduce to Sttirk’s method. 
It is not hard to show that ,the procedure above computes the same set of points 
as would be computed by St&k’s algorithm, but some points are computed more 
than once. This occurs because f is constrained to satisfy f(0) = 1. This specialized 
knowledge is built directly into the de Casteljau algorithm and hence into St&k’s 
algorithm. The composition algorithms, on the other hand, can assume no 
specialized knowledge of f’s, behavior, causing them to do more work in cases in 
which f is “special.” 

6. SUMMARY 

Two algorithms for determining the control net of a B6zier simplex defined by 
the composition of two other Bbzier simplexes have been derived. One of the 
algorithms (the product algorithm) is more efficient for machine implementation, 
whereas the other (the blossom algorithm) provides somewhat more geometric 
intuition. 

These algorithms have been shown to have application to the following prob- 
lems in CAGD: the evaluation, subdivision, and polynomial reparameterization 
of B6zier simplexes, the computation of the control net of a Bbzier simplex that 
has undergone free-form deformation by another B6zier simplex, and the joining 
of Bkzier curves with geometric continuity of arbitrary order. 

Although this paper has dealt only with the composition of BBzier simplexes, 
similar algorithms can be constructed for the composition of B6zier tensor 
product forms, as well as for the mixed composition of tensor product forms and 
B6zier simplexes. 
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