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114 . T. D. DeRose et al,

1. INTRODUCTION AND MOTIVATION

Many problems in curve and surface modeling can be viewed as instances of
functional composition. In [6] two procedures for composing multivariate
polynomials given in B6zier simplex form were derived: one called the
product algorithm, the other called the blossom algorithm. The product
algorithm was found to be more eflicient for machine implementation, whereas
the blossom algorithm was found to be geometrically more intuitive. Particu-
lar problems that can be solved using these composition algorithms include:
evaluation, subdivision, and nonlinear reparameterization of B6zier sim-
plexes (i.e., curves, triangular patch surfaces, etc.); exact representations of
shapes modeled in B6zier simplex form that have undergone free-form defor-
mation [17]; and the joining of two B6zier curves with geometric continuity of
arbitrary order.

The purpose of this paper is to extend the work begun in [6] to tensor
products, rational functions, and B-splines. Roughly speaking, we develop
efficient algorithms for solving problems of the following form: Given polyno-
mial or rational functions G :2 + ~ and F: Y + x in either B6zier simplex
or tensor-product B-spline form, 1 find a representation of the function
H = F o G. As will be shown, the most natural form of the representation for
H depends on the form in which G is given, irrespective of the form of F. For
example, if G is given in tensor-product form, then H will be represented
most naturally in tensor-product form. Instead of directly generalizing the
proofs given in [6], we have taken a new approach that considerably simpli-
fies the derivation of the blossom algorithm. In fact, the new proof technique
is powerful enough to allow the extensions to be addressed with very little
additional effort. We also provide an optimized recursive version of the
algorithm that exploits certain symmetries in the formulae, resulting in an
efficient, tightly codable implementation of composition.

Our extended algorithms are capable of solving a broadened class of
problems, including: finding exact B-spline representations of trim curves on
B-spline surfaces (see Figure 1 and Color Plate 1); computing exact represen-
tations of NURB curves and surfaces that have undergone free-form deforma-
tion (when the deformation is represented in B6zier form); and converting
between the tensor-product and B6zier simplex forms. These algorithms can
be used to practical advantage by implementing them as a set of library
routines. Higher-level software designed to solve specific modeling problems
such as those listed above could then call on these library routines, thereby
encapsulating the bulk of the computation. Moreover, the simple recursive
form of the algorithms allows them to be written rapidly and compactly,
resulting in a small amount of powerful code.

Although the algorithms we present could be considered as specializations
of a single, uniffing algorithm, the notational complexity of stating and

1 For reasons given in Section 4.4, one restriction is that F and G cannot both be in tensor-
product B-spline form.
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Fig. 1. G represents  a B-spline  trim  curve,  in this case  a circle,  in the parameter space  of a
tensor-product  B-spline  surface  F, in this  case  a cylinder.  See also Color  Plate  1.

Color  Plate  1. The  B-spline representation  of a rational B-spline curve  (shown  in white)  on a
rational  B-spline  surface  (shown  in green).  Balls denote  the control  points of the curve,  with the
dark  balls indicating where  B-spline segments  abut.  Red lines denote  the knot  lines of the
B-spline  surface.

deriving the general  algorithm is prohibitive.  We have  therefore  chosen to
develop  the various  algorithms separately.  In Section  2, we begin  by present-
ing several  problems  that can be solved  with composition. In Section  3, we
present  background material.  The basic proof techniques used are developed
in Section  4.1 by rederiving the formula given  in [6] on which  the blossom
algorithm is based.  In Section  4.2, we generalize these  ideas  to the composi-
tion of tensor  products.  The results  in Section  4.1 and 4.2 are readily
extended  to rational  functions, as shown  in Section  4.3. However, the exten-
sion to B-splines  developed  in Section  4.4 is inherently more difficult for the
reasons  explained  in that  section.  Finally, in Section  5, we give optimized
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pseudocode for the composition of polynomials to indicate how the composi-
tion algorithms may be implemented efficiently.

2. APPLICATIONS

Throughout the paper, affme spaces are denoted by upper-case characters set
in a script typeface, such as %, Y, etc. Points in affine spaces are set in bold
face. Other objects, including scalars, functions, indices, and sets of points,
are set in italics. The introduction of additional notational conventions will be
postponed until Section 3 (see Table I for a summary of the notation).

Before presenting the details of the algorithms for accomplishing composi-
tion, we examine more closely the use of composition in a variety of geomet-
ric-modeling applications. Consider for instance the situation shown in Fig-
ure 1 where a rational B-spline curve G is used to trim a tensor-product
rational B-spline surface F. The curve H(t) = F o G(t) is the image of G on
the surface F. A composition algorithm can be used to compute the control
points and weights of 1-1,giving an explicit and exact B-spline representation
of the surface curve. Similarly, composition can be used to compute explicit
and exact representations of B-splines that have undergone free-form defor-
mations [17]. If G is the B-spline model, and if F is the tensor-product B6zier
deformation of three-space, then H = F o G is the deformed model.

Perhaps a less obvious use of composition is to convert between the
triangular and tensor-product B6zier forms. That is, given the control points
and weights for a tensor-product B6zier patch F it is sometimes necessary to
compute control points and weights for an equivalent triangular patch H.
Here equivalent means that H(t) = F(t) for all points t in the parameter
space. An algorithm for solving this problem has been given by Goldman and
Filip [10]; Figure 2 indicates a new solution based on composition. We
construct a degree-1 triangular B6zier representation of the identity map of
the parameter plane onto itself. That is, we construct G such that G(t) = t.
This is easily done by setting the domain triangle of G to abc, and setting the
control points of G to a, b and c. We now use the composition algorithm to
compute the control points of H(t) = F o G(t). Since G is in triangular form,
so is H, and since G(t) = t, H(t) = F(t). Conversion from a triangular patch
F to an equivalent tensor product H can be accomplished using the method
of Brueckner [3]; alternative y, the problem can be recast as composition by
constructing G to be a bilinear representation of the identity map. The
control points of H are then the control points of F o G.

One situation where the conversion between rational tensor-product form
and rational triangular form may be desirable is in the construction of
surfaces of revolution. If Q is a (typically planar) B6zier curve to be revolved
around some axis, A it is relatively straightforward to construct a rational
tensor-product control net for the surface of revolution F. However, if, as
shown in Figure 3, an endpoint of Q lies on A, then an edge of F degenerates
to a point, leading to a patch of triangular shape. It is therefore natural to
seek a triangular representation of the patch. This can be done using compo-
sition together with a (rational) quadratic transformation that maps the
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Table 1 .S,,mmarvof Nntatinn. —-......—., -. . . .. ... ..

Notation Description

R The set of real numbers.
R“ n-dimensional real space.

a>. ... z Integers and real numbers,
7; ?l,,~, etc. AtTme spaces,
a, A,. ... z,Z ~lne points.

J Domain simplex.

~,, ~ ~,z Domain simploid.

Q“,,.. ,z’ Multi-indices.

o Multi-index whose components are all zero.

Multi-index with a one in the jth component and zeros elsewhere.
,;;

‘1o+ “.” +ih where z’=(io, ,., ,zk),
!g The set of all multi-indices i“= (io, . . . . i~ ) with lil = d.

1, J, 11, etc. Hyperindices.
,:, ”, The set of all hyperindices I = (;l, . . . . i~ ) with

l;, . . ..m=n~.~,
SC” A subset of O$m containing exactly one permutation

of each byperindex in Of m.

III =t~ + ,,+I”mwhere I=(i; ,.. ., m),),

11111 = dm where Z c IIfm.
($”1) The multinominal coef%cient (lil)/(i O!,.., ik!), r“= (iO, . , ik ).

B!(u) The ~’th Bernstein polynomial of degree d.

B:,m – B~(u).. B$(u), I = (ii,,..,l~).
K’(I) A combinatomal constant given by

-((;).. (;))/(l :!)

q(u,, . . ..ud) Blossom of a B6zier simplex Q(u) of degree d.

Q(u) Homogenization of a rational B6zier simplex Q(u).

Q(u,, . . ..ud) Multilineal blossom of Q(u).
Proj( ) The map from kt~’ ] to RK+ ] defined by

Proj(y~, . ..!yK) = (ye,.. .,y~(y~y~ + ,.. +y~).

interior of a triangle so as to cover the interior of a square. This is done by
“blowing up” one of the vertices of the triangle into a line.z

The quadratic transformation operates as follows: Let bO, b,, b2 be the
barycentric coordinates on the triangle, and let u, v be a Cartesian coordi-
nates on the square. The transformation G : (bo, b,, b2 ) + (u, v) is given by:

b,

‘= b,+bz

v=bo

‘ Quadratic transformations have been used elsewhere in CAGD, For example, Warren [ 19] has
used them recently to develop n-sided patch representations.
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Fig. 2. The conversion of a tensor-product B6zier patch into triangular B6zier form

To express G in rational B6zier form, we must put u and v over a common
denominator,

(~l,~o(~l + ~2))
Wb),~1,~2) =

Lbl + !32

from which the control points and weights can be obtained by a simple
change of basis [9]. G maps the line ho = O to the line u = O, the line bl = O
to the line u = O, the line b2 = O to the line u = 1, but the image of point (1,
O, O) under G is the entire v = 1 line. The vertex (1, O, O) is therefore “blown
up.” Since G is in triangular patch form, the control points and weights of
H = f’ o G will form a rational triangular representation for the surface of
revolution.

Composition is also a useful tool when dealing with S-patches [12, 13].
S-patches are rational generalizations of B6zier surfaces that admit any
number n of boundary cuwes. In [12] it is shown how to use composition to
convert an n-sided S-patch into an m-sided S-patch, for arbitrary n and m.
Another problem that can be solved using composition is finding the repre-
sentation of a trimmed tensor-product patch as a collection of untrimmed
S-patches. Figure 4 depicts a simple instance. The map G is an S-patch that
carries the domain pentagon (left) into the domain square (center) so that the
boundaries of G match the boundaries of the trimmed patch F. The control
points of H = F o G are therefore the S-patch control points for the trimmed
portion of the surface.

3. NOTATION AND BACKGROUND

We briefly summarize the basic notions of blossoming and introduce a
number of notational conventions that have been invented to simplifi the
implementations needed in Sections 4 and 5. As is often the case with
compact notation, ours is something of a two-edged sword. On one hand the
notation reduces the visual complexity of the derivation so as to expose its
simple underlying structure, but on the other hand some effort is required to
become familiar with the notation. On the whole, we feel that the investment
required to learn the notation is time well spent; see Table I for a summary.

Most of our notation deals with the indexing of multivariate polynomials.
While univariate Bernstein polynomials are commonly indexed with integers,
multivariate Bernstein polynomials are most easily indexed using tuples of
non-negative integers such as 7 = (i., . . . . i~ ), i., .,. , ih > 0. Such tuples are
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A

F

*A

Q

1,

Au

Fig. 3. A degenerate tensor-product formed as a surface of revolution

Fig. 4. Representing a trimmed tensor-product patch as an S-patch,

called multi-indices. We denote the norm of a multi-index i“by Iil and define
it to be the sum of the components of ~. We use the symbol D~ to stand for the
set of all multi-indices ~ = (i., . . . . ik) with 171= d. For example, U; = {(O, O,
2), (O, 1, 1), (O, 2, O), (1, O, 1), (1, 1, O), (2, O, O)}. The symbol < will be used to
denote a multi-index wh~se components are all zero except for the jth
component, which is one; O denotes a multi-index whose components are all
zero. Addition and subtraction of multi-indices is defined componentwise. We
shall also have occasion to use tuples of multi-indices, such as 1 = (ii, . . . . ~~)
● li’~’m,where l~’m denotes the m-fold Cartesian product Oj x “”” x l:. We
shall refer to such tuples as hyper-indices, and we again use the notation IZI
to denote the sum of the components of Z. Notice that whereas lit is an
integer, ]1 ] is a multi-index. Therefore, for 1 ● 0~’m, the expression II1 II
evaluates to the integer Ii’lI + .. . + IimI = dm. Finally, juxtaposition of hyper-
indices denotes concatenation, as in IJ = (;l, . . . . i’~, ‘1, . . . . ;).

Using this notation, the k-variate Bernstein polynomials of degree d can be
defined by

where I=(i O,, ... i~)~U~, bo, . . ..bh ● lR, and where

()d
d!

——
1 ~o!zl !... ik!
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is the multinominal coeffkient. Notice that each of the Bernstein polynomials
is a homogeneous polynomial of degree d, a fact that will become important
when considering rational functions. It is known [5] that for every polynomial
Q:% * Y of degree d, where P is an affine space of dimension k and where
~ is an afflne space of dimension K, there exist unique points {Vi}ie ~f in j%-’
such that

Q(u) = ~ V#?:(bo,...,lIk), (1)
iS If

where be, ..., bk are the barycentric coordinates of u G % relative to a
simplex A = (x O,. . . . x~ ) of points in % (For a description of afflne spaces,
simplexes, and barycentric coordinates see, for instance, Farin [9] or DeRose
[71.)

A polynomial Q, when expressed as in Eq. (l), is called a B6zier simplex;
the points Vi are called the control net of Q with respect to the domain
simplex A.

We shall often write I#(u) with the understanding that u should be
replaced with its barycentric coordinates relative to the appropriate domain
simplex. If 1 = (71,.. ., ~~) ~ l~’m, we define B#’m(u) to be the product
B;(u) ‘ ““” “Bl(u). We shall make considerable use of the following product
relation satisfied by the Bernstein polynomials:

where %’(1) is a combinatorial constant given by

%(I) = (’:’) ”””(’?)

()

11111 “
III

This relation is easily proved using simple manipulation of the Bernstein
polynomials (cf., [61).

Ramshaw [15] has discovered how to exploit a connection between B6zier
simplexes and symmetric multi-affine maps. A map q(u 1, ..., Ud) is said to
be multi-afflne if it is affine when all but one of its arguments are held fixed
it is said to be symmetric if its value does not depend on the ordering of the
arguments. Associated with every polynomial Q :X * Y of degree d there is
a unique, symmetric, d-afilne map, q :@ -+ Y, that agrees with Q on its
diagonal (the diagonal of a multi-affine map q(ul,. . ., u~ ) is the function
obtained when all arguments are equal: Q(u) = q(u, u,. . . . u)). Ramshaw
refers to this multi-affine map q as the blossom of Q. As a simple univariate
example where %= Y = R 1, if

Q(u) =l+u–3u2, UCR1 (3)
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then

U1 + u~
q(ul, u2)=l+ ~ – 3u1u~, U1, U2E R’. (4)

Ramshaw [ 15] has shown that the B6zier control net for a polynomial
relative to a domain simplex can be obtained by evaluating the polynomial’s
blossom at the vertices of the simplex. More precisely, if% is an aflhe space
of dimension k, Q : ,oY+ ~ a polynomial of degree d whose blossom is q, and
A = (x ~, . . . . x~ ) a simplex in .%, then Ramshaw shows that the B6zier control
net of Q relative to A is given by

1

d

V,. =q xo,. ... xo, xl, xl, ,,x~, ... x~,. . . ,x~
——

i. il i~

for all I=(iO, ..., i ~) ~ O~. For example, if we apply this result to the
polynomial Q(u) given in Eq. (3) using as the domain simplex the interval
[0, 1], we find

v (2,0) = q(o, o)=l

A straightforward approach to evaluate an arbitrary value q(u ~, . . . . u~ ) of
a blossom would be to explicitly compute an expression similar to Eq. (4) for
the blossom as a multivariate polynomial, and then to evaluate it using the
arguments U1, . . . . u ~. This procedure is generally to be avoided for computa-
tional reasons since an explicit expression for a general d-variate polynomial
of degree one in each variable can have as many as 2d terms. Fortunately,
symmetry of blossoms can be exploited to make the computation tractable.
The computation of an arbitrary blossom value q(ul, . . . . Ud) can be made
particularly efficient if Q is known in B6zier form. Specifically, the general-
ization of de Castcdjau’s algorithm given in Figure 5 can be used. The routine
EualBlossomo takes as input the control net V of a B6zier simplex Q of
degree d having as its domain an afflne space % of dimension k and points
Ul, ..., Ud in %’. Returned is the blossom of Q, evaluated at u ~, . . . . u~.
Notice that if u ~, . . ., u~ are equal to a common point u, the algorithm
reduces to de Casteljau’s algorithm. A data structure called a simplicial
array, used for storing control points and intermediate results, is described in
Section 5.

A variation of blossoming can also describe rational functions.3 Although it
is possible to develop the following material in a coordinate-free manner, a
number of ideas not central to composition would have to be introduced first.

3 The remainder of this section can be skipped on first reading. It can be skipped also by readers
interested only in the composition of polynomials.
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EualBlossom(V, ul,..., Ud)
{V is the control net for a B6zier simplex characterizing a blossom q
returned is the point q(ul, . . . . Ud))

begin
V + Prepare(V)
forp=ltoci

EvalBlossomArgumenti~, p, UP)
endfor
return ~.cp~]

end

EvalBlossomArgument(~, p, u)
begin

d + ~.degree
$%o.m~ljk ) - Barycentric coordinates of u relative to

foralJ i ● U~-P
V.cp!.pl + bov.cpq-;; + ... + bkv.cp!.J’+ 11+.~

endfor
end

Prepare(V)
{Initialize and return a structure into which the partial results of the blossom
evaluation algorithm can be stored.)

begin
d + ~.degree ~ V.degree
for all i= 0$

v.cppJ + V.cw
endfor
return V

end

Fig. 5. Evaluation of an arbitrary blossom value. If V is a control net for a B6zier simplex Q,
V.degree is the degree of Q; V.domain denotes the domain simplex; and V.cp are the control
points of Q relative to V.domain.

To simplify the discussion, we shall therefore leave the coordinate-free frame-
work when dealing with rational functions.4

Rather than speak of a rational function Q of degree d as mapping points
in an affine space % (of dimension k) into pointa in an affine space Y (of
dimension K), we associate with each point u G 2’ the point ( bo,.. ., b~) ●

R~+l, where (be,.. ., b~) are the barycentric coordinates of u relative to some
simplex in .2?’.(To avoid a proliferation of symbols, we write u = (b., . . ., bk ),
although, in a strict sense, this is an abuse of notation.) This process
effectively embeds the affine space % as the affine subset in R k+ 1 whose
equation is

x~ + ‘.. k+l+Xk=l, (~~,...,~k)~~ . (5)

Readers familiar with projective geometry will note that this is a rather
nonstandard embedding, the more common embedding, based on Cartesian

4 Ramshaw has given a purely coordinate-free development [ 15].
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coordinates, corresponds to the hyperplane Xk = 1. The embedding given in
Eq. (5) is more convenient for our purposes because of the close relationship
between the blossom evaluation algorithm and barycentric coordinates. The
principle consequence of this embedding is that it allows the composition
algorithm for polynomial B6zier simplexes, developed in Section 4.1, to be
used virtually without change to compose rational B6zier simplexes.

By embedding Y analogously onto the afline subset yO + “.” + yK = 1 in
R K‘ 1, a rational function Q of degree d may be treateda as a map from R k+1
to RK” 1 expressed as the ratio of two polynomials Q : R!k+ 1 ~ R K+1 and
D:Rk+ 1 + R1, each of degree d:

Q(u) (Q,(u), ~.~,QK(U))
Q(u) = ~ =

D(u) ‘
.

where QO, ..., QK refer to the component functions of ~. Since Q maps into
the afflne subset of R K+ 1, it must be that

Q,(u) + QK(U)= ~
D(u) + ““” D(u) ‘

or equivalently, that

Q,(u) + .. +QK(U) = D(u).

Thus, the point Q(u) can be obtained as the projection of Q(u) onto the affme
subset yO + . .. + yK = 1. More precisely, if this projection is denoted by
Proj :RK+ 1 - RK” 1 and defined by

(Ye,..., YK)
proj(yo, . . ..yK) =

Yo + ... +YK ‘
(6)

then Q(u) = Proj(@).
If Q is given in. rational B6zier simplex form with control points V,. and

weights w,., then Q is given by

Q(u) = ~ w,.v@:(u)
ielf

where each of the control points V,. is represented by barycentric coordinates
(U,,~, . . . . U,.,K). It is generally convenient to set V,. = w,. V,. =
(W,.v,.,o,.. ., wi U,:K). The fact that the Bernstein polynomials are homoge-
neous polynomials of degree d means that Q, the homogenization of Q, is a
homogeneous polynomial of degree d. It has been established in fields such as
projective geometry that, associated with every homogeneous polynomial of
degree d, there is a symmetric multilineal function that agrees with the
polynomial on its diagonal. (Although symmetric multilineal functions are
classically known as polar forms, the term multilineal blossom is more in
keeping with Ramshaw’s terminology.) Thus, associate~ with the rational
function Q is th~ multilineal blossom 4(u ~, . . . . u~ ) of Q. It is precisely the
homogeneity of Q that makes the embedding given in Eq. (5) so useful.
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The evaluation algorithm for multilineal blossoms is nearly identical to the
algorithm of Figure 5 for evaluating multi-affine blossoms. The only modifica-
tions are ones that trade an aflhe framework for a linear one. Specifically,

—uI, ..., Ud become elements of the linear space R k+ 1 instead of the affine
space % of dimension k.

—V.domain becomes a basis for Rk + 1 instead of a simplex in %. A computa-
tionally advantageous basis is of course the canonical basis, the ith ele-
ment, which is a tuple consisting of all zero components except for the i th
entry, which is a one.

—The statement in the routine EualBlossom&gumento of Figure 5 that sets
(bO,..., bk ) to barycentric coordinates of u is removed. By choosing the
canonical basis for R k+ 1, (b., . . ., b~) are simply the components of u =
Ilk+ 1.

We shall refer to the algorithm thus created as the multilineal blossom
evaluation algorithm.

An important consequence of the homogeneous form of Q(u) is that

Q(au) = Q(u), for all a # O. (7)

This follows from two facts:

(1) Q(au) = a~@(u) since Q is homogeneous of degree d.

(2) Proj(ay) = y for all a # O and ally E RK+ 1.

Thus, Q(au) = Proj(Q(au)) = Proj(a~Q(u)) = Proj(Q(u)) = Q(u). A more
complete investigation of Eq. (7) and its connection to projective spaces is
provided in [8]. Equation (7) will be exploited in Section 4.3 to develop a
composition algorithm for rational functions.

4. ALGORITHM DEVELOPMENT

The problem considered in this section is, generally: given the coefficients of
two polynomial (or rational) functions, G :% ~ j%’ and F: Y + 3, find the
coefllcients of H = F o G. We will begin by rederiving the result for polynomi-
als using a new proof technique. Then, this result is generalized to tensor
products, to rational functions, and to B-splines.

4.1 Composing Bc$zier Simplexes

There are several ways to address the problem of polynomial composition.
The approach in [6] is to express both polynomials in Bernstein form and
manipulate the Bernstein polynomials. Another approach is to manipulate
the blossoms of both polynomials using only the symmetry property of the
blossom (personal communication, L. Ramshaw, Digital Systems Research
Center). Both methods yield the same formula as the one given below in Eq.
(8). The approach taken here is a hybrid of the above two methods that
results in a concise proof. The blossom is used as the representation for one of
the polynomials, whereas the Bernstein representation is used for the other
polynomial.
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To introduce our method, we first rederive the blossom algorithm of [6]
using the hybrid proof technique. Specifically, the problem we wish to reex-
amine is:

Given. Afihe spaces .%’ (of dimension k), ~ (of dimension K), and 2 (of
arbitrary dimension), control points {G,.),.e ~i defining a degree /’ B6zier
simplex G : ‘Y - -~ relative to a domain simplex A ~ c%’ and control points
{FP.}P.e,2 defining a degree m B6zier simplex F : ~ + z relative to a domain

simplex A,g C ~.

Find. The control points {H .}.=,{. of the degree /’m B6zier simplex
H = F o G relative to A,t.

Solution. If f denotes the blossom of F, then we have

I=i[m
III= “

where G, with Z = (i”l, . . . . i’~) is an abbreviation for (G,i, . . . . G,;).

PROOF. Into the equation H(t) = F(G(t)) = /l G(t), . . . . f(G(t)) substitute
the Bernstein form of G to obtain

H(t) = f( ~ G#;(t),. . . . ~ G,.#?~(t) ].
\.1,=!: /i,,,G Of

The Bernstein polynomials sum to one, implying that the first argument to f
is an afine combination of the points G,i. The fact that f is afllne in its first
argument can now be used to pull the summation outside of f’s argument
list, yielding

( iH(t) = ~ f G,.,, ~ G,.#3; (t),. . . . ~ G,kB<(t) B;(t).
I“,el( z2eng l“mEof

The same process can be applied to the summations in the remaining
arguments; the resulting expression is

H(t) = ~ . ~li f(G,\) ~. . ,G,; )B<(t) “ “.” “B:;(t),
l“,=1( in,

which can be written more compactly using hyperindex notation as

H(t) = ~ f(G, )Bfm(t). (9)
160;’”

Using Eq. (2) for the product of Bernstein polynomials, we can write Eq. (9)
as

H(t) = ~ f(GI)&(l)B;~(t). (lo)
160f.’”

The ‘th B6zier coefficient of H is the sum of all terms that multiply B~m(t).

That is, we seek the points H . such that

H(t) = ~ H.B~’m(t). (11)
“Eof’”
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These points can be found by grouping together terms in Eq. (10) such that
Ill = ~ yielding

(12)

The proof is completed by comparing Eqs. (11) and (12) and using the linear
independence of the Bernstein polynomials. ❑

Notice that while F’s control points do not appear explicitly in Eq. (8), they
are used in the evaluation of f. Since we do not need to know F’s representa-
tion explicitly, we will generally omit its control points in the statement of
the remaining problems. In fact, all that is required for F is the ability to
compute arbitrary values of its blossom.

4.2 Composing B6zier Simploids

We now extend the results of the previous section to the three cases where
either F or G or both are given in tensor product B6zier form. Rather than
considering these cases separately, we shall unify them by formulating and
solving a single general problem, which is based on the notion of a simploid,
a polyhedron formed as the Cartesian product of simplexes [4]. A square is a
simple example of a simploid, formed as the Cartesian product of two line
segments (i.e., two one-dimensional simplexes). A three-dimensional simploid
can be obtained as the Cartesian product of a triangle and a line segment,
resulting in a triangular prism. We say that a map Q is a B6zier simploid of
degree dl x d2 if its domain is a simploid A,T, x A~, and if Q is of the form

where XI and %Z are afflne spaces of dimension k ~ and k ~, respectively. The
points V<,- comprise the control net of Q relative to a domain simploid
Az, x Ay, , where A~ and AZZ are simplexes in %1 and %Z, respectively.
Although we shall nck do so here, it is straightforward to generalize B6zier
simploids further by allowing n-fold Cartesian products, leading to domains
such as a simploid %’ X “.” X %n.

Since simploids generalize both simplexes and hypercubes, B6zier sim-
ploids generalize both B6zier simplexes and B6zier tensor products. The
usual B6zier tensor-product surfaces are obtained when XI and %Z are of
dimension one. The B6zier simplexes are obtained when %Z is of dimension
zero.5

Many algorithms for tensor products proceed by applying curve algorithms
to the rows and columns of the tensor-product control net. For instance, a
B6zier tensor-product patch can be degree raised by degree raising each

5 Strictly speaking, this requires the identification of points in %1 X%2 with points in %’1
according to (u, p) ~ u where p is the sole point in %Z.
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column of the control net using the B6zier curve algorithm, then degree
raising each of the resulting rows [9]. A similar, although slightly more
complex, procedure holds for composing B6zier simploids F and G. However,
the resulting algorithm does not reuse partial results as efficiently as the one
we now develop.

Our method uses the tensor-product variant of the blossom [ 15]. The form
of the blossom appropriate for a B6zier simploid Q is a multivariate function
q whose arguments are partitioned into two sets, q(u ~, . . . . u!,; VI,....Vd,),

such that: q is multi-affine in each argument; q is symmetric in u ~,. . . . udl;
q is symmetric in Vl, . . . . Vd,; and Q(u, v) = q(u, . . . . u; V, . . . . v). Control
points are again obtained by evaluation at vertices of domain simplexes; in
particular,

(.”V,., .=q x:,. ... x;,, x;,,,,, xj,;x~,; x~,... ,x:,. ... x;,,.. .,x;,
—— ,)

i. ik Jo1 jk,

where At = (x:,. ... x~l) and A:zz = (x; ,.. . , ).x;,

Since B4zier simploids generalize both tensor products and B6zier sim-
plexes, our unifying problem is to consider the composition of two B6zier
simploids F and G.

Given. Affhe spaces ,%1 (of dimension k ~), ?Z2 (of dimension k ~), ,jYl, ~2, Z
(of arbitrary dimension), a degree /’1 x/2 B6zier simploid G: .%I x%2 + ~1

x ,Y2

G(u, v) = ~ G,., .~:(U)~f;(V) = (G1(u, v), G2(u, v)),

1’=o;!

“En$,

relative to a domain simploid AZ, X A~z where G,: . = (G:: ., G?, ) E YI X jY2,
and a degree ml X m2 B6zier simploid F : ~1 X ~2 + Z.

Find. The control points of the degree El( m ~ + m2 ) x /2(m, + m2 ) B6zier
simploid H = F o G relative to Ay, X A,x..

Solution. If f(rl,. . . ,rm,; sl,. . . ,Sm,) denotes F’s blossom, the control
points of H are given by

f(Gj], JI;G;2, Jl), (13)

where G; i,J1 with 11 = (1~, . . ..~.), ) and J1 = (+~, . . ..+~. ) is an abbrevia-

tion for (G!.;, .;, G~.;, .:,, . . ., G,!il, .,m,);and similarly for G~z,,Jz.

PROOF. The proof proceeds by applying the technique of the previous
section simultaneously to each of the sets of f’s arguments. Into

H(u, v) = f(@(u, v) ,.. ., G1(U, V); G2(U, V), G2(U,V)),V)) (14)
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we substitute the Bernstein form for G1(u, v):

[

H(u, v) = f ~ G~@3$(u)B$(v),. . . .
-1
Jl=ofi

-; Gn#*

1~ G$#l@I)Bfjv); G2(u,v),. . . ,G2(u,v) .

il ●!fi,ml
-:, = o#2

Once again, the multi-afflne property of f can be exploited to pull the
summations outside of ~’s argument list. Using the hyperindex notation, the
resulting expression can be written as

H(u, v) = ~ C(ll)C(J’)f(GjI,JI; G2(u,v))~/:l(u) ~j~l(v).

A similar substitution is now done for G2(u, v). Finally, the control point Hi,.
ofH is determined by grouping together all terms in Eq. (14) that multiply
B$[M1 ‘m 2J(u)B?21~1‘m z)(v). A straightforward calculation then gives Eq. (13).

❑

Since the domain of H is the domain of G, H is a B6zier simploid of the
same type as G. That is, if G is a simplex (i.e., %Z is of dimension zero), then
H will be in simplex form, regardless of the form of F. Similarly, if G is a
tensor-product surface, then the tensor-product form of H will be produced.

4.3 Composing Rational Functions

We now wish to consider composition of rational functions. Recall that, as
mentioned in Section 3, we prefer not to work in a coordinate-free framework
when dealing with rational functions. The specific problem we address in this
section may be stated as follows.

Given. A degree 7 rational B6zier simplex G: K!k+ 1 ~ RK+ 1 where

G(t)
G(u)=—

D(t) “

with control points {Gi} and weights Wi and a degree m rational B6zier
simplex F: R ~+ 1 + R L+ 1 with homogenization #.

Find. The control points and weights of the degree /m rational B6zier
simplex H = F o G.

Solution. Let ~ denote the multilineal blossom of ~, and let

22-= ~ %(l)f(dl) = (h:o,...,,L),), ( 15)
Is Uj,m
111=-
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where “E 0~. The weights of H are then given by

w.=/z.,o+... +h:L,’

and the control points are given by

A

H.= Proj(H.) = ~.

PROOF. Since F is the ratio of homogeneous polynomials, Eq. (7) can be
used to show that

H(t) = F(G(t)) = F
(&G4=F’G’t)’

Using the pr~j~ction operator defi~ed in E% (6), it can then be seen that
H(t) = Proj( F(G(t)). The function H(t) = F(G(t)) is a (homogeneous) polyno-
mial of degree /’m resulting from the composition of the (homogeneous)
polynomials @ ~nd G. In complete analogy with the proof of E~. (81, the
control points H c-an be comput~d from the multilineal blossom f of F and
the control points G, = WIG,. of G according to Eq. (15). The control points H
and weights w. of H can then be obtained from the control points of H as
shown above. ❑

To summarize the results of this section, to compose two rational functions
F and G, use the polynomial algorithm (together with the m~ltil~near blos;
som evaluation algorithm) to compute the control points of F o G, where F
and 6 are then homogenizations of F and G. The control points and weights
of H = F o G can then be recovered by projection.

4.4 Composition of B-splines

In this section we shall sketch the extension of the composition algorithm to
B-spline curves and tensor-product B-spline surfaces. These extensions are
suficient to implement the various B-spline applications listed in Section 1.
Unfortunately, for the reasons given below, composing B-splines is inherently
more complicated than composing B6zier forms.

We begin by considering the composition of B-spline curves. In the follow-
ing, if Q is a B-spline curve, then Breakpoints Q) denotes the set of break-
points of Q, that is, the set of distinct knots of Q.

Given. Two polynomial (or rational) B-spline curves G : RI + R] and F : R 1
+ .2---

Find. The knot vector, B-spline control points (and weights I for H = F o G.

Solution. One of the complications introduced when dealing with B-splines
is that the knot vector appropriate for H must be constructed by suitably
merging the knot vectors of G and F. The knot vectors are merged by
“pulling back” each of the knots of F into G’s domain by finding their
pre-images under G. That is, for each knot t,of F, denote by Pullback( t,)the
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set of all real roots of the equation ti = G(u). The set Breakpoints H ) is
formed by computing the union of Breakpoints(G) with the set

u Pullback(t).
~= Breakpoints(F)

The breakpoints of H segment H into a sequence of polynomial curve
segments. One way to proceed is to:

(1) Convert both F and G to piecewise B6zier form by inserting knots to full
multiplicity. For G, knota of full multiplicity must be inserted at each of
the breakpoints of H constructed above.

(2) Compute the B6zier control polygon of each segment of H using the
B6zier composition algorithm.

(3) Meld the B6zier control polygons (and weights) into a single B-spline
representation for H [2, 14, 16].

This is essentially our approach, except that F does not need to be
converted to B6zier form. Aa noted in Section 4.1, the composition algorithm
does not use F’s B6zier control points directly; it requires only the evaluation
of the blossom of F at G’s B6zier control points. Fortunately, arbitrary
blossom values can be computed directly from the B-spline control points
using an algorithm similar to the Cox-deBoor algorithm (cf., [1, 18]). Thus,
Eq. (8) can be applied on a segment-by-segment basis to implement step 2
above without converting F to B6zier form.

A similar procedure can be used to find the image of a B-spline curve G on
a tensor-product B-spline surface F, as indicated in Figure 1. Once again, the
idea is to pull back the knot lines of F to construct the knot vector for H,
convert G to piecewise B6zier form, apply Eq. (8) segment by segment, and
then use Sablonniere’s algorithm [16] to recover the B-spline representation
of H. In this case, the knot lines of F are pulled back by finding all
parameter values u where G(u) intersects a knot line of F. (If a segment of G
coincides with a knot line, that segment can be composed using the univari-
ate technique above.) An example of this procedure is shown in Color Plate 1,
where F is a rational B-spline representation of a cylinder, and G is a
rational B-spline representation of a full circle in F’s domain. The blue and
gray spheres denote the B-spline control polygon for the surface curve H (the
blue spheres denote control points where segments abut).

It is also desirable to compose two tensor-product B-splines; for instance,
one might wish to deform a tensor-product B-spline model G using a tensor-
product B-spline deformation F. Unfortunately, the deformed model H =
F o G cannot, in general, be found in tensor-product B-spline form since it is
possible for H to be segmented into a nonrectangular mesh of surface
patches. Simply stated, tensor-product B-splines are not closed under compo-
sition. For instance, the shaded surface patch shown in Figure 6 has five
boundary curves, a situation that is impossible with the tensor-product
B-spline form.
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[-’-G

!++3-

Fig. 6, The composition of two tensor-product B-splines surfaces results in a piecewise surface
composed of nonrectangular patches.

To summarize the results of this section, the composition of two B-spline
curves F and G can be accomplished by converting G to B6zier form ( F does
not require conversion), executing the composition algorithm, then using
Sablonniere’s algorithm to recover the B-spline representation of F o G.

5. IMPLEMENTATION

An implementation of the polynomial composition algorithm based directly on
Eq. (8) is highly inefficient. However, symmetries in the blossom arguments
can be exploited to reduce the number of computations, and intermediate
results may be reused to further reduce the computational cost. In this
section, we give a more eflicient, easily codable algorithm for computing the
composition of two polynomial functions in Bi$zier simplex form.

To compute H , Eq. (8) requires the evaluation of %’(Z)/lG, ) for all hyper-
indices 1 = IJj’”’ where III = ; However, if the tuple J is a permutation of the
tuple 1, then %’(1)f(G1 ) = g’( J )f(G~ ) since both ~ and f are symmetric.
Thus, only one of z’( 1 )f(Gl ) and ‘%( J )f(G~ ) needs to be computed. If S[m c
[~m denotes a set of hyperindices where exactly one permutation of each
hyperindex of 0~m appears in the set, then Eq. (8) can be rewritten as

H.= ~ P(l) ’%’(Z) f(G, ), (16)

1=s;”’
111=.

where P(I) denotes the number of distinct permutations of hyperindex Z in
the set U(’m. If all 1’s in 1 = (il,. . . ,In) are unique, then P(Z) = m!. A
multi-index 1 that occurs with multiplicity p will reduce this by a factor of p!.
Thus, the number of distinct permutations of Z is

m!
P(z) =

rt,./.L(l, r)! ‘

where P( Z, i’) is the number of occurrences of i’ in Z.
In order to iterate through the set S~SM,we impose an ordering on multi-

and hyperindices. The ordering we use is the lexicographic ordering of tuples
[Il]:i= (io,..., ih)< ‘=(.jO,... , jh ) if there is some a, O s a s k such that
ib=%jb for O< b< abut i. < j.. For example, the lexicographic ordering of
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the members of l; is (O, O, 2) < (O, 1, 1) < (O, 2, O) < (1, O, 1) < (1, 1, O) <
(2, O, O). The lexicographic ordering on hyperindices is defined similarly. With
every 7 = Oj, we denote by Ord(i’) the rank order of 1, beginning at zero, in
the set U:. Thus, Ord(O, 2, O) = 2 and Ord(O, O, 2) = O. By evaluating
C(l) f(GI) only on hyperindices whose multi-indices are in nondecreasing
order, i.e., I = (ii, . . . . i“ ) where < s <j+ ~, O s j < m, we avoid re-evaluation
on permutations of the same hyperindex.

A second way to reduce the number of computations is to reuse the blossom
values of the blossom evaluation algorithm given in Figure 5. For example,
the values f(G;,, G,i, Gi8, G,;) and f(G,.,, G,i, Gii, G,i) can both be computed
from the control points of the quadratic polynomial E(u) = f(G,i, Gr,, U, u).

The control points of E are precisely the ones computed by applying Eval-
BlossomArgumento twice, once with the argument Gi, and once with Gi,.
Reusing the results of EvalBlossomArgumento can therefore lead to substan-
tial savings. In the code of Figure 7, these results are efficiently reused by
simultaneously computing all the control points of H.

The scalar function ‘&(l), 1 = (71,.. ., i~), is a ratio of two terms, %’~(1)

= !$’) $:’)
and (~~l[l).The latter depends on III but not on the multi-in-

dices of I. bus, we can get a further improvement by computing the sum

p]H.= ~ P(z)@ ’( I) f(G1).
\] IEs;.m

1]1=-

The procedure Composeo in Figure 7 incorporates the above
Composeo first calls RecursiveComposeo, which recursively

(17)

optimizations.
computes the

values (l.”l)H , After returning from RecursiveComposeo, Composeo divides by
the combinatorial factors (l. 1) to obtain the control points of H.

The procedure RecursiveComposeo operates by recursively computing the
values P(l) ’%’~( l)~(GI ). Its operation is most easily understood if we con-
sider the computation of 1 = (;I, . . . . i’~ ). On entering RecursiveComposeo, a
prefix of Z, (il, . . . . l.), O s n s m, will have been computed. The parameter
iii will contain the previous multi-index computed for 1. The remaining
multi-indices may be no less than this multi-index. RecursiveComposeo
therefore iteratively sets i., ~ to all multi-indices greater than or equal to ti.
For each i. .J, a recursive call is made to compute the remaining multi-
indices in I. F and the scalar weight are both computed recursively as shown
in the code. At the bottom level of the recursion, P( I)%N( l)f(G1 ) is added to
HIII. The sum IZI is also computed recursively, with the intermediate results
being passed in the parameter i?.

Aside from geometric calculations, two things are needed to implement the
above scheme: a data structure for storing the control points and a method of
iterating over multi-indices in order.

Our data structure for storing the control points of a B6zier simplex
consists of a linear array in which control points are stored in lexicographic
order. That is, a control point V,., i E O~ is stored at location Oral(i) within the
array. The pseudocode of Figure 8 can be used to compute Ord(i’). The
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Compose( F, G, H )
begin

(Initialize H}
k * Dimension(G.domain), # - G.degree, m * F.degree
H.degree = [’ * m
H.domain = G.domain
for all + ● U:’”

H.cp + O
endfor

~ e Prepare(F) {See Figure 5}
~,m+ (O, . ,0, H.degree)

RecursiveCompose( F, G, H, O, “~in, 6, F.degree!, O)
for all “C D~”Z

H.cp ~ H,cp ./f ’”)

endfor
end

RecursiueCompose( ~, G, H, n, ni, ~, c, p)
: recursion control variable}

& : minimum multi-index value allowed for in, ~}
{.< : sum of multi-indices computed in Z thus far)
{c : scalar to use as weight at bottom of recursion}
{p : multiplicity of rri in Z thus far}
begin

if n = ~.degree then
H.cph ~ H.cpi + C* ~.Cp~]

else
for all i,, , , ● u~ with l’. + , >_rn in increasing order

EvalBlossomArgumenti F’, n + 1,G.cp,,,, ,) {compute ~[n ‘ ‘] from F1”’)
if 1’,,, ~ =nithen ~’~p+lelsep’ -1
RecursiveCompose(~, G, H, n + 1, 1’,], ,, ; + i,, , ~, c *(~;~ )/p’, p’)

endfor
endif

end

Fig. 7. The Bezier composition algorithm.

function Size(d, k ) referred to in Figure 8 returns the value (‘i j k), which is
the number of elements in l!, or equivalently, the dimension of the space of
polynomials in k variables of degree less than or equal to d.

An array used to store points V,., i“E U~ is called a simplicial array of
dimension k, degree d. In the pseudocode of Figure 5, the control points
referred to as V.cp,. can obviously be stored in a simplicial array of dimension
k, degree d. Moreover, a simplicial array of dimension k + 1, degree d can be

[‘1 In particular, the point ~.cp,.used to store the points ~.cp,. . 1p] can be stored
at location Ord( p, r’), meaning that the routine Prepareo returns a suitably
initialized simplicial array.

The procedure RecursiveCompose{) of Figure 7 requires iteration over
multi-indices in increasing lexicographic order. The index succeeding a given
multi-index 1 = (i,,, . . . . i~) can be computed as follows. The indices of I are
scanned from right to left to find the last nonzero index i p. Next, index iP ,
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Oral(l)
( Return the rank order of the multi-index Z = (io,. . . . i~) ● 0$)
begin

d ~ l;{
ord + Size(k, d)
forj=Otok–ldo

d+d–ij
ord ~ ord – Size(k –j, d – 1)

endfor
return ord

end

Fig, 8. Computation of the offset associated with a multi-index.

Successor(i)
{ Return the multi-index that succeeds I = ( io,... , ih).)
begin

p+
if

else

RightMostNonZeroIndex(l)
p = O then
return NoSuccessor

V4-lP

:p–1 + 1P–I +1
1 -0
i~ev–1

endif
return i

end

Fig, 9. Determining the successor of a multi-index.

is incremented; index i ~ is set to i – 1; and index iP is set to zero. For
.P . . .. .

example, the multl-mdex following (LO, L~, z~, z~, O, 0, O)is(io, il, i2 + 1, 0, 0,
0, i3 – 1). This process is summarized by the pseudocode of Figure 9.

Note that reusing the partial blossom evaluations is a time-space trade-off.
The speed increase comes at the price of higher memory usage. It should also
be noted that the number of blossom evaluations performed by the above
algorithm (i.e., the number of calls to EualBlossomArgument{)) is not mini-
mal. That is, there exist cases where another evaluation order of the values
C(Z )f(GI) results in less computation. We chose to use the lexicographical
ordering because it simplifies the code for Successor.

The composition algorithm given in Figure 7 is appropriate for composing
polynomial functions. As mentioned in Section 4.3, it may also be applied to
compose rational functions by using the multilineal blossom evaluation
algorithm. The pseudocode of Figure 7 may also be extended to tensor
products, although the control flow is more complicated as there are four
hyperindices to compute (see Eq. (13)).

6. SUMMARY

We have developed efficient algorithms for computing the B6zier or B-spline
representations of F o G from the corresponding representations of F and G.
A wide variety of modeling problems including evaluation, subdivision, repa-
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rameterization, conversion between triangular and tensor-product forms, and
explicitly representing models that have undergone free-form deformations
can be solved by these algorithms. Since the algorithms can be tightly and
efficiently coded, a large amount of so fiware reuse can be achieved by
providing these algorithms as library routines.
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