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A b s t r a c t  

B-spline surfaces, although widely used, are incapable of de- 
scribing surfaces of arbitrary topology. It is not possible to 
model a general closed surface or a surface with handles as 
a single non-degenerate B-spline. In practice such surfaces 
are often needed. In this paper, we present generalizations of 
biquadratic and bicubic B-spline surfaces that  are capable of 
capturing surfaces of arbitrary topology (although restrictions 
are placed on the connectivity of the control mesh). These re- 
sults are obtained by relaxing the sufficient but  not necessary 
smoothness constraints imposed by B-splines and through the 
use of an n-sided generalization of B6zier surfaces called S- 
patches. 
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1 I n t r o d u c t i o n  

Parametric surfaces have proven themselves an excellent tool 
for representing smoothly varying sculptured objects. B- 
splines have emerged as the polynomial basis of choice for 
working with parametric surfaces. However, the current the- 
ory of B-splines has serious shortcomings when modeling gen- 
eral closed surfaces or surfaces with handles. 

A B-spline surface is a deformation of a planar domain, 
tessellated into a regular grid of rectangles. It is quite natural 
for the surface to be treated as a collection of tensor product 
polynomial patches defined over these rectangles. This leads 
to notions of parametric continuity (denoted C k continuity), 
where smoothness is defined in terms of matching derivatives 
along patch boundaries. It is precisely this t reatment  that 
limits the possible topologies of a B-spline surface. 
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A more general view considers the spline surface to be 
a collection of (possibly rational) polynomial maps from in- 
dependent n-sided polygonal domains, whose union possesses 
continuity of some number of geometric invariants, such as 
tangent planes. In this view, patches are required to meet 
with geometric continuity (denoted G k continuity), a measure 
of continuity that  subsumes strict parametric continuity. This 
more general view allows patches to be sewn together to de- 
scribe free form surfaces in much richer and more complex 
ways. 

The n-sided element we use is the S-patch developed i n  
[18]. Using the S-patch form, our surfaces possess many desir- 
able properties. One of the most important  of these properties 
is that  S-patches generalize both Bdzier tensor product and 
triangular patches, meaning that  an S-patch based geomet- 
ric modeler is compatible with existing popular patch types. 
Since all S-patches are instances of  a single general structure, 
algorithms may be derived that  are independent of the number 
of sides n, leading to uniformity and simplicity. This dispels 
the notion that  inclusion of n-sided patches into a geomet- 
ric modeler would increase complexity due to an increase in 
special cases. The S-patch form is more complicated than ten- 
sor product forms. However, it is also very structured, so we 
believe the increase in generality offsets the increase in com- 
plexity. 

By relaxing C 1 continuity to G 1 continuity, and by allow- 
ing n-sided S-patch elements, we obtain more general spline 
methods that  contain B-spline surfaces as a proper subset. 
Just  as for B-splines, our more general surfaces are created as 
smooth approximations to control meshes. By a control mesh 
we mean a collection of control points, or, synonymously, con- 
trol vertices, together with connectivity information used to 
define edges and faces. ? Here we offer two methods for trans- 
forming control meshes into G 1 spline surfaces. The methods 
differ in the connectivity restrictions placed on the control 
mesh. The first method is a generalization of biquadratic B- 
splines; it requires the control mesh to be constructed entirely 
from four sided faces, al though any number of faces may meet 
at a vertex. The second method is a generalization of bicubic 
B-splines; it requires that  exactly four faces meet at a vertex, 
although faces may contain any number of edges. 

There are two reasons for the choice of restrictions on the 
control meshes. First, the restrictions are sufficiently relaxed 
to describe surfaces of arbitrary topology. Second, the restric- 
tions are sufficiently strong to guarantee that  all our surfaces 
have exactly four patches meeting at each interior corner. This 
specialization is exploited to yield a simple solution to the 
"twist compatibility" problem, a system of constraints that  
arises at interior corners. These schemes, therefore, retain the 

tA control mesh is more precisely defined as a subdivision of a topo- 
logical 2-manifold, possibly with boundary [12]. 

© 1 9 9 0  ACM-0-89791-344-2/90/008/0347 $00.75 347 



@ SIGGRAPH '90, Dallas, August 6-10, 1990 

simple design features while overcoming the severe topologi- 
cal restrictions of traditional B-spline methods. It should be 
emphasized that  these schemes are generalizations of nniform 
B-splines, al though the extensions to the non-uniform and ra- 
tional cases (NURBs) pose no fundamental  difficulties. 

1.1 O v e r v i e w  

After a review of previous work, given in Section 2, and a re- 
view of the basic properties of S-patches, given in Section 3, 
the principal results of this work are presented in a bot tom 
up fashion. In Section 4, we solve the n-sided hole problem 
using S-patches. In this problem the existence of an n-sided 
hole surrounded by polynomial patches is assumed. The ob- 
jective is to find a single S-patch that  meets the surrounding 
patches with G ~ continuity. In Section 5, we use the solution of 
the n-side hole problem to define a patch representation that  
mimics the relatively simple continuity requirements of B~zier 
tensor product  patches. Hence these patches are easy to join 
together with G 1 continuity. In section 6 we presents the two 
generalized B-spline schemes for modeling surfaces with arbi- 
trary topology. Like B-splines, both of these schemes produce 
surfaces that  are smoothed versions of  control meshes. Unlike 
B-splines, however, our control meshes are capable of model- 
ing surfaces of arbitrary topology. Finally, in Section 7, we 
offer some concluding remarks and directions for future work. 

2 Previous Work 

When modeling with B-spline surfaces, a common way to sub- 
vert the topological constraints is to introduce degeneracies 
into the control meshes. This amounts to collapsing one or 
more edges of  the control mesh to a point, resulting in one or 
more 3-sided faces. This causes an irregularity in the param- 
eterization, meaning that  partial derivatives are not linearly 
independent. Degeneracies of this sort introduce various prob- 
lems, such as calculating normal vectors. In an effort to find 
more robust solutions, a significant amount  of recent work 
has been done in the areas of geometric continuity, non-tensor 
product patches, and generalizing B-splines. 

It has been shown (c.f. Herron [15]) that  it is impossible 
to construct closed, non-degenerate C 1 surfaces of arbitrary 
topology. One solution to this is to replace parametric con- 
tinuity with geometric continuity, a topic that  has received 
substantial s tudy in recent years (cf. [3, 8, 16]). 

To address the problem of irregular patch networks, many 
non-tensor product patches have been developed. These in- 
clude the n-sided patches developed by Sabin [19], and ttosaka 
and Kimura [17], which are limited to at most 5 and 6 sides re- 
spectively. The patch described by Gregory [11] is not limited 
in the number of sides, and is similar in spirit to the Coons 
patch. Other  true n-sided patch representations have been 
proposed by Herron [14], and by Varady [22]. The Gregory 
Patches of Chiyokura and Kimura [6] are generalizations of 
B~zier tensor product  patches tha t  contain (removable) sin- 
gularities at patch corners. 

Several generalizations of B-splines have been proposed. 
The earliest of these are the recursive subdivision schemes of 
Doo and Sabin [9], and Catmull  and Clark [4]. These methods 
allow arbitrary control meshes and generally produce pleasing 
surfaces; however, the surfaces are defined as the limit of a 
local averaging procedure and do not, in general, possess a 
closed form parameterization. A generalization of B-splines 
that  makes use of parametric surfaces has been found by van 
Wijk [21]. This scheme uses tensor product patches exclu- 
sively and imposes relatively strict requirements on the form 
of the control mesh. 
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3 S-patches 

As mentioned in Section 1, the generalized B-spline schemes 
are based on S-patches. S-patches refer to a generalization 
of B6zier surfaces where any number n of boundary curves 
are permissible. The underlying theory has been established 
elsewhere [18]. In this section, we briefly summarize the results 
necessary to develop the generalized B-spline schemes. 

As is shown in [18], S-patches possess a rich structure, 
largely because they are defined in terms of  multivariate Bern- 
stein polynomials and Bdzier simplexes. It is therefore conve- 
nient to begin with a discussion of B~zier simplexes. 

In what  follows, multi-indices will be denoted by italic 
characters with a diacritical arrow, as in ~. Multi-indices are 
tuples of non-negative integers, the components of which are 
subscripted start ing at one; for instance, ~ =  (il,  ..., i~+l). The 
norm of a multi-index ~, denoted by [~[, is defined to be the sum 
of the components of  ~. The symbol gj denotes a multi-index 
whose components are all zero except for the j t h  component 
which is one. Addition, subtraction and scalar multiplication 
of multi-indices are defined componentwise. 

By setting ~ =  (il, . . . , i~+1) and requiring [~1 = d, the k- 
variate Bernstein polynomials of  degree d can be defined by 

BT(. , , . . . , . ,+ , )  = tr) , ,= 

where (~) is the multinomial coefficient defined by 

= i l !  i2! . . . i k + t ! '  

and where ul, ..., uk+t are real numbers that  sum to one. It 
is known [7] tha t  for every polynomial Q : X1 ~ X2 of degree 
d, where XI is an affine space of  dimension k and X2 is an 
affine space of arbitrary dimension, there exist unique points 
V r E X2, 13 = d, such that  

Q(u) =- E ViB](ul , . . . ,  uk+l), (1) 

where ul,  ..., u t+l  are the barycentric coordinates of u E X1 
relative to a simplex A = {vl , . . . ,vl+l}.  (A k-simplex is a 
collection of k + 1 points such that  none of the points can be 
written as an affine combination of  the others. For example, 
the points of a 2-simplex form a triangle, and the points of a 
3-sirnplex form a tetrahedron.) 

Summations such as the one in Equation 1 are intended 
to be taken over all multi-indices whose norm matches the 
degree of the Bernstein polynomial. Thus, in Equation 1, the 
multi-index Y is to take on all values such that  [~'[ = d. A 
polynomial Q, when expressed as in Equation 1, is called a 
B(zier simplex. The points V77 are called the control net, and 
,~ is called the domain simpler. 

S-patches build on the theory of B6zier simplexes as fol- 
lows. An n-sided S-patch S is a mapping from a domain n- 
gon P and is conceptually constructed in two phases: first, 
P = {~ , . . . ,Pn}  is embedded into an intermediate domain 
simplex A = {vl, ..., vn) contained in an affine space Y of di- 
mension n - 1; next a B6zier simplex is created using A as its 
domain; finally, S is defined as the composition of the embed- 
ding and the B6zier simplex.. That  is, if L : P ~ zl represents 
the embedding, and if B : ~ --~ N 3 is the B6zier simplex, then 

S(p) = B o L(p), p E P, (2) 

as indicated in Figure 1. 
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Figure 1: Schematic representation of S-patches. 

To describe the embedding L we use to map the domain 
polygon P into the intermediate simplex A, we first introduce 
several helpful definitions. Let cti(p) denote the signed area 
of the triangle PPiPi+i, where the sign is chosen to be positive 
if p is inside P. (Note: all indices are to be treated in cyclic 
fashion.) Let 

=  l(p) • • • ( v )  • . -  

for i = 1, ..., n, denote the product of all areas except for oq-1 
and ai, and let 

e (p) =  l(p) + . . .  + . . (p )"  

With these definitions, every point p E P is mapped by L 
into the point 

L(p) = el (p)v'l + e2(p)v~ + . . .  + g,(p)v,~, (3) 

in Y. This embedding has the important property that it is 
edge-preserving, meaning that if p lies on an edge of P, then 
L(p) lies on an edge of z~; additionally, the interior of P is 
mapped into the interior of ~ [18]. 

If V~ denotes the control net of a B6zier simplex B, then 
an S-patch S is defined as 

S(p) = B o L(p) = Z V~B~(gl (p), ..., gn(P)). (4) 

REMARK : The definition of S-patches given in Equation 4 
is a slight specialization of the definition given in [18], since in 
that work B was allowed to be a rational B&zier simplex. For 

brevity and simplicity, we have chosen not to introduce this 
additional complication here. 

The integer d in Equation 4 is known as the depth of the 
S-patch, to avoid confusion with the polynomial degree of the 
patch, which is d(n - 2). The control net V t is taken as the 
control net of S, an example of which are shown in Figure 1. 
S-patch control nets consist of interconnected n-sided closed 
polygonal panels. For instance, in Figure 1 the points V20000, 
Vll00O, Vim00, Vl0mo, Vlo0m form one such panel. 

The compositional structure of the S-patch S together 
with the edge-preserving character of the embedding L endows 
the S-patch representation with a number of useful properties, 
including (see [18] for proofs): 

• Points on S can be computed using the multivariate ver- 
sion of deCasteljau's algorithm. 

• Boundary curves are in B~zier form, implying that 
boundary curves can be individually controlled. For in- 
stance, referring to Figure 1, the boundary curve cor- 
responding to the bottom boundary of the control net 
is a quadratic B~zier curve whose control points are 
V20o00, Vl10o0, Vo2o00. Control points such as these are 
called boundary points. 

• The panels of a control net that contain boundary points 
are termed boundary panels. The tangent plane varia- 
tion along a boundary curve is determined entirely by 
the corresponding boundary panels. Referring again to 
Figure 1 for example, the tangent plane along the bot- 
tom boundary of the control net is entirely determined 
by the two panels V2oooo, Vlxooo, Vloloo, Vloolo, Vloool 
and VlloOO, Vo2ooo, VOll0O, Vol01O, Polo01. 
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Figure 2: Patches Ft, ..., F ,  surrounding a n-sided hole. 

• Given an S-patch control net of depth d describing a patch 
S = B o L, the S-patch control net of depth d + 1 for S 
can be constructed by executing the B ~zier simplex degree 
raising algorithm on the control net of B. Thus, S-patch 
control nets can be depth elevated. 

• If  P is a regular n-gon, and if Q is a polynomial patch in 
triangular B4zier form defined over some domain triangle 
T, then there is a simple algorithm for representing Q 
in S-patch form over P,  referred to as the polynomial 
representation algorithm. 

• When n = 3, the S-patch form reduces to the standard 
B6zier triangle, and when n = 4, S-patches coincide with 
B~zier tensor product  patches. 

4 T h e  N - s i d e d  H o l e  P r o b l e m  

The n-sided hole problem arises in situations such as the one 
shown in Figure 2 where polynomial patches surround an n- 
sided hole. The objective is to construct a surface patch that  
fills the hole and meets the surrounding surfaces with at least 
G 1 continuity. Although this problem has been identified as 
an interesting problem in its own right [5, 10, 13], our reason 
for introducing and solving it here is two-fold: first, our so- 
lution fills the hole with a single S-patch; second, in Section 
5 the solution is used to define a patch representation that  is 
particularly convenient for developing the generalized B-spline 
schemes. 

Referring to Figure 2, the hole to be filled is assumed to be 
surrounded by n patches Fi, ..., Fn, typically given in tensor 
product form; we wish to construct a single S-patch H that  
matches the surrounding patches with' positional and tangent 
plane continuity. We shall find it convenient to introduce the 
following notation: 

• The boundaries of the hole are given by F~(ui, 1), i = 
1,...,n, as indicated by Figure 2. 

• The domain polygon P of H is a regular n- ton  with ver- 
tices P1,. . . ,P, .  (Let ~/ be the vector from p~ to P~+t, 
and let Ei denote the i *h edge of P, that  is, Ei(ti) = 
(1  - t i )p,  + t ip ,+ l ,  ti e [0, 1] . )  

We assume that  the patches surrounding the hole satisfy the 
following "twist compatibility" conditions: 

(A0) Fi_l(t,  1) = F~(0, t) 

(A1) OFi-lDui_l (1,1) = - ~ ( 0 , 1 )  

(A2) aF,_lav,_ 1 (1,1) = ~:(0,1)  

( A 3 )  ' • 

We additionally assume that  the patches are regular in the 
sense that  partial derivatives are everywhere linearly indepen- 
dent. 

Positional continuity of H with the surrounding surfaces 
is simply achieved by requiring tha t  H(Ei(ti)) = Fi(t~, 1), ti 6 
[0, 1], for each i = 1, ..., n. Differentiating this with respect to 
ti implies that  

OFt. D~'~ H(Ei(t,)) = ~u (t~, i), ti 6 [0, i], (5) 

where D~ f(p)  denotes the directional derivative of f in the 
direction g at the point p. 

We also require tha t  H meets the surrounding surfaces 
with G 1 continuity. Along the i ~h edge Ei this is equivalent 
to the existence of  functions p , v  : [0, 1] ~ ~ such that  

. aFi 
D f~_, H(Ei(ti)) = #(ti)~ui(Q, 1) + y(ti) (ti, 1), (6) 

for all ti 6 [0, 1]. This equation states that  at each point on 
El, a cross boundary  derivative of H,  in this case taken in the 
direction o f - ~ / - 1 ,  should be in the tangent plane of Fi, and 
hence should be expressible as a linear combination of Fi's 
first order partial derivative vectors. Conditions 5 and 6 are 
therefore sufficient (and in fact necessary) to guarantee that 
H and Fi share a common tangent plane along their common 
boundary curve (cf. Herron [16]). 

The principal difficulty in constructing H is in determin- 
ing the functions/g and v. The general approach is to find a 
set of constraints on these functions that  are sufficient to guar- 
antee that  an S-patch form for H can be constructed subject 
to the V 1 continuity condition of  Equation 6. Once the con- 
straints have been determined, we construct # and v as the 
minimal degree polynomials that  satisfy the constraints. It 

350 



P i -  1, 

Pi P i + l  
Figure 3: Boundary panels of the S-patch H.  
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turns out that  six constraints are sufficien L and that  the con- 
straints are linear in the polynomial coefficients o fp  and u. By 
choosing # and t, to be quadratic polynomials, six unknowns 
are introduced, and hence a unique solution to the system can 
be found. Our goal now is to determine these constraints. 

REMARK : Equation 6 implies tha t  the same functions #, u 
are used for every edge since # and u do not appear in the 
equation with an i subscript. This appears to be an unnec- 
essary assumption. However, allowing p and u to differ from 
edge to edge introduces no new flexibility. Instead, what oc- 
curs is that  a linear system of 6n equations in 6n unknowns is 
required, so again the solution is unique, and is such that  the 
resulting functions are the same for each edge. 

The first two constraints on # and u are determined by 
setting ti = 0 in Equation 6, and using Equation 5 together 
with (A1) to give 

OFi(o'l)ovi = p(O)~.~-(O, 1) + u(O).-~-(O, 1). 

It is therefore sufficient for ~(0) = 0 and u(0) = 1. These 
two constraints were found by restricting a condition imposed 
along Ei to the corner corresponding to Pl. The next two 
constraints follow by restricting to pi a condition imposed 
along the edge Ei-1. To do this, we require an expression for 
D~, H(Ei-a(ti-1)) in terms of Fi-1, Fi, # and u. The required 
expression can be found by noting that  since P is a regular 
n-gon, - { ' - 1  = - 2 c o s  ~ + t~+l. Linearity of directional 
differentiation therefore implies that 

~-r-D- H + H. D_~i_ i H = -2cos . tl D~.~+i 

Substituting this expression into Equation 6, replacing i by 
i- 1, and solving for Dg~ H(Ei-1(ts-1)) yields 

~)OFi-1 (ti 1, I) Dr. H(Ei-l(ti-1)) = ( U ( t i - 1 )  -1- 2 c o s  OUi_  1 - 

OFi-I. 1). (7) 

The restriction of  this equatiori to the point pi is achieved 
by setting ti-1 to one. Doing this, and using D~ H(pi) = 
0F~_~ (0 1), allows us to deduce that  it is sufficient for p( i )  = ~':-~'- ~ , 

- 2 c o s - ~  and u(1) = 1. 

The final two constraints on p and u follow from the fact 
that  since H is sought in S-patch form, H must be twice dif- 
ferentiable everywhere on P.  In particular, the order of differ- 
entiation should not matter,  meaning that  p and u must be 
constructed so that  

Dr,_, Dr, H(pl)  = Dr, Dr,_, H(p,). (8) 

The left hand side of Equation 8 is expanded by differentiat- 
ing Equation 6 with respect to re-l ,  and the right hand side 
is expanded by differentiating Equation 7 with respect to ti. 
This process, together with (A3) is used to show that it is 
sufficient for t~'(O) = - u ' ( 1 )  and g'(1) = u'(O), where prime 
denotes the first derivative. 

To summarize, # and r, must  satisfy the following con- 
straints: 

u(o)=o, ~(o)= 1, 

W ( o )  = - ~ ' ( 0 ,  g ' ( 1 ) = u ' ( 0 ) .  

This system is solved uniquely if p and u are assumed to be 
quadratic polynomials. In Bernstein form, the solution is 

, ( t )  = - c o s  ~ s ~ ( t )  - 2 c o s  ~ - _ ~ ,  , ,  

u(t) = Bo2(t) + ( 1 -  cos ~)B1(t  ) + B~(t), 

where B~(t) = (~)ti(1 - t )  2-i. Closer inspection o f ,  shows 
that it is actually a linear polynomial. Additionally, notice 
that  in the case n = 4, p reduces to the zero polynomial 
and u becomes identically one, indicating that  H meets the 
surrounding four surfaces with strict C 1 continuity. 

t taving determined ~ and v as above~ the position and 
differential of H around the perimeter of P are completely 
determined by Equations 5 and 6. H then can be represented 
in S-patch form on P as follows: 

1. The restriction of H and its differential to each edge 
Ei is found in triangular Bernstein form on the triangle 
pi-lPipi+l. This requires only straightforward manipula- 
tion of Bernstein polynomials since each of the functions 
appearing in Equations 5 and 6 is known in Bernsteiu 
form. The result of this step is a collection of triangular 
panels along each edge, as shown in Figure 3. Specific 
formulas relevant to our constructions are given in Sec- 
tion 5. 
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2. For each triangular panel computed in step 1, and for each 
edge Ei, find the image of .P under the affine map that  
carries pl-tpipi+i to the vertices of  the panel, as indicated 
in Figure 3. The polynomial representation algorithm 
for S-patches mentioned in Section 3 guarantees that the 
collection of interlocking n-gons thus formed represent H 
and its differential around the perimeter of P .  

3. To complete the S-patch representation of H, the remain- 
der of the S-patch control net, consisting of all interior 
control poinls, i.e. those that  do not contribute to posi- 
tion or differential around the perimeter of P,  must be 
determined. These points can therefore be set arbitrarily 
without influencing the G i join between H and the sur- 
rounding surfaces. Of  course, an intelligent choice for the 
interior points must be made to avoid unwanted ripples 
in H away from the boundaries. A method for setting 
the interior points that  works well in practice is given in 
Section 5. 

5 S a b i n  n e t s  

In preparation for the generalized B-spline schemes of  Sec- 
tion 6, we recast the n-sided hole problem in terms of a self 
contained control point representation. We call this represen- 
-tation the Sabra net, due to its connection to the representa- 
tions proposed by Sabin [17, 19] *. Figures 4 and 5 illustrate 
quadratic and cubic Sabin nets respectively. Intuitively, Sabin 
nets are used to construct the boundary  data  needed by our 
solution to the n-sided hole problem. An S-patch is then con- 
structed using the method of Section 4. The procedure to 
create an S-patch, given a Sabin net, is thus a three step pro- 
cess: 

i) Construct  boundary data  from the Sabin net. 

ii) Construct  S-patch boundary  panels as in Section 4. 

iii) Construct  the interior S-patch control points. 

In Section 5.1, these steps are elaborated for the case of 
quadratic Sabin nets; Section 5.2 describes the case of cubic 
Sabin nets. 

5.1 Q u a d r a t i c  case  

q i + l  

Figure 4: A quadratic Sabin net. 

The first step is to convert the quadratic Sabin net into an 
instance of the n-sided hole problem. Assume the Sabin net 

The  o n l y  d i f fe rence  is t h a t  w e  d o  n o t  tim.lt t he  n u m b e r  o f  sides.  
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labeling of Figure 4. The n boundary data  functions are con- 
structed as follows: 

Fi(ui, 1) = qiBo2(ui) + piBt2(ui) + qi+lB~(ul),  
OFi. 
Ovi(Ui'l) = 2[(p,_l - ql)Bo2(Ul) 

+ (v - pl)B~(ui) "4" (Pi+I - qi+l)B2~(ui)]. 

It is not difficult to show that  these functions satisfy conditions 
(A0) through (A3). 

Next, triangular boundary panels of  an S-patch H are 
computed by step 1 of Section 4. From Equation 6 we see that 
o°~u~(ul, 1), ~vF (ui, 1), p(tl), and u(ti) are at most quadratic 
functions; this implies that  D ~ , _ a  H(E(t i ))  is at most quar- 
tic, and therefore H(E(t i ) )  is at most quintic. This shows that 
the S-patch H must be at most depth 5. Let the h;, denote 
control points of  H.  Working through the details of  step 1, 
the following formulas are found for the boundary panels of 
H up to symmetries: 

h5~i = qi 
h4~+ ~,+ 1 = 3 2 ~qi + ~Pi 

h3g,+2g,+l = ~0qi + i~Pi + l~q/+l 
1 - c  1 - c  h3~ +g,+~+g~_~, = ~_2.~,~.5 "~' + -~--Pi + -g ' -P i - i  + ~v 

h 2 ~ + : z , + ~ + ~ , _ l  = Lt_ .~ -  L ~ . - .  1 30 q i +  i s  P= + ~ P i + i  
1 -4¢  _ 4 ~...._...~. v + - - ~ - - ~ i + l  + ~ P ~ - i  + 

where c = cos-~-, and i = 1 . . . n .  The remaining boundary 
panel points of H may be found using step 2 of Section 4. 

Constructing the boundary panels does not, in general, 
completely determine H. The remaining degrees of freedom 
are the positions of interior S-patch control points. The pro- 
cedure for finding positions for the interior points of H is as 
follows: 

1. Define a depth 2 S-patch A whose boundary control 
points match those of the Sabin net. Let ar denote the 
control points of A. This step is algorithmically estab- 
lished by 

f o r i  ~ l t o n  
a2e~ ~ qi 
a~,+g~+l ~ Pi 

end for  

2. The remaining control points of A are found as convex 
combinations of the control points of the Sabin net so that 
A approximates the desired shape of H. The following 
algorithm is used for this purpose 

for  i ~ 1 to n 
f o r j  - -  2 t o  [~-J 

i f  odd(j) then 
7 f "  . ac,+r(,+j) ~--- (1 -- cos u )v  + cos "~'P(i+l~J) 

else 
a~.+~o+j) ~-- (1 -- cos ~-)v  + cos "~'q(i+[}J) 

end i f  
end for  

end for. 

3. The S-patch A is then depth elevated from depth 2 to 5 
to match the depth of  H. 
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4. The (unknown) interior control points of H are equated 
to the (known) interior control points of A. 

The justification for this procedure is that  the lower depth S- 
patch A has fewer unknown control points than H; it should 
therefore, be easier to find geometric constructions for these 
points, and the resulting surface should have fewer undula- 
tions than a higher depth patch. 

It i.s not difficult to see that in the case n = 4, the Sabin 
net and the patch A are identical. The resulting surface is the 
usual tensor product biquadratic, although parameterized as 
a biquintic. 

5.2 C u b i c  B o u n d a r y  C a s e  

Ci-I,I~ 

ci_ 

q,4y-  q---- 

Ci,1 ci,2 Ci.+. 1 -~'---s Ci-Fl,1 

Figure 5: A cubic Sabin net. 

Let the cubic Sabin net be labeled as in Figure 5. The n 
boundary functions of the n-sided hole problem are computed 
as follows: 

Fi(ui, 1) = c,,1B0a(u,) + c,,~B~(u,) 

+ e,+x,,B?(u,) + 

OFi(u¢, 1) = 3[(e , ,4-  ci,~)Bo~(U,) 
Ovl 

+ ¢,,=)B?(u,) 
+ 

+ 

Once again, it is not difficult to verify that  these functions 
also satisfy conditions (A0) through (A3). 

The boundary panels of H are again computed by step 1 
of Section 4. A degree argument similar to the one used in Sec- 
tion 5.1 shows that  H must be a depth 6 S-patch. Completing 
step 1 leads to the following formulas: 

1 1 hst,+¢~+, = ~ c i , 1  --I- ~ c i , 2  

h 4 g ,  + 2 g , +  * = 1 C 3 1 i,1 + ~ei,2 + ~ei+t,4 
9 . 1 

1--c 3 ~ 4 c  ~ l - - c  h4g,+~+,+~._, : ~ci,3.4- ---U-ci,4 + 10 ~1,1 + -'6--ei,2 
h3g~ +2g' ,+z  + g , -  t = a - s c  . 3+4c -.~--ci,a -1- 2~ci,4.4- 20 u l ,  1 

3 1--4e  + - ~ c i , 2  q" ~-6ci+La + "~ ' -~i+L¢ 

where c = cos ~ and i = 1 . . . n .  The remaining boundary 
panel points of H may be computed as in step 2 of Section 4. 

The unknown interior points of H are computed by a pro- 
cedure analogous to that  of the quadratic case. Let A be a 
depth 3 S-patch. Again, the boundary control points of A are 
equated to the boundary control points of the Sabin net. This 
is stated algorithmically as 

f o r l  ~--- l t o n  
a2g.+~_, ~-- Ci, 4 

a3~ i +-- Ci, 1 
a2~i+~i+, ~ Ci, 2 

end for 

Next, we compute the remaining control points of A. Let 
the Sabin net control points e1,3, e2.3, . . . ,  c~,3 be treated as 
the control points of a depth I S-patch .4. Let wr be defined 
by 

itpl + i2p2 + • " + inpn 
n 

where 1~ = 3. The domain of A is taken to be the polygon 
w~,+e~+~,,wtt+~.2+es,...,wt~_,+¢~+~. The remaining con- 
trol points of A are found as follows 

for all wr ~ boundary(P) 
ar  (wr) 

end for 

The surface represented by A is now depth elevated from 3 to 
6, and the (unknown) interior points of H are equated to the 
(known) interior points of A. 

In the case n = 4, A and the Sabin net are identical, im- 
plying that  the resulting patch H is a tensor product  bicubic, 
parameterized as a bisextic. 

6 Genera l i zed  B-spline Schemes 
We now present two schemes for modeling surfaces with ar- 
bitrary topology: one is an generalization of biquadratic B- 
splines , the other a generalization of bicubic B-splines. Like 
traditional B-spline methods, these schemes take as input a 
control mesh that  roughly approximate the desired shape, pro- 
ducing as output  a smooth spline surfaces. 

These schemes are inspired by the close relationship be- 
tween the control points of B-spline and B6zier representa- 
tions. The essence of this relationship is that  the B6zier con- 
trol points may be found by local averaging of the B-spline 
control points. Such a construction was first presented by 
Sablonni6re[20] for curves, and later by Boehm [1, 2] for B- 
spline surfaces. Here, we present analogous constructions for 
computing Sabin net control points by a local averaging of the 
input control mesh. 

Adjacent Sabin nets are constructed to share the same 
boundary position function, Fi(ui, 1), and cross boundary tan- 
gent vector function -~.-.Ei-tu. 1) (up to a constant scale fac- 0 v i  k s~ 

tot), corresponding to the common boundary. The resulting 
S-patches, constructed by the method of Section 5, are thus 
guaranteed to meet with G 1 continuity. 

The conditions that  adjacent Sabin nets must satisfy in 
order to share the same boundary data functions are easily 
described. Equivalent boundary position for adjacent Sabin 
nets is achieved by sharing boundary points. To share equiva- 
lent cross boundary tangent vectors, the three rows of control 
points parallel to the boundary must be co-linear and form 
identical affine segments (see Figures 6 and 7). These con- 
ditions are equivalent to the usual C 1 conditions for B6zier 
tensor product  patches. 
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6.1 G e n e r a l i z e d  B i q u a d r a t i c  S c h e m e  

A control mesh for the generalized biquadratic scheme is re- 
stricted to 4-sided faces, but  a vertex can be shared by any 
number of faces. There is a one to one correspondence be- 
tween vertices of the control mesh and individual patches of 
the spline surface. That  is, for each vertex that  is shared by 
n faces, an n-sided, quadratic Sabin net is constructed. 

The Sabin net corresponding to a vertex is found by con- 
structing the midpoints of all edges incident on the vertex, 
and the centroids of all incident faces. These poiuts, together 
with the vertex form the Sabin net (see Figure 6). It is easy to 
verify that  neighboring Sabin nets satisfy the continuity con- 
straints. This construction is equivalent to that purposed by 
Sabin [19], but is not limited to patches with at most 5 sides. 

Figure 6: 3-sided and 5-sided quadratic Sabin nets are con- 
structed to satisfy the continuity constraints. 

The Sabin nets are converted to S-patches by the method 
given in Section 5. Figures 8 and 9 show some examples of 
spline surfaces constructed using this scheme. 

6.2 G e n e r a l i z e d  B i c u b l c  S c h e m e  

A control mesh for the generalized bicubic scheme may have 
faces with any number of sides, but  each (non-boundary) ver- 
tex must belong to exactly four faces. In this scheme, there 
is a one to one correspondence between faces of the control 
mesh and patches of the spline surface. That  is, for each n- 
sided face of the control mesh, an n-sided cubic Sabin net is 
produced. 

Generating the Sabin net is slightly more complicated 
than for the generalized biquadratic scheme given in Sec- 
tion 6.1. In this case n key points are found for each n-sided 
face of the control mesh. The key points are connected across 
edges to form quadrilaterals corresponding to the vertices of 
the control mesh. The points of the Sabin net are taken to be 
edge midpoints and the centroids of  the quadrilaterals as well 
as the key points (see Figure 7), 

The positioning of the key points can greatly affect the 
final shape of the surface. One , ossibility might be to leave 
them as user specified shape handles. Instead, we propose rea- 
sonable default placements for the key points. Let the vertices 
and centroid of a face be labeled as in Figure 7. The key point 
ki is computed by 

1 k, =  b,_l + +  b,+l + 

where c is the centriod of the face b l , . . . , b n .  This choice 
is justified empirically, and it generalizes the construction of 
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bicubic B-splines in the case n = 4. Other possibliries cer- 
tainly exist. 

p 

O 

Figure 7: 4-sided and 5-sided cubic Sabin nets are constructed 
subject to the continuity constrains. Filled dots represent key 
points. 

Once the Sabin nets have been constructed, they are con- 
verted to S-patches by the method given in Section 5. Figures 
10 and 11 show some examples of spline surfaces constructed 
using this scheme. 

7 Conclusions 

We have presented two methods for constructing surfaces from 
control meshes that  provide sufficient generality for the mod- 
eling of arbitrary topological surfaces. One of  the methods is a 
generalization of biquadratic B-splines, the other a generaliza- 
tion of bicubic B-splines. We have based these generalizations 
on S-patches, a class of n-sided parametric surface patches 
that contains B~zier triangular and tensor product patches as 
proper subsets. Our methods are also based on well known ge- 
ometric constructions for converting from a B-spline to B~zier 
representation: we convert a more general control mesh into 
a collection of S-patches that  meet with tangent plane conti- 
nuity. 

The control meshes of this paper are not entirely general 
in that  we require that  exactly four surface patches meet at 
each interior vertex of the spline surface. This constraint was 
imposed for reasons of simplicity; the so c,alled "twist compat- 
ibility" problem has an easily described solution in this case. 
More general patch connections are certainly possible, and are 
currently being developed by the authors. 

Other topics of future research include: finding better 
ways of determining the interior control points of for the S- 
patch construction of Section 5, experimenting with alterna- 
tives to the key point placement algorithm of Section 6.2, and 
extending these results to produce curvature continuous (G 2) 
spline surfaces. 

We have not considered the case of  Non-Uniform Rational 
B-splines or NURBs. The main reasons for this omission are 
the desire to avoid unnecessary complications, and because 
"knot lines" do not seem to have well defined counterparts 
when dealing with arbitrary topologies. However, our con- 
structions are easily extended to include non-uniformity by 
replacing the word "midpoint" with "knot vector ratio" in 
the constructions of Section 6. It is also quite straightfor- 
ward to incorporate rational polynomials through the use of 
homogeneous coordinates. 
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Figure g: A closed surface produced by the generalized bi- 
quadratic scheme. 

Figure 10: A branching surface produced by the generalized 
bicubic scheme. 

Figure 9: A surface containing fillets and blends produced by 
the generalized biquadratic scheme. 

Figure 11: A surface with a handle and a closed surface pro- 
duced by the generalized bicubic scheme. 
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