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Preface

This manuscript is intended as a rigorous introduction to the
field of computer graphics at a level appropriate for advanced un-
dergraduates and beginning graduate students in computer science.
My intent is not to present a completely comprehensive survey of
the field. Rather, my goal is to provide a firm, modern account of
those topics within the subfield of three-dimensional raster graph-
ics that can be given adequate treatment in a ten week session. I
have therefore, unfortunately, been forced to eliminate discussions
of many interesting topics. The text by Foley, van Dam, Feiner,
and Hughes should be considered a primary reference for topics not
covered here.

The manuscript is based on two courses (CSE 457 and 557) that
I have taught over the past several years. The most distinguishing
feature is the treatment of the geometric component of the material.
Rather than using coordinate calculations, matrices, and matrix
manipulations to accomplish geometric computations, a so-called
coordinate-free approach is used. It is my feeling that a great deal of
conceptual clarity and programming power is achieved by moving to
the slightly higher level of abstraction provided by the coordinate-
free framework.
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Chapter 1

Introduction

The field of as computer graphics really got its start with one man:
Ivan Sutherland. Sutherland was a graduate student in the late 50’s
and early 60’s at the MIT Lincoln Laboratory. His landmark Ph.D.
thesis described a system called SketchPad that was nothing less than
a graphical, interactive, constraint-based system for the creation of
two-dimensional engineering diagrams.

The display Sutherland used to develop SketchPad is now called
a calligraphic, vector, or stroke device. Calligraphic displays operate
by having a special purpose controller, called a display processing
unit, govern the electric potential across the deflection plates inside
a cathode ray tube. By varying the potentials appropriately, it is
possible to cause the electron beam to sweep out a line segment. The
picture is then built up by tracing out a potentially large number of
line segments.

When the electron beam sweeps out a line, the phosphors coating
the inside of the screen fluoresce, but as the beam passes by the
intensity decays in a relatively short period of time. If a persistent
picture is to be maintained on the screen, the display processing
unit must repeatedly refresh the image by retracing all of the lines
making up the picture, typically at rates between 30 and 60 times
per second. The display processing unit must therefore buffer the
line segments in a memory known as a display list (see Figure 1.1).

Calligraphic displays became quite popular and were successfully
marketed by a company called Evans & Sutherland that Sutherland
co-founded after he graduated from MIT and started the computer
graphics laboratory at the University of Utah. Calligraphic displays
were followed by several other display technologies, but they did

1
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Fig. 1.1: Overview of a calligraphic display system

not have serious competition until the invention of the raster frame
buffer.

The raster frame buffer was developed in the early 1970’s by
Dick Shoup while working at the Xerox Palo Alto Research Center.
Instead of tracing out the image a line segment at a time, the frame
buffer directs the electron beam to trace out the image in a left-to-
right and top-to-bottom raster scan pattern, much like a standard
television set (see Figure 1.2). Each of the left-to-right traces is
known as a scan-line. As the beam traces along a scan-line, the
intensity of the beam is modulated based on the contents of a two-
dimensional array known as frame buffer memory. Each entry of the
frame buffer memory is associated with a spot, known as a picture
element or pixel, on the screen. In the simplest scheme, the frame
buffer memory consists of one bit per pixel; a pixel is illuminated
if and only if the corresponding bit in the frame buffer is set. By
allocating several bits per pixel, a grey scale image can be created
by arranging for the pixel intensity to be directly proportional to the
corresponding value stored in the frame buffer.

The fidelity, or resolution, of a frame buffer image is controlled
by the number of scan-lines, the number of pixels per scan-line, and
the number of bits per pixel. Frame buffers consisting of 1024×1024
pixels with 8 or 24 bits per pixel are now relatively common. A
1024×1024, 24 bit per pixel frame buffer is quite a consumer of
RAM, requiring a total of 3 megabytes of memory.

There are two styles of color frame buffers, color mapped and
full color. Pixels in a color mapped frame buffer are represented by
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Fig. 1.2: Overview of a frame buffer display system

Fig. 1.3: Schematic of a color mapped display system.
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an 8 to 12 bit color index. The color indices are turned into colors
using a lookup table called a color map, as indicated in Figure 1.3.
Referring to Figure 1.3, color index number 2, for example, is mapped
into the color green. To understand exactly what is stored in each
of the entries of the color map, we must look more closely at how
color video monitors operate. Whereas monochrome monitors accept
a single intensity signal or channel, a color video monitor requires
three channels: one for red, one for green, and one for blue. Each
color map entry i therefore stores three values to indicate the red,
green, and blue intensities to associate with color index i. Each
of the channel intensities is typically designated with 8 to 16 bit
integers. A color map for turning 8 bits per pixel values into three
8 bit intensity channels would require 28 ∗ 3 ∗ 1 = 768 bytes, and
would allow color images consisting of up to 256 colors chosen from
a pallete of 224 possible colors.

The creation of high-quality smooth shaded color images requires
many more than 256 colors. These images can only be accurately
displayed on a full color frame buffer where at least 24 bits per
pixel are available. Notice that color maps as described above would
be prohibitively expensive in that the color map would be much
larger than the frame buffer memory itself. Full color frame buffers
therefore essentially do away with the color map, treating the 24
bits stored at each pixel as being composed of three 8 bit quantities
indicating the intensities of each of the three color channels.

Higher quality full color frame buffers typically provide three
lookup tables, one for each of the three color channels, that can be
used to achieve certain special effects or to correct for non-linearities
in the display. A non-linearity that is always present in display
systems is caused by the behavior of the phosphors. The intensity
I of a phosphor is proportional to δγ , where δ is the number of
electrons striking the phosphor per unit time and γ is a constant
that depends on a number of factors including the type of phosphor
and the way it was deposited on the surface of the CRT. In a frame
buffer display system, δ is in turn proportional to the value associated
with a pixel, implying that the value of a pixel is non-linearly related
to the intensity of the spot. The non-linearities can be compensated
for by the lookup tables by storing at index i a value proportional

to i
1
γ . Working through the chain of proportionalities it is easy

to show that this ensures that the pixel value i is linearly related
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to the intensity. This process has come to be known as gamma
correction [5]. Since the value of γ must be known to initialize the
lookup tables, true gamma correction requires that the value of γ be
measured experimentally for each monitor.

Exercises

1. A spectraphotometer is a device that can accurately measure
the intensity of a source of illumination. Describe a procedure
for using a spectraphotometer to determine what values to
store in a full color frame buffer’s lookup tables to achieve
gamma corrected images.
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Chapter 2

Two-Dimensional Raster Algorithms

In this and subsequent chapters we will build up techniques for
creating color images of complex three-dimensional environments
using full color frame buffers. The basic problem to be addressed
may roughly be stated as:

Given: A mathematical description of a two or three-
dimensional “scene” and a viewing position.

Find: A value for each pixel in the frame buffer such
that the image on the screen is a reasonably accurate
picture of what an imaginary viewer would see.

There are, admittedly, a number of ill-defined terms in the above
statement, but each of these ideas will be made much more precise
as we go along.

The first step in our study of raster graphics is to develop
a variety of basic raster algorithms. The most primitive raster
operation is the drawing of a dot, i.e., setting a pixel to some
particular value. For the next several chapters we will consider only
the construction of monochrome images. We assume that pixels can
be set using a primitive operation:

fb writePixel( x, y : integer; c : Color)

where, for now, the legal values for c are assumed to be WHITE
or BLACK. The x and y parameters to fb writePixel() indicate (ie,
address) which pixel is to be modified. Unfortunately, addressing
conventions differ from frame buffer to frame buffer. For instance,

7
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Fig. 2.1: To scan-convert the line segment connecting (x1, y1) to
(x2, y2), the intermediate pixels must be identified and illuminated.
Grid lines denote pixel centers.

pixels on an X window display are addressed so that the upper left
corner of the screen corresponds to (x, y) = (0, 0), with x increasing
to the right and y increasing downward. Other devices adopt the
convention that (0, 0) is the lower left corner, with x increasing to
the right and y increasing upward. In this way each frame buffer
defines its own device coordinate system that associates (x, y) to pixel
locations. We say that x and y as above are device coordinates.

2.1. Scan-converting Line Segments

The process of painting or rendering a geometric entity such as a
point, line, or circle into a frame buffer is called scan-conversion.
Above we assumed that the scan-conversion of points was imple-
mented by the primitive operation fb writePixel(). In this section
we examine the scan-conversion of the simplest non-trivial geomet-
ric entity, the line segment. Specifically, we consider the following
problem:

Given: Two pixel locations (x1, y1) and (x2, y2) in device
coordinates.

Find: The intermediate pixels to illuminate to represent
the line segment connecting (x1, y1) to (x2, y2) as indi-
cated in Figure 2.1.

We will solve this problem by beginning with a more or less
obvious method, then refine the method until we derive an algorithm
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that strikes a sensible balance between speed, accuracy, and ease
of implementation. In the remainder of this section, we assume
that device coordinates are such that x increases to the right and
y increases upward.

We should first lay down a set of properties we would like our
solutions to possess. Although some of the following properties
seem obvious enough to ignore, we shall see apparently acceptable
algorithms that fail to possess them.

Properties:
1. Lines should appear as straight as possible.

2. Lines should terminate exactly at (x1, y1) and (x2, y2).

3. Lines should have relatively constant intensities.

4. The intensity of a line should be independent of slope.

5. The algorithm should be relatively efficient since line drawing
is in the inner loop of many applications.

2.1.1. The Line Equation Algorithm The first algorithm for
scan-converting the line segment (x1, y1), (x2, y2) might be called the
“Line Equation Algorithm” since it is based on the familiar equation
y = mx + b for lines, where m is the slope and b is the y intercept.
Figure 2.2 presents a pseudo-code statement of the algorithm.

Although this algorithm is intuitive, it fails to possess several of
the properties listed above. Notice that only one pixel is illuminated
in each pixel column. This means that if L1 and L2 are two line
segments of equal length emanating from (x1, y1), with the slope of
L1 greater than the slope of L2, then fewer pixels will be illuminated
for L1 than for L2. This violates property 4 since it implies that the
perceived intensity of the scan-converted line depends on the slope.
Passing to the limit of infinite slope (i.e., a vertical line) we discover
a more serious problem with the algorithm: it causes an arithmetic
exception (a stoic term for “crashes”) when it attempts to divide by
(x2 − x1), which is, of course, zero for vertical lines.

2.1.2. The Digital Differential Analyzer The problems en-
countered with the Line Equation Algorithm can be partially reme-
died by noting that there is a symmetry in the problem that is not
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LineEquationAlgorithm( x1, y1, x2, y2 : integer; c : Color)
begin

m,b: real;
x,dx: integer;

m := (y2-y1)/(x2-x1);
b := y1-m*x1;
if (x2 - x1) > 0 then

dx := 1.0;
else

dx := -1.0;
endif;

for x := x1 to x2 step dx do
y := m*x + b;
fb writePixel( x, Round(y), c);

endfor;
end

Fig. 2.2: A straightforward line drawing algorithm based on the
line equation y = mx + b.
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reflected in the algorithm. In the original problem statement for
scan-converting lines, the x and y coordinates play completely sym-
metric roles, whereas the Line Equation Algorithm breaks this sym-
metry by always computing y as a function of x. The algorithm can
therefore be improved by modifying it to interchange the roles of x
and y if |y2−y1| > |x2−x1|. The algorithm can be further improved
to reduce the number of floating point computations required in the
inner loop. The key is to exploit the fact that the y value yi+1 needed
for the i+1st iteration can be computed incrementally from yi. The
relation

xi+1 = xi + 1,

implies that

yi+1 = m(xi + 1) + b = yi + m,

and therefore yi+1 can be computed from yi with a single addition.
By replacing the statement y := m*x + b with y := y + m,
the multiplication is avoided in the inner loop. With these two
improvements, symmetrization and incremental calculation, we have
essentially derived an algorithm known as the Digital Differential
Analyzer (for reasons that have nearly been lost to the mists of
time...), or DDA for short. A pseudo-code statement of the DDA
algorithm is shown in Figure 2.3.

2.2. Bresenham’s Algorithm

There is a final improvement that we shall consider: the removal
of all floating point computations to arrive at an entirely integer
algorithm. The algorithm we now present was originally due to
Jack Bresenham [3], although we have chosen to use the alternate
derivation from Foley et al [11], which in turn is due to Pitteway [15].
(Historical aside: Bresenham originally devised the algorithm for
drawing lines with pen-plotters, not frame buffers.)

As indicated above, Bresenham’s algorithm will only require
integer arithmetic. In fact, the only arithmetic operations required
are integer addition, subtraction, and bitwise shifting. In what
follows we make the simplifying assumption that 0 < y2 − y1 ≤
x2 − x1, i.e., that the slope of the line is between 0 and 1. The
relaxation of this assumption is the subject of one of the exercises at
the end of this chapter.

Bresenham’s algorithm iterates over the pixel columns between
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DDA( x1, y1, x2, y2: integer; c: Color)
begin

length, dx, dy, i: integer;
x, y, xincr, yincr: real;

dx := x2 - x1;
dy := y2 - y1;
length := max( |dx|, |dy|);

{ Either xincr or yincr has magnitude 1. }
xincr := dx/length;
yincr := dy/length;

x := x1; y := y1;
for i := 1 to length+1 do

fb writePixel( Round(x), Round(y), c);
x:= x + xincr;
y:= y + yincr;

endfor;
end

Fig. 2.3: The Digital Differential Analyzer (DDA) scan-conversion
algorithm
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Fig. 2.4: The situation at an intermediate step of Bresenham’s
algorithm.

x1 and x2, inclusive; on each iteration the pixel closest to the true
line is chosen. Let Pi−1 with coordinates (xi−1, yi−1) denote the
pixel selected on the i-1st iteration of the algorithm. Referring to
Figure 2.4, on the ith iteration the algorithm must choose between
the pixels Ei and NEi (these are the only two possibilities since the
slope is restricted to be between 0 and 1). The algorithm will make
the choice based on the value of an incrementally computed decision
variable. To derive the decision variable it is convenient to express
the line in implicit form; that is, as

F (x, y) = Ax + By + C = 0. (2.1)

The coefficients A, B, and C in the implicit form can be readily
computed from the line equation

y =
∆y

∆x
x + b (2.2)

where

∆x = x2 − x1

∆y = y2 − y1

b = y1 −
∆y

∆x
x1,

by multiplying Equation 2.2 through by 2∆x to find that

F (x, y) = 2∆y︸︷︷︸
A

x + (−2∆x)
︸ ︷︷ ︸

B

y + 2∆xb︸ ︷︷ ︸
C

= 0. (2.3)
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The justification for multiplying by 2∆x instead of ∆x will become
apparent shortly. From Equation 2.3 we observe that

1. If F (x, y) < 0, the point (x, y) is above the line.

2. If F (x, y) > 0, the point (x, y) is below the line.

3. A, B, and C are integers.

Observations 1 and 2 imply that if Mi denotes the midpoint
between Ei and NEi, and if F (Mi) < 0, then Pi := Ei (that is, Ei

should be chosen on the ith iteration); otherwise, Pi := NEi. (Think
about what should be done if F (Mi) = 0.)

The number di = F (Mi) is the decision variable we were seeking.
The convenient aspect of this particular choice of the decision
variable is that it can be computed incrementally using only integer
arithmetic. If Ei is chosen on the ith iteration, then

di+1 = F (xi−1 + 2, yi−1 +
1

2
)

= di + A,

and if NEi is chosen on the ith iteration, a similar analysis shows
that

di+1 = di + A + B.

About the only remaining detail is to discover how to initialize the
decision variable. It is not difficult to show that

d1 = A +
B

2
.

The seemingly extraneous factor of two that was introduced into the
definitions of A, B, and C was chosen precisely so that d1 would be
an integer. A pseudo-code statement of the complete algorithm is
given in Figure 2.5.

2.3. The Device Abstract Data Type

We will eventually be developing relatively sophisticated application
programs that read in geometric data, process them in various ways,
and finally scan-convert them to create an image. As our formalism
currently stands, application programs must know the specifics of the
device coordinate systems for each of the devices they are to output
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Bresenham( x1, y1, x2, y2 : integer; c : Color)
{ Draw the line segment from (x1,y1) to (x2,y2) assuming that the }
{ slope of the line is between 0 and 1 }
begin

d, dx, dy, x, y : integer;
incrE : integer; { Amount to add when E chosen }
incrNE : integer; { Amount to add when NE chosen }

{ Compute loop invariant quantities }
dx := x2 - x1;
dy := y2 - y1;
incrE := dy << 1; { << 1 means left shift by 1 bit }

{ Initialize incremental quantities }
d := incrE - dx;
incrNE := d - dx;
x := x1; y := y1;
fb writePixel( x, y, c);

{ Scan-convert the line segment }
while (x < x2) do

x := x + 1;
if (d < 0) then

{ Choose E }
d := d + incrE;

else
{ Choose NE }
d := d + incrNE;
y := y + 1;

endif
fb writePixel( x, y, c);

endwhile;
end;

Fig. 2.5: Bresenham’s algorithm for scan-converting lines whose
slope is between 0 and 1.
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to. Software engineering practices suggest that this information
should be encapsulated to define an abstract data type (ADT) that
models an idealized display device. The definition of the device
ADT should abstract out as many of the details of specific devices
as possible. Abstraction of detail is, however, in tension with the
desire to take advantage of special hardware features of many modern
frame buffers. For example, some graphics display systems currently
provide hardware support for bit blit, the rapid copying of blocks of
pixel values to and from the frame buffer memory. The designer of
a portable device ADT may therefore be faced with difficult choices
when deciding which high level operations to include and which to
exclude.

In this section we will define a very simple idealized device and
its corresponding ADT. Our primary goal is to abstract out details
of device coordinate systems and color resolutions. Our idealized
device will accept coordinates in an idealized coordinate system
commonly known as normalized device coordinates. Normalized
device coordinates, or NDC for short, are defined as shown in
Figure 2.6. Normalized device coordinates are defined to closely
match to sorts of coordinate systems typically encountered in
analytic geometry. Points are addressed in NDC by specifying a
pair of real-valued coordinates (x, y). The origin is defined to be in
the lower left corner, with the x axis pointing to the right and the
y axis pointing upward. The visible portion of the NDC plane is
defined to be the unit square [0, 1] × [0, 1]; points lying outside the
unit NDC square will not appear in the image. By using real rather
than integers coordinates we have abstracted out the horizontal and
vertical pixel resolutions of physical frame buffers. For the time
being, we will assume that colors are selected from an enumerated
type, containing at least the values WHITE and BLACK as before.
A more sophisticated ADT for colors will be developed in Chapter 8.

As part of the definition of the idealized device, we also demand
that the image of the NDC square actually appears as a square
on whatever physical screen is being used. This is not as easy to
accomplish as it sounds. Many physical frame buffers generate non-
square pixels, meaning that the number of pixels covered by the NDC
square must differ in the horizontal and vertical directions. We will
revisit this issue later in this section.
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Fig. 2.6: Normalized device coordinates

Operations on the idealized device include:1

• DeviceDrawDot( x, y : real; c : Color)
Draw a dot at the point (x, y) in the color specific by c.

• DeviceDrawLine( x1, y1, x2, y2: real; c : Color)
Draw a line from (x1, y2) to (x2, y2) in the color specified by c.

• DeviceDrawText( x, y : real; str : string; c : Color)
Draw the string str starting at the point (x, y). (A more
sophisticated device ADT would include control over the size
and perhaps the font the string is to be drawn in.)

An implementation of device ADT is a body of software, gener-
ally called a device driver, that maps the abstractions of the idealized
device onto a concrete frame buffer. The device driver therefore en-
capsulates all device dependent information, making it easy to port
applications from one device to another.

One of the principal responsibilities of a device driver is to trans-
form normalized device coordinates (nx, ny) into device coordinates
(dx, dy) appropriate for the frame buffer at hand. A pair of transfor-
mations ToDevx : nx &→ dx and ToDevy : ny &→ dy that operate on
x and y coordinates, respectively, can be used for this purpose. As
a specific example of the development of such coordinate transfor-
mations, suppose the device coordinates are as shown in Figure 2.7,

1All coordinates are specified in NDC.
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Fig. 2.7: A typical physical device coordinate system.

where the lower left corner of the screen corresponds to (0, 0), the
lower right corner to (XRES , 0), the upper left corner to (0, YRES),
and the upper right corner to (XRES , YRES). The integers XRES

and YRES refer to number of pixels on the screen in the horizontal
and vertical directions. Suppose further that the physical screen is
wider than it is tall (a ratio of 4 to 3 is common, but by no means
universal).

We shall construct the transformations ToDevx() and ToDevy()
so that the image of the NDC unit square will overlay the largest
central square portion of the screen, as indicated in Figure 2.8.
Denote by x0 and x1 the x device coordinates of the left and right
edges of the image of the NDC unit square. In practice these numbers
must be determined by physically measuring the screen (who says
computer science isn’t a physical science?). The function ToDevx()
is therefore subject to two constraints:

1. ToDevx(0) = x0.

2. ToDevx(1) = x1.

If ToDevx() is chosen to be a linear function, it is completely
determined by these two conditions:

ToDevx(nx) = (1 − nx) x0 + nx x1. (2.4)

A similar process for ToDevy() shows that

ToDevy(ny) = ny YRES . (2.5)
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Fig. 2.8: The NDC square is mapped to the largest central square
on the physical screen.

Given procedures to compute ToDevx() and ToDevy(), an imple-
mentation of DeviceDrawLine() could simply transform x1, y1, x2, y2

to device coordinates, then use Bresenham’s algorithm to scan-
convert the line.

2.4. The Simple Graphics Package

In this section we begin the development of a layer of graphics
software designed to provide convenient, general facilities to higher
level application programs. We shall refer to this set of routines as
the Simple Graphics Package, or SGP. SGP will serve as a mediator
between the device ADT on the low-level side, and the application
program on the high-level side. To motivate the initial development
of SGP, in the next several sections we consider the construction
of a simple two-dimensional data plotting program. A good deal
of the rest of the text is devoted to extending SGP to handle the
specification and viewing of three-dimensional smooth shaded color
images.

2.4.1. Two-Dimensional Windowing and Viewporting
Consider a program that reads in two dimensional data points and
creates images such as the one shown in Figure 2.9 that plots yearly
rainfall (in feet for Seattle, in inches for California). In this example
the independent variable is the year and the dependent variable is
the rainfall. Since the data points lie outside the unit square, we
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Fig. 2.9: A sample plot.

must first transform them to points in the unit square before using
routines such as DeviceDrawLine().

A conceptual framework for reasoning about what the transfor-
mation from data points to points in the unit square must satisfy is to
imagine the final plot as a view into the two-dimensional “world” in
which the data “lives”, as indicated in Figure 2.10. This data space,
more generically called world space, is an arbitrarily large continuous
plane upon which an abstraction of the image is imagined to exist. A
view into world space is established by specifying a correspondence
between a region of world space and a region of the NDC square.
To emphasize the fact that the world space and the NDC square are
conceptually distinct, the NDC square is imagined to be a portion of
a separate infinitely large continuous plane known as screen space.
Although one could envision more complicated schemes, one way to
establish a correspondence between world space and screen space is
to identify two rectangles, one in the world space, known as the win-
dow, and one in screen space, known as the viewport. Once these
rectangles have been identified, points in the interior of the window
can be mapped to the points interior to the viewport using a simple
linear transformation.

The application program can communicate the position of the
window and the viewport to SGP by having SGP export the following
two routines:

• SGPSetWindow( WINleft, WINright, WINtop, WINbottom)
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Fig. 2.10: The correspondence between world space and screen
space is established by mapping a rectangle in the world (the
window), into a rectangle in the screen (the viewport).
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• SGPSetViewPort( V Pleft, V Pright, V Ptop, V Pbottom)

The arguments to these routines specify the left, right, top and bot-
tom extents of the window and viewport, respectively. The param-
eters to SGPSetWindow() correspond to coordinates in the world
space, whereas the parameters to SGPSetViewPort() correspond to
coordinates in screen space. The calls necessary for establishing the
connection indicated in Figure 2.10 might be something like:

SGPSetWindow( 85, 93, 4.5, -4.0)
SGPSetViewPort( 0.25, 0.75, 0.75, 0.25)

A point (wx, wy) in world space can be transformed into the
corresponding point (nx, ny) in screen space using a pair of linear
functions similar to ToDevx() and ToDevy(). Denoting these
functions by ToNDCx() and ToNDCy(), it is not difficult to show
that (nx, ny) = (ToNDCx(wx),ToNDCy(wy)) where

ToNDCx(wx) =
V Pright − V Pleft

WINright −WINleft
(wx −WINleft) + V Pleft

ToNDCy(wy) =
V Ptop − V Pbottom

WINtop −WINbottom
(wy −WINbottom) + V Pbottom

Having established the correspondence between the world and
screen spaces, SGP can take on the responsibility for automatically
transforming drawing requests to screen space, allowing the applica-
tion program to work more naturally in world coordinates. Specifi-
cally, SGP can export the routines

• SGPDrawDot( x, y : real; c : Color)
Draw a dot at the world space point (x, y).

• SGPDrawLine( x1, y1, x2, y2 : real; c : Color)
Draw the world space line segment from (x1, y1) to (x2, y2).

• SGPDrawText( x, y : real; str : string; c : Color)
Draw the string str starting at the world space point (x, y).

These routines are most simply implemented by transforming the
world space points into points in screen space by using ToNDCx()
and ToNDCy(), followed by calling the corresponding routine ex-
ported by the device ADT.
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program DataPlot;
begin

x1, y1, x2, y2 : real;

{ Set up the window and viewport }
SGPSetWindow( 85,92,0.0,4.5);
SGPSetViewPort(0.25,0.75,0.25,0.75);

{ Draw the axes }
SGPDrawLine( 87, 0.9, 87, 4.3);
SGPDrawLine( 86, 1.0, 92, 1.0);

{ Draw the graph }
read x1, y1;
while more input do

read x2, y2;
SGPDrawLine( x1, y1, x2, y2);
x1 := x2; y1 := y2;

endwhile;
end;

Fig. 2.11: The skeleton of a simple data plotting program based on
SGP.

Using the SGP routines, the application program shown in
Figure 2.11 could be used to generate (a simplified version of) the
plot of Figure 2.9. The flow of control is summarized in the diagram
of Figure 2.12 called the two-dimensional graphics pipeline.

To summarize, the device driver provides the abstraction of
the screen space (i.e., NDC coordinates), and SGP provides the
abstraction of world space. Application programs are therefore freed
from many of the irrelevant details of the coordinate transformations
required to correctly position the line segment on the screen.

2.5. Two-Dimensional Line Clipping

There are still a few details to deal with before leaving the two
dimensional version of SGP. Consider, for instance, how a request
such as
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Fig. 2.12: The two-dimensional graphics pipeline as typically
implemented in software.
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SGPDrawLine( 91, 3.0, 92, 10.0)2

should be dealt with. The usual action in such a case is to clip
the line segment to the interior of the window. That is, we wish
to trim away that part of the line segment that lies outside the
window, and process the remainder as before. We will examine
two line clipping algorithms in this section. The first is intended
as a software solution whereas the second is particularly suited to
a hardware implementation. A third line clipping algorithm, one
that is easily extended to the clipping of polygons in two and three
dimensions, is presented in Section 3.9.

2.5.1. Cohen-Sutherland Line Clipping Cohen and Suther-
land developed a particularly efficient method for clipping line seg-
ments that is based on a clever classification of the endpoints of the
segment. The Cohen-Sutherland algorithm is constructed to opti-
mize the common cases, occurring when the line segment is either
entirely within the window, or is entirely outside the window. The
classification is based on the observation that if both endpoints are,
say, above the window, then the entire line segment must be above
the window, and can therefore be trivially rejected. The same sit-
uation holds when the endpoints are both left, right, or below the
window. Each endpoint is therefore characterized by a four-bit vec-
tor, called an outcode, that indicates where the endpoint lies relative
to the infinitely extended edges of the window. The meaning of each
of the bits of an outcode is given in Figure 2.13. The outcodes effec-
tively divide the world space into nine regions arranged around the
window as shown in Figure 2.14

If P1 and P2 denote the endpoints of the line to be clipped, then
if the bitwise “anding” of the outcodes of P1 and P2 yields a non-zero
result, then either both points were left, right, above, or below the
window. In such a case the entire line segment must be outside the
window, meaning that the segment can be trivially rejected. This
is the situation for line segment 1 in Figure 2.15. Line segment 2
of Figure 2.15 is entirely within the window. This can be detected
by noting that both endpoints have the outcodes 0000 – such a line
segment is said to be trivially accepted.

The remaining line segments in Figure 2.15 can neither be

2Don’t laugh – in Seattle it could happen.
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Bit Number Meaning if Set
1 Point above window
2 Point below window
3 Point right of window
4 Point left of window

Fig. 2.13: Outcodes assigned to endpoints by the Cohen-Sutherland
algorithm.

Fig. 2.14: The outcodes partition the world space into nine regions
arranged around the window as shown above.
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Fig. 2.15: Various line segments.

trivially accepted nor trivially rejected. They must be processed
further by successively intersecting them with the infinitely extended
edges of the window. Line segment 3, for instance, is processed by
computing the point C where the segment intersects the left edge
of the window. If (xa, ya) and (xb, yb) denote the coordinates of the
endpoints A and B, respectively, then the coordinates (xc, yc) of C
are given simply by

xc = WINleft

yc =
(xb −WINleft)ya + (WINleft − xa)yb

xb − xa

The subsegment AC can be trivially rejected, leaving the subsegment
CB for further processing. Clipping CB to the lower edge of the
window allows the segment DB to be trivially rejected and the
remaining segment CD to be trivially accepted.

2.5.2. The Clipping Divider As indicated in Figure 2.12, in
software implementations of the graphics pipeline it is generally
advantageous to clip the segments in world coordinates rather than
postponing the clipping to NDC or device coordinates. The reason is
that by clipping as early as possible in the pipeline, potentially many
segments will be culled, thereby reducing the processing demands on
later stages.
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The situation is quite different when considering the mapping of
the graphics pipeline into hardware. In this case it is more convenient
to postpone the clipping phase so that it is done in device coordinates
so that integer rather than floating point arithmetic can be used. The
clipping divider [16] is an integer based divide and conquer method
for clipping line segments in device coordinates. The algorithm tests
the segment being processed for trivial accept and reject conditions.
If neither of these cases holds, the midpoint of the segment is
computed (requiring only shifts and adds), thereby breaking the
segment into two subsegments. Each subsegment is processed
recursively. The clipping divider can easily be implemented using
current VLSI technology, requiring only an integer ALU, a stack,
and some simple control logic.

2.6. Windowing and Viewporting Revisited

In preparation for the geometric discussions of the next chapter, let
us reexamine the transformation between normalized device coor-
dinates and Device Coordinates that was developed in Section 2.3.
This transformation, by Equations 2.4 and 2.5, can be written in
matrix form as

(dx dy) = (nx ny)

(
x1 − x0 0

0 YRES

)

+ (x0 y0).

A trickier form can be used to replace the addition with multiplica-
tion of slightly larger matrices:

(dx dy 1) = (nx ny 1)




x1 − x0 0 0

0 y1 − y0 0
x0 y0 1





︸ ︷︷ ︸
N

(2.6)

The transformation between world space and screen space can
similarly be characterized by the matrix equation

(nx ny 1) = (wx wy 1)




fx 0 0
0 fy 0
tx ty 1





︸ ︷︷ ︸
S

(2.7)
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where

fx =
V Pright − V Pleft

WINright −WINleft

fy =
V Ptop − V Pbottom

WINtop −WINbottom

tx = V Pleft − fxWINleft

ty = V Pbottom − fyWINbottom

Combining Equation 2.6 with Equation 2.7 we find that

(dx dy 1) = (wx wy 1)W (2.8)

where the matrix W is the product of S and N.
The somewhat mysterious appearance of the third component

of 1 in tuples such as (dx dy 1) and (nx ny 1), and the use of
3×3 matrices for two-dimensional transformations will be thoroughly
explained in the next chapter where we begin in earnest the
mathematical study of geometry and geometric calculations.

The symbol juggling above shows that the calculations required
to transform a point from world space into the corresponding
point in screen space represented in device coordinates can be
accomplished by building and multiplying a carefully chosen set of
matrices. For this reason computer graphics texts develop geometric
transformations from the point of view of matrix manipulations.
We call this a coordinate-based approach since the matrices describe
exactly how to combine the coordinates to achieve the (hopefully)
desired geometric effect.

While a coordinate-based approach has its merits, not the least
of which is a certain amount of familiarity, it also has some serious
drawbacks that will be identified in the next chapter. We shall
therefore pursue a coordinate-free treatment that emphasizes the
geometric meaning of an operation instead of the low-level coordinate
manipulations necessary to carry out its computation.

Exercises

1. Generalize Bresenham’s algorithm to accept as input an arbi-
trary line segment.
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2. Explain how to speed up Bresenham’s algorithm by roughly
a factor of two by exploiting a certain symmetry property
possessed by the algorithm.

3. Do the DDA algorithm and Bresenham’s algorithm produce
the same results? If so, prove it. If not, provide a counterex-
ample and characterize the ways in which the pixel patterns
differ.

4. The line segments created by Bresenham’s algorithm can
appear to be rather “jagged”. The jagged appearance of the
segment can be reduced if the frame buffer has more than one
bit per pixel used to create grey scale images. The idea is to
partially illuminate all the pixels “near” the line so that pixels
closer to the line are brighter. Develop and experiment with
such a variant of Bresenham’s algorithm, assuming a grey scale
frame buffer that allocates 2b bits per pixel.

5. There is a subtlety in the clipping divider method concerning
arithmetic precision. Exactly what precision arithmetic is
required by the algorithm? Why?



     

Chapter 3

Coordinate-free Geometric Programming I

3.1. Problems with the Coordinate-based Approach

Graphics programs written in a coordinate-based way use matrix
manipulations to express geometric operations. Unfortunately, a
given matrix computation can have many geometric interpretations;
the particular geometric interpretation is left to the imagination and
discipline of the programmer. As an example, the code fragment
shown in Figure 3.1 can be interpreted geometrically in at least three
ways: as a change of coordinates, as a transformation from the plane
onto itself, and as a transformation from one plane onto another (see
Figure 3.2). The interpretation as a change of coordinates leaves the
point unchanged geometrically, but changes the reference coordinate
system (Figure 3.2(a)). The interpretation as a transformation of the
plane onto itself moves the point, keeping the coordinate system fixed
(Figure 3.2(b)). Finally, the interpretation as a transformation from
one plane onto another involves two coordinate systems, one in the
domain, and one in the range (Figure 3.2(c)). It is the interpretation
as a transformation between planes that is appropriate for the matrix
multiplications of Equations 2.6 and 2.7.

A common response to this ambiguity is that it does not matter
which view is taken. Indeed, this is the response that most
students of computer graphics come to believe. Unfortunately, this
is not quite correct since it is possible to distinguish between the
interpretations. In particular, lengths and angles do not change
in the first interpretation, but they can in the second and third
interpretations.

Above it was argued that a matrix computation could have
many geometric interpretations. It is also the case that a matrix
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P ← ( p1 p2 ) ;

T ←
(

2 0
0 1

)

;

P′ ← P T;

Fig. 3.1: A typical matrix computation.

Fig. 3.2: Three interpretations of the code fragment of Figure 3.1.
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computation can have no geometric interpretation. Some errors
are allowed to creep in because there is no explicit representation
of coordinate systems or spaces. The programmer is expected to
maintain a clear idea of which coordinate system in which logical
space (e.g., world coordinates, normalized device coordinates in
screen space, etc.) each point is represented. As a consequence,
the burden of coordinate transformations must be borne directly by
the programmer. If extreme care is not taken, it is possible (and
in fact common) to perform geometrically meaningless operations
such as combining two points that reside in different spaces or are
represented relative to different coordinate systems.

We will address the problems of ambiguity and validity by
developing a coordinate-free geometric algebra (i.e., a collection of
geometric objects together with operations for combining them) that
promotes geometric reasoning rather than coordinate manipulations.
Associated with the algebra will be an ADT that implements the
abstractions provided by the algebra. The algebra and ADT are
constructed so that only geometrically meaningful operations are
possible. Moreover, all operations are geometrically unambiguous
and their interpretation is clearly reflected by the code.

Although the development of the algebra is done in a coordinate-
free way, the ADT must ultimately be implemented using coordi-
nates. It is therefore important for the implementor of the ADT
to understand how to translate geometric operations into coordi-
nate calculations. In an effort to clearly separate the coordinate-free
material from the coordinate-based material, the coordinate-based
sections have been marked with an asterisk.

3.2. Affine Spaces

Although the geometric ADT will present abstractions based on
Euclidean geometry, many of the geometric objects and operations
that find use in computer graphics and related fields such as
computer aided geometric design (CAGD) are founded in the more
general branch of mathematics known as affine geometry. We have
therefore chosen to develop the affine theory here, then specialize to
Euclidean geometry in Section 3.3.

There are many different approaches to affine geometry [8, 10,
23]. One approach, first put forth by Weyl [23] (a modern account of
which can be found in Dodson and Poston [8] and Flohr and Raith
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Fig. 3.3: Geometric interpretations of points and vectors.

[10]), makes a distinction between points and vectors, but does not
define operations for combining them. The method we shall adopt is
very similar to that used by Dodson and Poston. This development
of affine geometry builds on vector spaces, so a brief review of the
relevant parts of linear algebra is supplied in Appendix 3.10.

The most basic objects in the geometric algebra will be affine
spaces, which in turn consist of points and free vectors. Intuitively,
the only thing that distinguishes one point from another is its
position. In more computer-sciencey jargon, points only have a
position attribute. Free vectors on the other hand have the attributes
of magnitude and direction, but no fixed position; the modifier “free”
therefore refers to the ability of vectors to move about in the space.
Free vectors will henceforth be referred to simply as vectors.

Geometrically we draw points such as P and Q as dots, and we
draw vectors such as #v and #w as line segments with arrow heads (see
Figure 3.3). (To avoid confusion about which symbols are points and
which are vectors, we will conform to the convention that points will
be written in upper case and vectors will be written in lower case
and will be ornamented with a diacritical arrow.)

More formally, an affine space A is a pair (P,V) where P is the
set of points and V is the set of vectors. We shall use the notation
A.P and A.V to refer to the points and vectors of an affine space A.
The vectors of an affine space are assumed to form a vector space. If
n denotes the dimension of the vector space, then the affine space is
called an affine n-space. An affine 1-space is more commonly called
an affine line, and an affine 2-space is more commonly called an
affine plane.

The set of points and the vector space of an affine space A are
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Fig. 3.4: Addition of points and vectors.

related through the following axioms:
(i) Subtraction: There exists an operation of subtraction that

satisfies:

a. For every pair of points P,Q, there is a unique vector #v such
that #v = P −Q.

b. For every point Q and every vector #v, there is a unique
point P such that P −Q = #v.

(ii) The Head-to-Tail Axiom: Every triple of points P,Q and R,
satisfies

(P −Q) + (Q−R) = P −R.

Before describing in more detail what the axioms mean geomet-
rically, it is convenient to use the them to define the operation of
addition between points and vectors. Specifically, we define Q + #v
to be the unique point P such that P − Q = #v. The geometric
interpretation of addition is shown in Figure 3.4.
In terms of the addition operation, axiom (ia) essentially states that
there are no “points at infinity”, and axiom (ib) guarantees that
there are no “holes” in the space; together these ensure that if point
Q is fixed, then there is a one-to-one correspondence between vectors
(#v) and points (Q + #v). The vector connecting the points Q and P
can therefore be labeled as P −Q, as shown in Figure 3.5.

The geometric interpretation of axiom (ii), shown in Figure 3.6,
indicates that the axiom is actually a statement of the familiar “head-
to-tail rule” for vector addition, stated in terms of points rather
than vectors. (Recall from elementary vector analysis that the vector
addition #v+ #w can be constructed geometrically by aligning the head
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Fig. 3.5: Subtraction of points.

Fig. 3.6: The head-to-tail axiom.

of #v with the tail of #w. The sum is then the vector from the tail of
#v to the head of #w.)

Example 1. Examples of affine spaces abound. For instance, if
you believe that time is infinite, then the time line is an example
of a (one-dimensional) affine space. The points of the affine space
correspond to dates, and the vectors of the affine space correspond to
numbers of days. A date (a point) minus another date is a number of
days (a vector). Thus, subtraction of points makes sense as a vector.
The other axioms can also be shown to hold.

The theory of polynomials can be used as the source of another
example of an affine space. Let the set of vectors be the set
of homogeneous cubic polynomials (a polynomial is said to be
homogeneous if its constant coefficient is zero). The set of points
can then be taken to be the set of cubic polynomials whose constant
term is 1. It is a simple matter to show that the axioms hold when
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standard polynomial addition and subtraction are used to add points
to vectors and to subtract points. The dimension of this affine space
is 3 since that is the dimension of the space of homogeneous cubic
polynomials.

Several simple deductions can be made from the head-to-tail
axiom. By setting Q = R, we find that (P −Q) + (Q−Q) = P −Q,
which implies that Q − Q must be the zero vector #0 since adding
it to P − Q results in P − Q. By setting P = R, we see that
(R − Q) + (Q − R) = #0, implying that R − Q = −(Q − R). These
facts, along with several others, are summarized in the following
claim.

Claim 1. The following identities hold for all points P , Q and
R, and all vectors #v and #w.
(a) Q−Q = #0.

(b) R−Q = −(Q−R).

(c) #v + (Q−R) = (Q + #v) −R.

(d) Q− (R + #v) = (Q−R) − #v.

(e) P = Q + (P −Q).

(f) (Q + #v) − (R + #w) = (Q−R) + (#v − #w).

Proof: Parts (a) and (b) were proved above. To prove (c), let point
P be defined by #v = P −Q. The head-to-tail axiom then says that
#v + (Q−R) = P −R. The proof is completed by substituting Q+#v
for P . Part (d) follows immediately from (c) by multiplying through
by −1. To prove (e), use the definition of addition together with the
head-to-tail axiom to write P in the form P = R+(P−Q)+(Q−R).
Now, taking Q = R we find that P = Q+(P−Q)+#0, which completes
the proof since adding the zero vector to the right side has no affect.

The proof of (f) is somewhat more difficult as it requires the two
invocations of the head-to-tail axiom together with the use of parts
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(a), (c) and (d):

(Q + #v) − (R +#w)
= [(Q + #v) −R] + [R− (R + #w)] by head-to-tail axiom
= [(Q + #v) −R] + [(R−R) − #w] by part (d)
= [(Q + #v) −R] − #w by part (a)
= [(Q + #v) −Q] + [Q−R] − #w by head-to-tail axiom
= [#v + (Q−Q)] + [Q−R] − #w by part (c)
= (Q−R) + (#v − #w) by part (a)

!

Thus far, the objects in the algebra are space, point, vector, and
scalar, and the operations are

vector + vector &→ vector

scalar ∗ vector &→ vector

point − point &→ vector

point + vector &→ point.

For each object in the algebra there should be a corresponding
data type in the ADT, and for each operation in the algebra there
should be a corresponding procedure. We shall refer to the data
types as Space, Point, Vector, and Scalar. The Vector and Point
types can be tagged with the space in which they reside, making
possible a wide range of geometric type checking. The procedures of
the ADT thus far can be summarized as:

• Space ← SCreate( name:string, dim:integer)
Return an affine space of dimension dim. The name of the
space is used for debugging purposes. Any number of spaces
can be dynamically created.

• Vector ← VVAdd( v, w : Vector)
Return the vector sum of v and w. An error is signaled if v
and w reside in different spaces.

• Vector ← SVMult( s : Scalar; v : Vector)
Return the vector v scaled by s.

• Vector ← PPDiff( p1, p2 : Point)
Return the vector p1-p2. An error is signaled if p1 and p2
reside in different spaces.
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Fig. 3.7: Geometric interpretation of Equation 3.1.

• Point ← PVAdd( p : Point; v : Vector)
Return the point p+v. An error is signaled if p and v reside
in different spaces.

These routines are obviously not sufficient by themselves. In
particular, there is currently no routines for creating Points and
Vectors. These creation routines, PCreate() and VCreate(), are
discussed in Section 3.4.

Notice the asymmetry in the way points and vectors are handled
in the algebra. In particular, notice that it is possible to add vectors,
but addition of points is not defined. Similarly, the process of
multiplying a point by a scalar is undefined. The asymmetry should
not be too surprising since points and vectors are being used in very
different ways. In some respects the points are the primary objects
of the geometry, whereas the role of the vectors is to allow movement
from point to point by employing the operation of addition between
points and vectors. In Section 3.4, we will see that the vectors are
also used to introduce coordinates.

Although the addition of points may be forbidden, there are other
convenient operations that can be defined. For instance, consider the
expression

Q = Q1 + α(Q2 −Q1), (3.1)

where Q1, Q2 are points and α is a scalar. This expression is
meaningful in the context of our algebra because Q2 − Q1 is
meaningful as a vector, implying that α(Q2 −Q1) is meaningful as a
vector, implying that Q is meaningful as a point since it is the result
of adding a point and a vector. Geometrically this means that point
Q is one αth along the way from the point Q1 to the point Q2, as
shown in Figure 3.7.
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If we forget for a moment that we are dealing with points,
vectors, and scalars, we might be tempted to algebraically rearrange
Equation 3.1 into the form

Q = (1 − α)Q1 + αQ2,

or perhaps in the more symmetric form

Q = α1Q1 + α2Q2, α1 + α2 = 1. (3.2)

This equation looks a bit odd since it appears that we are multiplying
points by scalars (an undefined operation), then adding the result
together (also undefined). We can formally get out of this bind by
making a new definition.

Definition 3.2.1. The expression

α1Q1 + α2Q2, (3.3)

where α1 + α2 = 1 is defined to be the point

Q1 + α2(Q2 −Q1).

An expression such as Equation 3.3 is called an affine combina-
tion. Affine combinations possess simple geometric interpretations.
In particular, Equation 3.3 states that the point Q lies on the line
segment Q1, Q2 so as to break the segment into relative distances
α2 : α1, as shown in Figure 3.8. Conversely, if a point Q is known
to break a line segment Q1, Q2 into relative ratios a : b, then Q can
be expressed as

Q =
bQ1 + aQ2

a + b
,

where for the sake of generality we have not assumed that a and b
sum to one.

Affine combinations are supported in the ADT by the routine:

• Point ← PPac( P, Q : Point; a, b : Scalar)
The Point

a P + b Q.

is returned.
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Fig. 3.8: Point Q breaks Q1Q2 into relative ratios α2 : α1.

The notion of an affine combination can be generalized to allow
the combination of an arbitrary number of points. If Q1, ..., Qk are
points and α1, ..., αk are real numbers that sum to unity, then

α1Q1 + α2Q2 + α3Q3 + · · · + αkQk

is defined to be the point

Q1 + α2(Q2 −Q1) + α3(Q3 −Q1) + · · · + αk(Qk −Q1). (3.4)

The definition of affine combinations using Equation 3.4 is
somewhat unnatural, as it treats Q1 differently than the other points.
It is therefore possible that the point obtained from Equation 3.4
might be different if the roles of Q1, and say, Q2 were switched.
Fortunately, this is not the case – the definition is independent of
which point is used in place of Q1. The proof of this independence
is the subject of Exercise 3.
Remark: As an aside of interest to the purist, we mention
another approach to affine geometry. An affine space can be defined
as a set S that is closed under affine combinations. The points
of the affine space are the elements of S; the vectors are then
defined to be equivalence classes of ordered pairs of points. The
equivalence relation is constructed to build in the head-to-tail axiom.
In particular, two pairs of points (Q1, P1) and (Q2, P2) are said to
be equivalent if

Q1 + P2

2
=

Q2 + P1

2
.

This condition has the geometric interpretation that Q1P1P2Q2 must
form a parallelogram, as shown in Figure 3.9. It is not too hard to
show that this condition is an equivalence relation on the ordered
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Fig. 3.9: Points Q1P1P2Q2 forming a parallelogram.

pairs of points, implying that the set of all ordered pairs of points are
partitioned into equivalence classes. If [Q,P ] denotes the equivalence
class containing the pair (Q,P ), then the set of all equivalence classes
form a vector space, with scalar multiplication and addition defined
as:

α[Q,P ] = [Q, (1 − α)Q + αP ], α ∈ * (3.5)

[Q1, P1] + [Q2, P2] = [Q1, P1 + P2 −Q2]. (3.6)

The elements of the vector space thus formed are the vectors of the
affine space. !

3.3. Euclidean Geometry

In affine geometry metric concepts such as absolute length, distance,
and angles are not defined. This is demonstrated by the fact that up
to this point we have not used these concepts in the development of
affine geometry. However, in graphics and computer aided design, it
is often necessary to represent metric information, for without this
information it is not possible to define right angles or to distinguish
circles from ellipses.

When metric information is added to an affine space, the result
is the familiar concept of a Euclidean space. In other words,
a Euclidean space is a special case of an affine space in which
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it is possible to measure absolute distances, lengths, and angles.
Consequently, all results obtained for affine spaces also hold in
Euclidean spaces. As simple examples, every triple of points in a
Euclidean space obey the head-to-tail axiom, and the points of a
Euclidean space are closed under affine combinations

3.3.1. The Inner Product In keeping with our algebraic ap-
proach to geometry, we shall incorporate metric knowledge by in-
troducing a new algebraic entity called an inner product. An inner
product for an affine space A is a function that maps a pair of vectors
in A.V into the reals. Rather than using a notation such as f(#u,#v)
to denote an inner product, we use the more familiar form 〈#u,#v〉.
Such a bi-variate function must possess the following properties to
achieve the status of an inner product:
(i) Symmetry: For every pair of vectors #u,#v, 〈#u,#v〉 = 〈#v, #u〉.

(ii) Bi-linearity: For every α, β ∈ * and for every #u,#v, #w ∈ A.V,

• 〈α#u + β#v, #w〉 = α〈#u, #w〉 + β〈#v, #w〉.
• 〈#u, α#v + β #w〉 = α〈#u,#v〉 + β〈#u, #w〉.

(iii) Positive Definiteness: For every #v ∈ A.V, 〈#v,#v〉 > 0 if #v is not
the zero vector, and 〈#0, #0〉 = 0.

A Euclidean space E can now be defined as an affine space
together with a distinguished inner product; that is, E = (A, 〈,〉).
To comform more closely with standard practice, the inner product
associated with a particular Euclidean space will generally be
denoted by ·, and will generally be referred to as the dot product.
Thus, we write u · v to stand for 〈u, v〉.

The dot product is used to define length, distance, and angles as
follows:

• The length of a vector:

|#v| :=
√
#v · #v.

• The distance between two points:

Dist(P,Q) := |P −Q| .

• The angle between two vectors:

Angle(#v, #w) := cos−1
(
#v · #w
|#v| |#w|

)
.
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Associated with every non-zero vector #v is a unique vector v̂
having unit length that points in the same direction as #v. The vectors
#v and v̂ are, of course, related by

v̂ :=
#v

|#v| .

The definition of angles allows us to define the notion of
perpendicularity or orthogonality. In particular, two vectors #v and
#w are said to be perpendicular (or orthogonal) if #v · #w = 0. We can
also define the vectors to be parallel if v̂ · ŵ = 1, and anti-parallel if
v̂ · ŵ = −1.

In the important special case of Euclidean 3-spaces, it is con-
venient to define another operation on vectors, namely the cross
product. Given a pair of vectors #v and #w from a Euclidean 3-space,
we define × by the equation

#v × #w = |#v| |#w| sin θn̂,

where θ is the angle between the vectors and n̂ is the unique unit
vector that is perpendicular to #v and #w such that #v, #w and n̂ satisfy
the “right hand rule.”

Since Euclidean spaces are so useful in practical applications,
we have found it convenient to make the convention that the Space
datatype actually represents a Euclidean space. That is, in the code
fragment

Space Screen;
World := SCreate( “World”, 3);

the variable World is a Euclidean space, meaning that it comes pre-
equipped with an inner product. Thus, if v and w are Vectors in
World, then VVDot(v,w) returns v·w. Also defined is a routine
VVCross(v,w) that returns v×w.

3.4. Frames

To perform numerical computations and to facilitate the creation
of geometric entities, we must understand how affine spaces are
coordinatized. In this section, we give two methods for imposing
coordinates on affine spaces: frames and simplexes. Each method
has its advantages, but we have chosen to use frames in the ADT
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since they are more familiar to those used to traditional approaches
to geometric programming.

Let A = (P,V) be an affine n-space, let O be any point, and let
#v1, · · · , #vn be any basis for A.V. We call the column tuple

(#v1, · · · , #vn,O)T =





#v1
...
#vn
O





a frame for A. Frames play the same role in affine geometry that
bases play in vector spaces. The role of frames is more precisely
indicated by the next claim.

Claim 2. If F = (#v1, ..., #vn,O)T is a frame for some affine n-
space, then every vector #u can be written uniquely as

#u = u1#v1 + u2#v2 + · · · + un#vn, (3.7)

and every point P can be written uniquely as

P = p1#v1 + p2#v2 + · · · + pn#vn + O. (3.8)

The sets of scalars (u1, u2, ..., un) and (p1, p2, ..., pn) are called the
affine coordinates of #u and P relative to F .

Proof: The unique representation of #u follows from the fact that
(#v1, ..., #vn) forms a basis for A.V. From the definition of addition
between points and vectors, there is a unique vector #w such that

P = #w + O.

Since (#v1, ..., #vn) is a basis for A.V, #w has a unique representation

#w = p1#v1 + p2#v2 + · · · + pn#vn.

Thus, P can be expressed uniquely as

P = p1#v1 + p2#v2 + · · · + pn#vn + O. !

The notions of unit vectors and orthogonality allow the identifi-
cation of an important kind of frame for Euclidean spaces. A frame
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(#e1, ...#en,O)T is said to be a Cartesian frame if the basis vectors are
ortho-normal; that is, if the basis vectors satisfy

#ei · #ej =

{
1 if i = j;
0 otherwise

Support for frames can be added to the ADT by introducing a
new Frame data type, together with the routines:

• Frame ← FCreate( name : string; O : Point; v1,...,vk : Vector)
Returned is a new frame whose origin is O and whose basis
vectors are v1,...,vk. An error is signaled if (a) the points and
vectors do not reside in a common space, or (b) if the vectors
do not form a basis. The name field is intended to be used for
debugging purposes.

• Point ← PCreate( f : Frame; c1,...,ck : Scalar)
Denoting the origin of f as f.org and the basis vectors as
f.v1,...,f.vk, the Point

f.org + c1 * f.v1 + · · · + ck * f.vk

is returned.

• Vector ← VCreate( f : Frame; c1,...,ck : Scalar)
The Vector

c1 * f.v1 + · · · + ck * f.vk

is returned.

• (c1,...,ck : Scalar) ← PCoords( p : Point; f : Frame)
Return the coordinates of p relative to f. An error is signaled
if p and f do not reside in a common Space.

• (c1,...,ck : Scalar) ← VCoords( v : Vector; f : Frame)
Return the coordinates of v relative to f. An error is signaled
if v and f do not reside in a common Space.

• Point ← FOrg( f : Frame)
Return the origin of the frame f.

• Vector ← Fv( f : Frame; i : integer)
Return the i-th basis vector of f (numbered starting at one).
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There is still a sort of chicken and egg problem with the creation
of Points and Vectors in the ADT. Points and Vectors can be created
if one has access to a Frame, but to create Frames one must have
access to a Point and a collection of Vectors forming a basis. This
apparent circularity can be broken by making the convention that
when a Space is created with SCreate(), it comes pre-equipped with
a Frame known as the “standard frame.” If S is a Space, its standard
frame can be accessed as StdFrame(S).

Example 2. Consider the code fragment shown in Figure 3.10(a),
the geometric interpretation of which is shown in Figure 3.10(b).
Although the example is somewhat contrived, it does serve to
illustrate a number of important points:

1. The Frame f2 is not Cartesian.

2. Although P and Q are created with respect to different Frames,
the system is able to determine that f1 and f2 span the same
space, and hence P and Q reside in the same space. It therefore
makes geometric sense to construct the midpoint M of the line
segment PQ. The system is responsible for the bookkeeping
required to construct a valid representation for M.

3. Since M is known to reside in S, its coordinates relative to any
Frame for S can be extracted. The first print statement will
produce (1.25, 1.0), and the second print statment will produce
(−1.5, 1).

Equation 3.8 can be written in a more symmetric form as an
affine combination of n+1 points. Let Qi = O+#vi for i = 1, ..., n, set
Q0 equal to O, and let p0 = 1−(p1+· · ·+pn). With these definitions,
simple rearrangement allows Equation 3.8 to be rewritten as

P = p0Q0 + p1Q1 + · · · + pnQn, (3.9)

where, by construction, p0 + p1 + · · · + pn = 1. Since every point
can be written uniquely in the form of Equation 3.8, every point can
also be written uniquely in the form of 3.9. In this form, the scalars
(p0, ..., pn) are called the barycentric coordinates of P relative to the
n-simplex Q0, ..., Qn. An n-simplex is a collection of n+1 points such
that none of the points can be expressed as an affine combination
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S : Space;
f1, f2 : Frame;
P, Q, M : Point;

S := SCreate( ”Screen”, 2);
f1 := StdFrame(S);
f2 := FCreate( PCreate(f1,1.5,0.5), VCreate(f1,0.5,0), VCreate(f1,0.5,0.5));

{ Create P relative to f1 }
P := PCreate( f1, 0.5, 1.0);

{ Create Q relative to f2 }
Q := PCreate( f2, 0, 1.0);

{ Compute the midpoint M }
M := PPac( P, Q, 0.5, 0.5);

{ Extract coordinates of M relative to f1 and f2 }
print( PCoords( M, f1)); print( PCoords( M, f2));

(a)

(b)
Fig. 3.10: A code fragment and its geometric interpretation.
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of the others. Thus, a 1-simplex is a line segment, a 2-simplex is a
triangle, a 3-simplex is a tetrahedron, and so forth.

Vectors can also be represented in barycentric form as follows.
By letting u0 = −(u1 + · · · + un), Equation 3.7 can be rewritten as

#u = u0Q0 + u1Q1 + · · · + unQn,

where, by construction, u0 + u1 + · · · + un = 0.
Simplexes and barycentric coordinates therefore offer an alter-

nate method of introducing coordinates into an affine space. If the
coordinates sum to one, they represent a point; if the coordinates
sum to zero, they represent a vector. The notion of barycentric
coordinates may at first seem somewhat obscure, but it is actually
used in several situations in graphics and CAGD. We will find them
useful, for instance, when we consider projective transformations in
Section 7.1. Simplexes and barycentric coordinates also have impor-
tant uses in the theory of Bézier curves and surfaces (cf. [6, 9]).

3.5. *Matrix Representations of Points and Vectors

In the previous section it was shown that points and vectors can
be uniquely identified by their coordinates relative to a given frame.
The most straightforward way to represent points and vectors in a
computer is then to simply store their coordinates as a 1 × n row
matrix. However, for reasons that will only become fully apparent
later, it is more convenient to augment the row matrix with an
additional value that distinguishes between points and vectors [12].
To allow this augmentation to proceed in a rigorous fashion, we
extend the original set of axioms for an affine space A to include:

(iii) Coordinate Axiom: For every point P ∈ A.P, 0 · P = #0, the
zero vector of A.V, and 1 · P = P .

Armed with this axiom, we can rewrite Equation 3.8 in matrix
notation as

P = p1#v1 + p2#v2 + · · · + pn#vn + 1 · O
= (p1 p2 · · · pn 1)(#v1 #v2 · · · #vn O)T .

Notice that the last component in the row matrix essentially says
that P is a point, which explains the mystery of the additional
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coordinate that was encountered in Section 2.6. Vectors can be
represented in a similar fashion by rewriting Equation 3.7 as:

#u = u1#v1 + u2#v2 · · ·un#vn + 0 · O
= (u1 u2 · · · un 0)(#v1 #v2 · · · #vn O)T .

Thus, vectors are represented as row matrices whose last component
is zero.1

Suppose that a point P has coordinates (p1, ..., pn, 1) relative
to a frame F = (#v1, ..., #vn,O)T . It is natural to ask: what are the
coordinates of P relative to a frame F ′ = (#v′1, ..., #v

′
n,O′)T ? To answer

this question, we must find scalars p′1, ..., p
′
n such that

p′1#v
′
1 + · · · + p′n#v

′
n + O′ = p1#v1 + · · · + pn#vn + O.

It is more convenient to write this equation in matrix notation as

(p′1 · · · p′n 1)





#v′1
...
#v′n
O′




= (p1 · · · pn 1)





#v1
...
#vn
O




. (3.10)

Each of the elements of F can be written in coordinates relative to
F ′. In particular, let these coordinates be such that:

#vi = fi,1#v
′
1 + · · · + fi,n#v

′
n

O = fn+1,1#v
′
1 + · · · + fn+1,n#v

′
n + O′

for i = 1, ..., n. Substituting these equations into Equation 3.10 gives

( p′1 · · · p′n 1 )





#v′1
...
#v′n
O′




=

1Those familiar with homogeneous coordinates are accustomed to adding an ad-
ditional component when representing points. Note however that the addition of a
component has been done here without having to mention homogeneous coordinates or
projective spaces. This is not simply a trick, for we are representing affine entities, not
projective ones. For instance, in the current context, a row matrix with a final compo-
nent of zero represents a vector, whereas in projective geometry, a row matrix with a
final component of zero represents an ideal point (more commonly known as a point at
infinity).
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( p1 · · · pn 1 )





f1,1#v′1 + · · · + f1,n#v′n
...

fn,1#v′1 + · · · + fn,n#v′n
fn+1,1#v′1 + · · · + fn+1,n#v′n + O′




,

which can be rewritten as

( p′1 · · · p′n 1 )





#v′1
...
#v′n
O′




=

( p1 · · · pn 1 )





f1,1 · · · f1,n 0
...

. . .
...

...
fn,1 · · · fn,n 0
fn+1,1 · · · fn+1,n 1









#v′1
...
#v′n
O′




.

Linear independence of the vectors #v′1, ..., #v
′
n can be used to deduce

that

( p′1 · · · p′n 1 ) = ( p1 · · · pn 1 )





f1,1 · · · f1,n 0
...

. . .
...

...
fn,1 · · · fn,n 0
fn+1,1 · · · fn+1,n 1




.

Thus, a change of coordinate systems can be accomplished via matrix
multiplication. Notice that the matrix used to affect the change of
coordinates has rows consisting of the coordinates of the elements of
the “old frame” (frame F) relative to the “new frame” (frame F ′).

3.6. Affine Transformations

The next geometric object to be added to our collection is the affine
transformation. Affine transformations are mappings between affine
spaces that preserve the algebraic structure of the spaces. That is,
affine transformations map points to points, vectors to vectors, and
under certain conditions, frames to frames.

To begin, let A and B be two affine spaces (it is sometimes the
case that A and B are the same space). A map F : A.P → B.P
is said to be an affine transformation (also called an affine map) if
it preserves affine combinations. That is, F is an affine map if the
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condition

F (α1Q1 + · · · + αkQk) = α1F (Q1) + · · · + αkF (Qk) (3.11)

holds for all points Q1, ..., Qk and for all sets of α’s that sum to unity.
(Notice the similarity between this definition and the definition of
linear transformation given in Appendix 1.) Examples of affine trans-
formations include: reflections, shear transformations, translations,
rotations, scalings, and orthogonal projections. Perspective projec-
tions are not affine transformations, but they are projective transfor-
mations (see Section 7.1).

Example 3. As a specific example of an affine transformation, con-
sider the transformation T : A.P → A.P that performs translation
along a fixed vector #t. This transformation can be defined by

T (P ) = P + #t.

To show that T is an affine transformation, it suffices to show that

T (α1P1 + α2P2) = α1T (P1) + α2T (P2)

for every pair of points P1, P2, and for every α1, α2 such that
α1 + α2 = 1. This is not difficult to do, as the following derivation
shows:

T (α1P1 +α2P2)
= (α1P1 + α2P2) + #t
= P1 + α2(P2 − P1) + #t def of affine comb
= (P1 + #t) + α2[(P2 − P1) + (#t− #t)]
= (P1 + #t) + α2[(P2 + #t) − (P1 + #t)] Claim 1(f)
= T (P1) + α2(T (P2) − T (P1))
= α1T (P1) + α2T (P2) def of affine comb

Induction on the number of terms in the affine combination can be
used to show that T preserves arbitrary affine combinations.

An immediate consequence of their definition is that affine
transformations carry line segments to line segments, and hence,
planes to planes and hyperplanes to hyperplanes. This can be seen
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by noting that the line segment connecting the points Q1 and Q2

can be written in parametric form as the affine combination

Q(t) = (1 − t)Q1 + tQ2, t ∈ [0, 1]. (3.12)

The image of the segment under an affine map F is therefore

F (Q(t)) = (1 − t)F (Q1) + tF (Q2), t ∈ [0, 1], (3.13)

which is a parametric description of the line segment connecting
the images of Q1 and Q2. Equations 3.12 and 3.13 actually show
something substantially stronger. In particular, they show that the
point breaking the line segment Q1, Q2 into relative ratio t : (1−t) is
mapped to the point that breaks F (Q1), F (Q2) into the same relative
ratio, as shown in Figure 3.11. We therefore arrive at the important
fact that affine maps preserve relative ratios.

Another important fact about affine maps is that they are
completely determined if the image of an n-simplex is known. To
see this, let F : A.P → B.P be an affine map, let A be an
affine n-space, and let Q0, ..., Qn be an n-simplex in A. In the
previous section it was shown that every point in A can be written
uniquely as P = p0Q0 + · · · + pnQn. The fact that F is affine
implies that F (P ) = p0F (Q0) + · · · + pnF (Qn), which is completely
determined if the points F (Q0), ..., F (Qn), i.e., the image of the
simplex (Q0, ..., Qn), are known.

We can push the above argument further to yield another
interesting result. Suppose that S = (Q0, ..., Qn) is an arbitrary
simplex in A and that S′ = (Q′

0, ..., Q
′
n) is an arbitrary collection of

points in B, not necessarily forming a simplex. We claim that there
is a unique affine map from A to B that carries S into S′. The proof
is immediate: existence follows by letting the map F in the previous
paragraph be such that F (Qi) = Q′

i, for i = 0, ..., n; uniqueness
follows from the fact that every point has a unique barycentric
representation. In the case of affine planes (occurring when both
A and B are affine two-spaces), this result says that every pair of
triangles are related by a unique affine map. Similarly, every pair of
tetrahedrons in an affine 3-space are related by a unique affine map.

In the introduction to this section it was claimed that affine
transformations carry points to points and vectors to vectors.
However, affine transformations are currently defined only on points.
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Fig. 3.11: The action of an affine map on a line segment.

Fortunately, we can extend their domains to include the vectors as
well. Let F : A.P → B.P be an affine map, let #v be any vector in
A.V, and let P and Q be any two points in A.P such that #v = P−Q.
We define F (#v) to be the vector in B.V given by F (P ) − F (Q). In
equation form,

F (#v) ≡ F (P −Q) := F (P ) − F (Q).

Notice that the points P and Q used in the definition are not unique
in that there are many pairs of points whose difference is #v. To verify
that the definition of F (#v) is well-formed, it must be shown that if
P ,Q and P ′,Q′ are two pairs of points whose difference is #v, then
F (P ) − F (Q) = F (P ′) − F (Q′). We leave the proof as an excerise.

Since the domain of an affine map such as F : A.P → A.P can
be extended to include A.V, we consider F being defined on all of
A, and hence we write simply F : A → B.

Using the definition of the action of an affine map on vectors, it
is also not difficult to show that F is a linear transformation on the
set of vectors. That is, F satisfies

F (u1#v1 + · · · + un#vn) = u1F (#v1) + · · · + unF (#vn), (3.14)

for all u1, ..., un and for all #v1, ..., #vn. The proof of this fact is rather
instructive in that it demonstrates a use of the head-to-tail axiom.
We will show that F satisfies the following two conditions:

1. F (#v + #w) = F (#v) + F (#w).
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Fig. 3.12: The points P ,Q, and R in the proof of condition 1.

2. F (α#v) = αF (#v).
Equation 3.14 can then be shown by using induction on the number
of terms in the sum. To prove condition 1, let P,Q and R be points
such that #v = Q−R and #w = P−Q, as shown in Figure 3.12. By the
head-to-tail axiom, F (#v+ #w) = F (P )−F (R). Using the head-to-tail
axiom again in the range gives the desired result:

F (#v + #w) = F (P ) − F (R)

= [F (P ) − F (Q)] + [F (Q) − F (R)]

= F (#v) + F (#w).

To prove condition 2, we note that the vector α#v can be written as

α#v = [(1 − α)R + αQ] −R.

The desired result can now be achieved in just a few steps:

F (α#v) = F ([(1 − α)R + αQ] −R)

= F ([(1 − α)R + αQ]) − F (R)

= (1 − α)F (R) + αF (Q) − F (R)

= αF (#v).

Next, we show that F also satisfies

F (Q + #v) = F (Q) + F (#v)
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for every point Q and every vector #v. To do this, let P be such that
#v = P −Q. Thus, F (Q + #v) = F (Q + P −Q). Since the expression
Q + P −Q is an affine combination,

F (Q + P −Q) = F (Q) + F (P ) − F (Q)

= F (Q) + [F (P ) − F (Q)]

= F (Q) + F (#v).

Putting these facts together reveals that F preserves affine coordi-
nates:

F (p1#v1 + · · ·+pn#vn +O) = p1F (#v1)+ · · ·+pnF (#vn)+F (O), (3.15)

showing that affine maps are completely determined once the image
of a frame is known.

Affine transformations can be manipulated in the geometric ADT
by adding an AffineMap data type. The fact found above that
an affine map is completely determined once its action on a frame
is known can be used as the basis of a coordinate-free method of
specifying affine transformations. Specifically, we add to the ADT
the routines:

• AffineMap ← ACreate( f : Frame; O : Point, v1...vk :Vector)
This is the most general affine map creation routine. Let S
denote the space for which f is a frame, and let k denote S’s
dimension. The point O and the vectors v1,...,vk must reside
in a common space S’; if they do not, an error is signaled.
Returned is the (unique) affine map that carries f.org to O,
f.v1 to v1, etc.

• Point ← PAxform( P : Point; T : AffineMap)
If P resides in the domain space of T, then the image point
T(P) is returned; otherwise an error is signaled.

• Vector ← VAxform( v : Vector; T : AffineMap)
If V resides in the domain space of T, then the image vector
T(v) is returned; otherwise an error is signaled.

Example 4.
To demonstrate the use of the low-level affine map creation

routine ACreate() we use it to construct a higher-level routine that
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AffineMap Rotate2D( P : Point, θ : Scalar)
{ Return a rotation about P by an angle θ }
begin

RotateFrame : Frame;
e1, e2, e1’, e2’ : Vector;

{ Build the rotation frame }
e1 := Fv( StdFrame( SpaceOf(P), 1);
e2 := Fv( StdFrame( SpaceOf(P), 2);
RotateFrame := FCreate( ”rotate”, P, e1, e2);

{ Build the images of e1 and e2 }
e1’ := VCreate( RotateFrame, cos(θ), sin(θ));
e2’ := VCreate( RotateFrame, -sin(θ), cos(θ));

{ Build and return the transformation }
return ACreate( RotateFrame, P, e1’, e2’);

end

Fig. 3.13: The definition of a two-dimensional rotation operator
using ACreate. The routine SpaceOf() is a polymorphic function
that returns the space in which its argument (a Point, Vector, etc.)
resides.

returns a affine map that represents rotation by an angle θ about
an arbitrary point P in a two-dimensional space S. This is easily
accomplished by creating a new frame called RotateFrame whose
origin is P and whose basis vectors e1 and e2 are inherited from
StdFrame(S). RotateFrame is chosen in this way because it is clear
how its elements transform under the rotation. In particular, P maps
to P, and e1 and e2 transform as:

e1 &→ cos(θ)e1 + sin(θ)e2

e2 &→ − sin(θ)e1 + cos(θ)e2

The pseudo-code to carry out this process is shown in Figure 3.13.

If F : A → B and G : B → C are affine maps, then the
composition map H = G ◦ F : A → C is also an affine map. (See
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Exercise 7 on page 65.) We therefore add the following routine to
the ADT:

• AffineMap ← AACompose( F, G : AffineMap)
Returned is the affine map G ◦ F. An error is signaled if the
domain of G does not match the range of F.

3.7. *Matrix Representations of Affine Transformations

Just as points and vectors can be represented as matrices, so too
can affine transformations. For notational simplicity, the following
discussion will be restricted to maps between affine planes. This
restriction is not limiting since all arguments carry through to affine
spaces of arbitrary dimension.

Let A and B be two affine planes, let F : A &→ B be an affine
transformation, let (#v1, #v2,OA) be a frame for A, let (#w1, #w2,OB) be
a frame for B, and let P be an arbitrary point whose coordinates
relative to (#v1, #v2,OA) are (p1, p2, 1). We ask: what are the
coordinates of F (P ) relative to (#w1, #w2,OB)? The solution requires
little more than simple manipulation. We begin by expanding P in
coordinates and use the fact that F preserves affine coordinates:

F (P ) = F (p1#v1 + p2#v2 + OA) (3.16)

= p1F (#v1) + p2F (#v2) + F (OA). (3.17)

Since F carries vectors (points) in A into vectors (points) in B, the
quantities F (#v1) and F (#v2) are vectors in B and the quantity F (OA)
is a point in B, and as such they each have affine coordinates relative
to the frame (#w1, #w2,OB). Suppose that

F (#v1) = f1,1 #w1 + f1,2 #w2

F (#v2) = f2,1 #w1 + f2,2 #w2

F (OA) = f3,1 #w1 + f3,2 #w2 + OB

Using these coordinates, Equation 3.17 can be manipulated as
follows:

F (P ) = ( p1 p2 1 )




F (#v1)
F (#v2)
F (OA)




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= ( p1 p2 1 )




f1,1 #w1 + f1,2 #w2

f2,1 #w1 + f2,2 #w2

f3,1 #w1 + f3,2 #w2 + OB





= ( p1 p2 1 )




f1,1 f1,2 0
f2,1 f2,2 0
f3,1 f3,2 1








#w1

#w2

OB





= ( p1 p2 1 )F




#w1

#w2

OB





= ( p′1 p′2 1 )




#w1

#w2

OB





Thus, the point P with coordinates (p1, p2, 1) gets transformed to
the point F (P ) with coordinates (p′1 p′2 1), where ( p′1 p′2 1 ) =
( p1 p2 1 )F. For this reason, the matrix F is called the matrix rep-
resentation of F relative to the frames (#v1, #v2,OA) and (#w1, #w2,OB).
Notice that

• The first row of F is the representation of F (#v1).

• The second row of F is the representation of F (#v2).

• The third row of F is the representation of F (OA).
As a consequence, affine maps are represented as matrices whose last
column is (0 0 1)T . Conversely, every matrix whose last column is
(0 0 1)T represents some affine transformation.

Example 5. As a specific example of the construction of a matrix
representation of an affine transformation, consider the construction
of a matrix representation of the translation T of Example 3. To do
this, we must pick frames in both the domain and the range. Since
T maps A onto itself, the domain and range are the same space, so
we may as well pick a single frame (#v1, #v2,O) to serve double duty.
Suppose that in this frame the vector #t has the coordinates (a, b, 0).
All we have to do to determine the matrix T is to determine what
T does to #v1, #v2, and O.

We’ll do the easy part first. The third row of T consists of the
coordinates of T (O), which are (a, b, 1) since

T (O) = O + #t
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= a#v1 + b#v2 + O.

The first row of T consists of the coordinates of T (#v1). To see
what these are, let R and S be two points such that #v1 = R − S.
Then, by definition of how affine maps behave on vectors,

T (#v1) = T (R− S) by def of R,S
= T (R) − T (S) by def T on vectors
= (R + #t) − (S + #t) by def of T
= R− S by Claim 1(f)
= #v1 by def of R,S.

In other words, T does not affect #v1. In fact, the derivation above
works for all vectors, not just #v1, so T does not affect any vector.
This means that the first row of T is (1 0 0), and the second row is
(0 1 0). Putting this all together, relative to the frame (#v1, #v2,O), T
is represented by the matrix

T =




1 0 0
0 1 0
a b 1



 .

3.8. Ambiguity Revisited

In Section 3.1 it was claimed that the ADT solves the ambiguity
problem in that a given code fragment can have one and only
one geometric interpretation. As a demonstration of how this is
accomplished, we refer again to the code fragment of Figure 3.1, the
geometric interpretations of which are shown in Figure 3.2.

Using the geometric ADT, each geometric interpretation is
unambiguously reflected in the code. For instance, if the programmer
intended a change of coordinates as indicated by Figure 3.2(a), the
appropriate code fragment would be something like:

frame1, frame2 : Frame;
P : Point;
px, py : Scalar;

P := PCreate( frame1, p1, p2);
(px,py) := PCoords( P, frame2);
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where frame1 and frame2 are two frames having the geometric
relationship indicated in Figure 3.2(a). If the programmer was
instead intending to effect a transformation on the space as indicated
by Figure 3.2(b), the appropriate code would be something like:

T : AffineMap;
S : Space;
P’, P : Point;
sf : Frame;

...
sf := StdFrame(S);
T := ACreate( sf, FOrg(sf), SVMult(2,Fv(sf,1)), Fv(sf,2));

...
P’ := PAxform( P, T);

...

Finally, if a transformation between separate spaces is to be
applied as indicated by Figure 3.2(c), the code would be something
like:

T : AffineMap;
S1, S2 : Space;
P’, P, O’ : Point;
x’, y’ : Vector;

...
{ Compute O’, x’, and y’ in S2 }

...
T := ACreate( StdFrame(S1), O’, x’, y’);

...
{ Not that P and P’ live in different spaces. }
P’ := PAxform( P,T);

...

To reiterate, each of the code fragments above has an unam-
biguous geometric interpretation that is undeniably apparent from



     

62 Computer Graphics

the code. The fact that identical matrix computations are being
performed at a lower level is invisible (and irrelevant).

3.9. Coordinate-Free Line Clipping

The use of coordinate-free concepts sometimes requires that prob-
lems be solved in ways that at first seem somewhat unnatural. Con-
sider, for instance, the use of coordinate-free techniques to solve
the clipping of two-dimensional line segments to the interior of a
window. A coordinate-based solution to this problem was given in
Section 2.5.1. We must first find a coordinate-free representation of
the window. A straightforward representation would be to represent
the window by its corner points. A more convenient representation
for clipping, however, is to represent the boundary lines of the win-
dow rather than the corners. We shall find it most convenient to
represent the window as the intersection of a collection of four linear
half-spaces or oriented hyperplane H1, H2, H3, and H4. An oriented
hyperplane H is a set of points

H = {Q : #n · (Q− P ) ≤ 0}

where P is a point on the boundary of the hyperplane and #n is a
vector that points outward and normal (i.e., perpendicular) to the
boundary (see Figure 3.14(a)). The fact that inward and outward
are distinguished motivates the use of the word “oriented”.

The window W to which a line segment is to be clipped can then
be represented as the set of points

W = H1 ∩H2 ∩H3 ∩H4

as shown in Figure 3.14(b). To clip a line segment P1P2 to the
interior of W , we must find the set of points P1P2 ∩W . Using the
associativity of set intersection, we deduce that

P1P2 ∩W = P1P2 ∩ (H1 ∩H2 ∩H3 ∩H4)

= (((((P1P2) ∩H1) ∩H2) ∩H3) ∩H4)

implying that P1P2 can be successively clipped to each of the
hyperplanes H1,...,H4.

To see how to clip a segment P1P2 against a single oriented
hyperplane H, defined by a point P and an outward normal vector #n,
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Fig. 3.14: (a) The representation of a half-space as a point P and
an outward pointing normal vector #n; (b) The representation of the
window as the intersection of half-spaces.

it is convenient to think of the hyperplane as a function H : Points →
* defined as

H(Q) = #n · (Q− P ). (3.18)

The convenient thing about this definition is that the value H(Q) is
proportional to the signed distance of the point Q from the half-space
boundary, with the constant of proportionality being the length of #n.
That is, if dQ is the signed distance of Q to the half-space boundary,
then H(Q) = |#n|dQ.

There are four cases of interest, depending on the signs of
H(P1) and H(P2). If both are positive, then both endpoints are
outside the half-space, meaning that the line segment can be trivially
rejected. If both are negative, then both endpoints are inside the
half-space, meaning that the line segment can be trivially accepted.
The interesting cases occur when the signs of H(P1) and H(P2)
differ, implying that one endpoint is inside and the other is outside.
Suppose that H(P1) > 0 and that H(P2) < 0 (the other case is
symmetric and will not be discussed). We must therefore compute
the intersection point I between the line segment and half-space
boundary (see Figure 3.15). The intersection I can be computed
easily using an affine combination. Using similar triangles we find
that P1I : IP2 = H(P1) : −H(P2), meaning that

I =
H(P1)P2 −H(P2)P1

H(P1) −H(P2)
.
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Fig. 3.15: If one endpoint is inside the half-space, and one is outside,
the point of intersection I must be computed.

Once I is computed, the subsegment P1I is discarded, and the
subsegment P2I is output as the result.

The above algorithm is the coordinate-free version of the
Sutherland-Hodgman line clipping algorithm [17].

Exercises

1. Show that the definition of the action of F on vectors is well-
defined in the sense that if P,Q and P ′, Q′ are two pairs of
points such that P − Q = P ′ − Q′, then F (P ) − F (Q) =
F (P ′) − F (Q′).

2. Let L1 and L2 be two lines that pass through the points Q1, P1

and Q2, P2 respectively. These lines are said to be parallel if
P1−Q1 is a scalar multiple of P2−Q2. Show that parallel lines
are mapped to parallel lines under affine maps. (A degenerate
case can occur when both L1 and L2 are mapped to single
points.)

3. Show that the definition of affine combinations as given in
Equation 3.4 is independent of which point is used in place
of Q1.

4. Show that scalar multiplication and addition of equivalence
classes of points as in Equations 3.5 and 3.6 forms a vector
space, then show that the axioms of affine spaces are satisfied.
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Fig. 3.16: The points P of an affine space as a translated vector
subspace M

5. Let L be an '-dimensional vector space, let M be an m < n-
dimensional vector subspace of L, let #x 1∈ M be a vector in L,
and let

P = {#x + #v : #v ∈ M}.

Figure 3.16 depicts the situation for n = 3 and m = 2. Define
subtraction on elements of P and a set V such that (P,V)
form an affine space. Prove that the axioms of affine spaces
are satisfied by your definition.

This exercise shows that affine spaces can be constructed by
translating a vector subspace (M) away from the origin.

6. Write a pseudo-code statement of a procedure ARotate3D()
that takes as input a point P, a vector v (both assumed to
reside in an affine three space), and an angle θ. The procuedure
should return an AffineMap that represents rotation by θ about
an axis through P in the direction of v. By convention, positive
angles correspond to clockwise rotation when viewed along v.

7. Show that if F : A → B and G : B → C are affine maps, then
the composed map H = G ◦ F : A → C is also an affine map.

8. Let F : A → B be the unique affine map that carries the
frame FA in A into the frame FB in B. Show that the
matrix representation of F relative to FA and FB is the
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identity matrix. (This implies that the identity matrix does
not necessarily represent the identity transformation.)

9. Let F : A → B and G : B → C be affine maps, and let FA,FB,
and FC be frames in A, B, and C, respectively. Show that if F
is the matrix representation of F relative to FA and FB, and G
is the matrix representation of G relative to FB and FC , then
FG is the matrix representation of G ◦ F .

10. Suppose that an affine map T : A → B has a matrix
representation T relative to frames FA and FB, and suppose
that F ′

A is a frame in A such that coordinates relative to FA
are changed into coordinates relative to F ′

A by multiplying by
a matrix F. Show that the matrix representation of T relative
to F ′

A and FB is F−1 T .

11. Show that the function H(Q) defined in Equation 3.18 is an
affine map from points into real numbers. An affine map that
maps into the reals is called an affine functional

12. (Due to Ron Goldman.) Show that every non-singular affine
transformation of the affine plane is the composite of one
scale, one translation, one rotation, and one shear. A scale
transformation is one where O → O, #v1 → a#v1, and #v2 → b#v2,
where (#v1, #v2,O) is a frame, and where a and b are non-zero
scalars. A shear is a transformation such that O → O, #v1 → #v1,
#v2 → a#v1 + b#v2.
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3.10. A Brief Review of Linear Algebra

A vector space over the reals is a set V, each element of which is
called a vector, that satisfies the following properties:
(i) Addition of vectors and multiplication by real numbers (scalars)

is defined.

(ii) The set is closed under linear combinations. That is, if #v, #w ∈ V ,
and α, β ∈ *, then α#v + β #w ∈ V.

(iii) There is a unique zero vector #0 ∈ V, such that

• For every vector #v ∈ V, #0 + #v = #v.

• For every vector #v ∈ V, 0 · #v = #0.
Some examples of vector spaces are listed below. For each

example, think about how multiplication and addition of vectors
is defined.

1. *2 = {(x, y)|x, y ∈ *}.

2. P 3 = the set of all polynomials of degree ≤ 3.

3. C([0, 1]) = the set of all continuous functions defined on the
unit interval.

The vectors #v1, ..., #vk are said to be linearly independent if

c1#v1 + c2#v2 + · · · + ck#vk = #0 ⇔ ci = 0, i = 1, ..., k

where c1, ..., ck are scalars. Otherwise, the vectors are said to be
linearly dependent.

The dimension of a vector space is defined to be the largest
number of linearly independent vectors. For example, the dimension
of *2, written dim *2 can be shown to be 2, and dim P 3 can be
shown to be 4.

A sequence (#v1, ..., #vn) of linearly independent vectors in a vector
space of dimension n is called a basis. As a simple example, a basis for
*2 is ((1, 0), (0, 1)). Another basis for *2 is ((1, 1), (0, 1)), and a basis
for P 3 is the familiar power basis (1, x, x2, x3). Another familiar basis
for P 3 are the cubic Bernstein polynomials (x3, 3x2(1 − x), 3x(1 −
x)2, (1 − x)3).

Bases are essential for imposing coordinates on vector spaces.
Their importance is underscored by the following theorem.
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Theorem 3.10.1. Let (#v1, ..., #vn) be a basis for a vector space
V. For every #w ∈ V , there exists a unique set of scalars c1, ..., cn
such that

#w = c1#v1 + c2#v2 + · · · + cn#vn. (3.19)

The numbers (c1, ..., cn) are called coordinates of #w relative to the
basis (#v1, ..., #vn).

Proof. For a rigorous proof, see any standard text in linear
algebra such as O’Nan [14].

The two important points about this theorem are: (1) coordi-
nates are always relative to some basis, and (2) relative to a partic-
ular basis, the coordinates are unique. It is therefore meaningless
to talk about the coordinates of a vector without talking about the
basis relative to which the coordinates are taken.

Let V,W be vector spaces (in many graphics and CAGD appli-
cations V and W are the same space). A map T : V &→ W is a linear
transformation if for every α1, ..., αk ∈ *, and for every #v1, ..., #vk ∈ V,

T (α1#v1 + α2#v2 + · · ·αk#vk) = α1T (#v1) + α2T (#v2) + · · · + αkT (#vk).

Exercises

1. For the vector space *2, what are the coordinates of (4, 3)
relative to the basis ((1, 1), (0, 1))?

2. For the vector space P 3, what are the coordinates of 2x relative
to the basis (1, x, x2, x3)? What are the coordinates of 2x
relative to the basis (x3, 3x2(1 − x), 3x(1 − x)2, (1 − x)3)?

3. Show that a linear transformation T : V &→ W carries the zero
vector in V into the zero vector in W.



Q

Q'
π

Projection plane

Chapter 4

Three-Dimensional Wireframe Viewing

4.1. Introduction

In this chapter we consider the construction of a (C language) pro-
gram to display three-dimensional line segments in orthographic pro-
jection using the geometric ADT. This program, called wireframe,
serves as the starting point for the rendering project.

Orthographic projection is defined as follows. A point Q in
a three-dimensional space A is orthographically projected onto a
projection plane π ∈ A by constructing a line, called a projector
through Q perpendicular to π. The image point Q′ of Q under
the projection is the point where the projector intersects π (see
Figure 4.1). This defines a mapping P : A → A that actually turns
out to be an affine map (see Exercise 1 on page 81).

The other important type of projection is perspective projection,

Fig. 4.1: Orthographic projection
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Fig. 4.2: Perspective projection

where the projectors all emanate from a point C called the center of
projection, as shown in Figure 4.2. It can be shown that perspective
projection is not an affine map (see Exercise 2 on page 81), but it is
a projective map, as discussed in Chapter ??.

The wireframe program receives its input from a file that con-
tains the world coordinates of the line segment endpoints, generating
as output an orthographic view of the line segments. (The extension
of the program to perspective viewing is left as an exercise.) Also
input to the program are several viewing parameters:

• A view point called Eye, a viewing direction vector called
ViewDir, and an orientation or “up” vector called UpVector.
These parameters specifiy the position of the viewer within the
world space: the viewer is positioned at the point Eye, looking
in a direction ViewDir. The projection plane is taken to be
the plane through Eye perpendicular to ViewDir. The role of
UpVector is to orient the viewer. The view will be such that
UpVector appears vertical in the final image (see Figure 4.3).

• The width and height of the window on the projection
plane. These parameters are stored in variables WinHsize and
WinVsize.

• A viewport specification given as in Section 2.6, stored in the
global variables VPleft, VPright, VPtop, and VPbottom.
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Fig. 4.3: Window and viewport specification.

The general strategy is to create two spaces, World and Screen.
The World space is a Euclidean three-space in which the objects
to be viewed are placed. The Screen space is a two-dimensional
space that corresponds to the physical frame buffer, with the visible
portion of the Screen space defined to be the unit square subtended
by the standard frame in Screen space (see Figure 4.3). A viewing
frame (called ViewFrame) is constructed from the viewing parameters
and a clipping volume is constructed about the viewing frame. The
clipping volume is a rectangular parallelpiped as shown in Figure 4.4.

Line segments are then processed in four steps:

1. Point Creation: When a pair of endpoint coordinates are read
from the data file, they are immediately converted to Points in
the World space.

2. Clipping: The line segment between the newly created end-
points is clipped to the clipping volume.

3. Transformation to Screen Space: The clipped line is (affinely)
mapped into the Screen space.

4. Scan Conversion: The device coordinates of the clipped,
projected line segment are extracted and scan converted using
a line drawing algorithm such as Bresenham’s algorithm.

We shall now examine each of these steps in more detail to
demonstrate their implementation using the geometric ADT.
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Fig. 4.4: The clipping volume for orthographic projection. The
indicated vector is the viewing direction; the front and back clipping
planes are at distances Hither and Yon, respectively.

4.2. Point Creation

The creation of points given coordinates has already been discussed.
However, for completeness, step 1 can be implemented by a C
procedure ReadSegment:

typedef struct {

Point p1, p2;

} Segment;

/*

** Read the world coordinates of two points, and return

** a Segment structure. No check is done for end-of-file.

*/

Segment ReadSegment()

{

Scalar x1, y1, z1, x2, y2, z2;

Segment seg;

scanf("%lf %lf %lf %lf %lf %lf",

&x1, &y1, &z1, &x2, &y2, &z2);

seg.p1 = PCreate( WorldFrame, x1, y1, z1);



    

Three-Dimensional Wireframe Viewing 73

seg.p2 = PCreate( WorldFrame, x2, y2, z2);

return seg;

}

where WorldFrame is a synonym for StdFrame(World).

4.3. Clipping

In analolgy with Section 3.9, the clipping volume is represented as the
intersection of a collection of (six) oriented hyperplanes as shown in
Figure 4.4. Each hyperplane is represented as a point and an outward
pointing vector (or as described in Section 3.9 and Exercise 11 on
page 66, as affine functionals). In our implementation, hyperplanes
are represented using the C structure

typedef struct {

Point b;

Normal n;

} Hyperplane;

For now it is sufficient to think about the datatype Normal as being
a Vector used specially to represent perpendicularity (we’ll come
back to this issue in the next chapter). Since we are thinking of
hyperplanes as affine functionals, we define a procedure to apply
them to points:

/*

** Evaluate the affine functional associated with the

** Hyperplane Pi at the point q.

*/

Scalar EvalHyperplane(Pi, q)

Hyperplane Pi;

Point q;

{

return NVApply( Pi.n, PPDiff(q,Pi.b));

}

Don’t worry at this point about the meaning of NVApply; it is
simply a pedantic way of writing VVDot.

The clipping volume is then defined to be the intersection of
the negative half-spaces defined by the oriented hyperplanes. As in
Section 3.9, line segments can be clipped to volumes defined in this
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way by successively clipping them against each of the planes.
The clipping of line segments to planes in three dimensions is

identical to the process described in Section 3.9. A C implementation
of the algorithm to clip a line segment to a single hyperplane is
shown below. Much of the code is devoted to correctly treating
the boundary cases where one or both endpoints are sufficiently
close to the boundary of the hyperplane that numerical error could
cause problems. The constant EPSILON is a predefined value that is
intended to be an upper bound on numerical error.

/*

** Clip a line segment against the given Hyperplane.

** Return TRUE if a portion of the segment survives

** the clipping; return FALSE otherwise.

*/

static int ClipLineAgainstHyperplane( P, p1, p2)

Hyperplane P;

Point *p1, *p2;

{

Point lp1, lp2; /* Local copies of endpoints. */

Scalar pp1, pp2;/* H(p1) and H(p2) */

Point intersect;/* Point of intersection. */

lp1 = *p1;

lp2 = *p2;

pp1 = EvalHyperplane( P, lp1);

pp2 = EvalHyperplane( P, lp2);

/* If the endpoints are within EPSILON of */

/* the boundary treat them as if they are */

/* exactly on the boundary. */

if (fabs(pp1) < EPSILON) {

pp1 = 0.0;

}

if (fabs(pp2) < EPSILON) {

pp2 = 0.0;

}
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/* At this point |pp1| and |pp2| are at */

/* least as big as EPSILON or exactly 0.0 */

/* so it is safe to test for equality */

/* with zero. */

if ((pp1 > 0.0) && (pp2 > 0.0)) {

/* Both points are outside --- trivial reject */

return FALSE;

}

if ((pp1 <= 0.0) && (pp2 <= 0.0)) {

/* Both points are inside --- trivial accept */

return TRUE;

}

/* Check to see if one of the endpoints is */

/* on the boundary. If so, then the line */

/* should either be trivially rejected or */

/* trivially accepted. */

if (pp1 == 0.0) {

if (pp2 > 0.0) {

/* lp1 is on the boundary, lp2 is */

/* outside: trivial reject */

return FALSE;

} else {

/* lp1 is on the boundary, lp2 is */

/* inside: trivial accept. This case */

/* should have been caught above, but*/

/* I’m paranoid. */

return TRUE;

}

}

if (pp2 == 0.0) {

if (pp1 > 0.0) {

/* lp2 is on the boundary, lp1 is */

/* outside: trivial reject */

return FALSE;

} else {

/* lp2 is on the boundary, lp1 is */

/* inside: trivial accept. This case */
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/* should have been caught above, but */

/* I’m still paranoid. */

return TRUE;

}

}

/*-----------------------------------------------*/

/* The line segment definitely crosses the plane.*/

/* In fact, the Hyperplane cuts the line into */

/* ratios |pp1| to |pp2|. This is used */

/* to compute the point of intersection. */

/*-----------------------------------------------*/

intersect = PPrr( lp1, lp2, pp1, -1.0*pp2);

/* Figure out which endpoint to throw out */

if (pp1 < 0.0) {

/* Throw out lp2 */

*p1 = lp1;

*p2 = intersect;

} else {

/* Throw out lp1 */

*p1 = intersect;

*p2 = lp2;

}

return TRUE;

}

This routine points out that the coordinate-free implementation
of clipping has the added benefit that the code has no notion of
the dimension of the space in which the line segments live. This
means that the procedure above can be used for two-dimensional,
three-dimensional, or even n-dimensional line clipping. In two-
dimensional clipping, for instance, the oriented hyperplanes are the
oriented lines that bound the visible window. Notice too that the
hyperplanes are not required to be in any special orientation (as long
as the clipping volume is convex). This allows irregular windows and
clipping volumes to be used without increasing the complexity of the
code.
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4.4. Transformation to Screen Space

The transformation that carries points in the World space into
points in the Screen space should be such that the window on
the projection plane is carried into the viewport, as indicated by
Figure 4.3. This transformation, called ViewTransform, is an affine
map since orthographic projection is assumed.

As described in Section 3.6, an affine transformation such as
ViewTranform is completely characterized once its action on a frame
is known. The ViewFrame is set up for this purpose. The origin
of the ViewFrame is taken to be the point Eye, the x direction
vector is taken to be the vector from Eye to the right edge of
the window, the y direction vector is the vector from Eye to the
top of the window, and the z direction vector is the unit vector in
the direction of ViewDir. The convenience of this definition of the
ViewFrame is that we have a simple characterization for its image
under ViewTransform. Specifically, let VPCenter denote the center
point of the viewport, and let VPx and VPy denote the vectors from
VPCenter to the right and top edges, respectively, of the viewport.
The origin of ViewFrame (the Eye point) therefore maps to VPCenter,
its x direction vector maps to VPx, its y direction vector maps to
VPy, and its z direction vector maps to the zero vector in Screen.
The global variable ViewTransform therefore be constructed fairly
simply:

BuildViewTransform()

{

Point VPCenter;

Vector VFx, VFy, VFz, VPx, VPy;

VFz = VNormalize( ViewDir);

VFx = SVMult(

VNormalize(VVCross(VFz,UpVector)),

WinHsize/2.0);

VFy = SVMult(

VNormalize(VVCross( VFx, VFz)),

WinVsize/2.0);

ViewFrame = FCreate("View",Eye,VFx,VFy,VFz);

VPCenter = PCreate( StdFrame(Screen),
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(VPleft+VPright)/2.0,

(VPtop+VPbottom)/2.0);

VPx = VCreate( StdFrame(Screen),

(VPright-VPleft)/2.0, 0.0);

VPy = VCreate( StdFrame(Screen),

0.0, (VPtop-VPbottom)/2.0);

ViewTransform = ACreate( ViewFrame,

VPCenter, VPx, VPy,

VZero(Screen));

}

where VZero(S) returns the zero vector in the space S. Line
segments can then be mapped from the World space into the Screen
space by:

/*

** Send the segment "seg" through the viewing

** transformation.

*/

Segment TransformSegment( seg)

Segment seg;

{

Segment ScreenSegment;

ScreenSegment.p1 = PAxform( seg.p1, ViewTransform);

ScreenSegment.p2 = PAxform( seg.p2, ViewTransform);

return ScreenSegment;

}

4.5. Scan Conversion

Once the segment has been mapped to Screen space, scan conversion
can occur after the device coordinates for the endpoints have
been determined. Using the geometric ADT, this is most easily
accomplished by defining a “device frame” called DeviceFrame in
the Screen space. This frame is defined such that coordinates
relative to the device frame represent device coordinates. As an
example, consider a device that has the origin in the upper left hand
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Fig. 4.5: The definition of the device frame (Od, #dx, #dy)T assuming
a device whose origin is in the upper left corner, with x increasing
to the right and y downward. The vectors #dx and #dy are defined to
be the length and width of a pixel.

corner, with x coordinates increasing to the right and y increasing
downward. Suppose too that pixels are addressed from 0 to XRES in
the x direction and from 0 to YRES in the y direction.

Referring to Figure 4.3, the wireframe example establishes the
convention that the visible portion of the Screen space is the
unit square subtended by StdFrame(Screen). Let the origin of
StdFrame(Screen) be denoted by Os, the x-direction vector by #sx,
and the y-direction vector by #sy. If the device frame has origin Od,

x-direction vector #dx, and y-direction vector #dy, then (see Figure 4.5):

• Od = Os + #sy. This sets the origin of the device frame to the
upper left hand corner of the visible region of Screen space.

• #dx = 1
XRES

#sx. This says that device x-coordinates increase to
the right and range from 0 to XRES. In other words, the vector
#dx is one pixel in length, as shown in Figure 4.5.

• #dy = − 1
Ymax

#sy. This says that device y-coordinates increase to
downward and range from 0 to YRES.

Having established DeviceFrame as an initialization step, a
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segment in Screen space can be scan converted by extracting
coordinates relative to DeviceFrame, then invoking a standard scan-
converter such as Bresenham’s algorithm:

DeviceInitialize()

{

Point Os,Od;

Vector Xs, Ys, dx, dy;

Os = FOrg(StdFrame(Screen));

Xs = Fv(StdFrame(Screen), 1);

Ys = Fv(StdFrame(Screen), 2);

Od = PVAdd( Os, Xs);

dx = SVMult( 1/XRES, Xs);

dy = SVMult( -1/YRES, Ys);

DeviceFrame = FCreate( "Device", Od, dx, dy);

}

/*

** Draw a segment on the device by extracting

** device coordinates then calling Bresenham’s

** algorithm.

*/

DeviceDrawLine(seg)

Segment seg;

{

Scalar x1, y1, x2, y2;

/* Extract coords relative to DeviceFrame */

PCoords( DeviceFrame, seg.p1, &x1, &y1);

PCoords( DeviceFrame, seg.p2, &x2, &y2);

/* ... and draw the line. */

Bresenham((int)x1,(int)y1,(int)x2,(int)y2,BLACK);

}
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Exercises

1. Show that orthographic projection preserves affine combina-
tions, and is therefore an affine map.

2. Show that perspective projection is not an affine map.
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Chapter 5

Hierarchical Modeling

In this chapter we take a first look at methods for representing
structured (i.e., hierarchical) collections of geometric models that
contain sufficient information to allow the creation of smooth shaded
color images with hidden surfaces removed.

5.1. Simple Polygons

Line segments are insufficient as modeling primitives for creating
realistic images since they do not contain enough information to
remove hidden surfaces. A two-dimensional modeling primitive must
therefore be introduced. The simplest such primitive is a triangle.
More generally, one could use quadrilaterals or polygons with an
arbitrary number of vertices. More complex objects such cubes,
chairs, telephones, etc., can be tiled using polygonal facets. We
begin with the definition of the notion of a “simple” polygon.

A curve is said to be simple if it does not intersect itself. The
Jordan curve theorem says that a closed simple planar curve divides
the plane into two sets, a finite “inside” and an infinite “outside”
[7]. A simple polygon P can be defined as the finite set bounded by
a closed, simple, planar, piecewise linear curve.

A simple polygon P is typically represented by a sequence of
co-planar vertices V1, ..., Vn. The bounding edges of the polygon are
therefore the line segments ViVi+1, i = 1, ..., n, where indices are
to be taken modulo n. Simple polygons can be either convex or
concave. A convex polygon is one where the points of the polygon
form a convex set (a set S is convex if its elements are closed under
convex combinations).

Since we are interested in using simple polygons as modeling

83
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Fig. 5.1: There is more to polygon clipping than repeated line
clipping. Repeated line clipping would result in the vertices A, B,
and C. However, the vertices of the clipped polygon are A, B, C and
D. Thus, further processing would be required to determine that D
is the vertex that needs to be added to complete the description of
the clipped polygon.

primitives, we must develop algorithms for processing them through
the graphics viewing pipeline. That is, we must develop algorithms
for clipping, transforming, and scan-converting simple polygons. The
remainder of this section is devoted to these tasks.

5.1.1. Clipping The problem we consider first may be stated as:

Given: A convex simple polygon P with vertices
V1, ..., Vn contained in a two-dimensional space A, and
a convex window W (the clipping region) represented as
the intersection of oriented hyperplanes H1, ..., Hk.

Find: The vertices V ′
1 , ..., V

′
n′ of the polygon P ′ = P∩W .

One might be tempted to solve this problem by using the
Sutherland-Hodgman line clipping algorithm to clip the edge V1V2

to W , then V2V3 to W , and so on, to produce a sequence of
vertices V ′

1 , ..., V
′
n′ that would be conjectured to form the vertices of

P ′ = P ∩W . The failure of this approach is indicated in Figure 5.1.
The algorithm we present here is due to Sutherland and Hodg-

man [17]. It proceeds as in the Sutherland-Hodgman line clipping
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Fig. 5.2: A summary of the Sutherland-Hodgman polygon clipping
algorithm.

algorithm in that it successively clips the entire polygon to each of
the oriented hyperplanes defining the clipping region. The problem
of clipping a polygon to a convex clipping region is thereby reduced
to the following problem:

Given: A polygon P with vertices V1, ..., Vn to an
oriented hyperplane H.

Find: The vertices of Q1, ..., Qm of P ∩H.

The method is to march around the vertices of P keeping track of
a previous vertex s and a current vertex p. One each iteration of the
algorithm, there are four cases to consider based on the containment
of s and p in H. The action to take in each of the cases is summarized
in Figure 5.2. The action Output(Q) adds point Q to the end of the
sequence of vertices Q1, ..., Qm being built up for P ∩H.
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This same algorithm extends readily for clipping polygons in an
affine space A of arbitrary dimension to a clipping region represented
as the intersection of oriented hyperplanes.

The proper clipping of concave polygons is somewhat more
difficult. Such an algorithm has been developed by Weiler and
Atherton [22].

5.1.2. Transforming Through Affine Maps The image of a
simple polygon P with vertices V1, ..., Vn under an affine transforma-
tion T is again a simple polygon P ′ with vertices T (V1), ..., T (Vn). A
polygon can therefore be mapped through an affine transformation
simply by mapping each of its vertices.

5.1.3. Scan-Conversion In this section we examine two algo-
rithms for scan-converting polygons. The first is a general algorithm
appropriate for scan-converting a simple polygon with an arbitrary
number of edges. The second algorithm is a simplified version op-
timized for scan-converting triangles. In the following sections we
assume that the vertices are given in device coordinates.

A Sweep Line Algorithm The basic idea in this algorithm is to
process the polygon a scan-line at a time, considering the scan-lines
in, say, bottom to top order. For each scan-line, all intersections
I0, ..., Ik−1 between the scan-line and the edges of the polygon are
found. The intersections are maintained in a list sorted by increasing
x coordinate. For each pair of intersection points I2i, I2i+1, all pixels
between these points (called a span) are illuminated as indicated in
Figure 5.3.

One subtlety with the algorithm is that intersections between the
polygon and the scan-line must be counted carefully since there is
an implicit assumption that the number of intersections I0, ..., Ik−1

is even. Consider for instance scan-lines S2 and S3 in Figure 5.3.
Vertex V3 is counted twice on scan-line S2 whereas the vertex V1

is counted only once in scan-line S3. The general rule is to count
a vertex twice if it is a local min or a local max; it is counted once
otherwise. A vertex Vi is considered a local min if both Vi−1 and Vi+1

lie on scan-lines above Vi; local max vertices are defined similarly.1

The real cleverness in the algorithm comes from the way the

1You should think about how to handle horizontal edges.
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Fig. 5.3: The sweep-line algorithm identifies entire spans of pixels
at a time.

spans are computed incrementally as the current scan-line “sweeps”
up the image. Two data structures are used to speed the process.
The first data structure, called the active edge list or AEL, represents
the intersection points I0, ..., Ik−1. It contains a set of edge records,
one for each edge that intersects the current scan-line, sorted by the
x coordinate of the intersection points. The edge records are defined
as

EdgeRecord = record
yexit : integer;
x, xinc : real;

end;

For an edge record e, the field e.x contains the x coordinate of
the intersection of the edge with the current scan-line (the scan-
line serves to implicity specify the y coordinate of the intersection).
Successive pairs of edge records on the AEL define the spans
appropriate for the current scan-line. After the current scan-line
has been processed, the AEL is updated by:

1. Discarding edges that become inactive; that is, edges that do
not intersect the next scan-line. The field yexit is used for this
purpose. It is set to indicate the y coordinate of the last scan-
line for which the edge is active. Thus, all edges e such that
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BuildBucketTable(P )
begin

foreach edge (xi, yi)(xi+1, yi+1) ∈ P do
e := new EdgeRecord;
if (yi > yi+1) then

{ Make sure (xi, yi) is lowest endpoint. }
Swap (xi, yi) and (xi+1, yi+1)

endif;
e.x := x1;
e.xinc := (xi+1 − xi)/(yi+1 − yi);
Insert e into Byi in sorted order.

endforeach;
end;

Fig. 5.4: Creation of the y-bucket table.

e.yexit is less than the y coordinate of the next scan-line are
removed from the AEL.

2. Updating the x coordinates of the intersections by adding xinc
to x. The values e.x and e.xinc for an edge e are initialized as
shown in Figure 5.4.

3. Adding newly active edges. A second data structure, called
the y-bucket table, is used to quickly identify the edges that
become active on a given scan-line. The y-bucket table is an
open hash table containing one bucket Bi per scan-line. It is
initialized by building an edge record per edge of the polygon
as shown in Figure 5.4. An edge e is placed in bucket Bi if i
is the y coordinate of the lowest endpoint of e. Edges within
each bucket are sorted by increasing x field as a primary sort
key and by increasing xinc value as a secondary sort key. An
example of the y-bucket table is shown in Figure 5.5.

Scan-conversion of Triangles The scan-conversion of triangles
is much simpler than the scan-conversion of an arbitrary simple
polygon. Consider the scanning of a triangle with vertices V1 =
(x1, y1), V2 = (x2, y2), V3 = (x3, y3). Without loss of generality we



e3e4

e3

0
1
2
3
4
5
6
7

e4

e5

e1

e2

e5

e2

e1

xi1

V1 = (x1,y1)

V3 = (x3,y3)

V2 = (x2,y2)

T1

T2

xi2

xi3

Hierarchical Modeling 89

Fig. 5.5: An example of the y-bucket table

Fig. 5.6: Triangle scan-conversion
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can assume that y1 ≤ y2 ≤ y3. We divide the triangle along the
scan-line through V2 into two subtriangles T1 and T2 as shown in
Figure 5.6. The original triangle can be scanned by first scanning
out T1 starting at V1 and moving upward, followed by scanning of
T2. The two intersections between the current scan-line and the
triangle are maintained and incrementally updated. This process is
summarized by the following pseudo-code:

ScanTriangle(x1,y1,x2,y2,x3,y3 : integer)
{ Scan the triangle assuming y1 ≤ y2 ≤ y3 }
begin

y, i : integer;
inc1, inc2, inc3, xi1, xi2, xi3 : real;

if (y3 = y1) then
{ The triangle is degenerate; scan the edges. }
ScanSpan( min(x1,x2,x3), max(x1,x2,x3), y1);
return;

endif;

xi2 := x1;
inc2 := (x3 - x1)/(y3 - y1);

if (y1 1= y2) then
{ Scan T1 }
xi1 := x1;
inc1 := (x2 - x1)/(y2 - y1);

{ Scan up to, but not including, scan-line y2. }
{ Scan-line y2 will be scanned in the conversion }
{ of subtriangle T2 }
for y := y1 to y2-1 do

ScanSpan( xi1, xi2, y);
xi1 := xi1 + inc1;
xi2 := xi2 + inc2;

endfor;
endif;

if (y2 1= y3) then
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{ Scan T2 }
inc3 := (x3 - x2)/(y3 - y2);
xi3 := x2;
for y := y2 to y3 do

ScanSpan( xi2, xi3, y);
xi2 := xi2 + inc2;
xi3 := xi3 + inc3;

endfor;
else

{ T2 was empty; scan out scan-line y2 }
ScanSpan( xi1, xi2, y2);

endif;
end;

The routine ScanSpan() referred to above is responsible for
scanning the pixels on scan-line y. A strategy for avoiding gaps
between triangles that are supposed to abut is to have ScanSpan()
scan the pixels whose x coordinates are from the floor of the left
endpoint of the span to the ceiling of the right endpoint. This tends
to enlarge the triangle slightly , but it helps to fill gaps that can
open between triangles if both left and right endpoint coordinates
are rounded.

5.2. Object Hierarchies See transparencies
5.2.1. Transformation Stacks

Exercises

1. Show that the Sutherland-Hodgman polygon clipping algo-
rithm can fail if the polygon P to be clipped is concave.

2. Modify the triangle scan-conversion algorithm so that pixels
covered by abutting triangles are painted once and only once.
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Chapter 6

Hidden Surface Algorithms

In this chapter we consider the problem of accounting for total or
partial occlusion of one object by another. That is, we consider the
hidden surface problem. Hidden surface algorithms can be classified
into two broad categories: image space or object space algorithms.
Image space algorithms resolve the hidden surface problem at the
resolution of the final image; that is, only at displayable pixels.
Object space algorithms, on the other hand, produce a resolution
independent solution.

6.1. Back Face Culling

Before discussing general hidden surface algorithms that determine
complete visibility information, there is a test that can often be used
to quickly identify invisible polygons. The test, known as back face
culling, is based on the assumptions that polygons are used to tile
closed opaque objects, and that none of the polygons of an object
are clipped by the clipping volume. In other words, the polygons
present after clipping are assumed to enclose well-defined volumes.
Back frace culling is therefore inappropriate for an object such as
the one shown in Figure 6.2 where polygons cover only five of the
six sides of a cube.

The test also requires that polygons have associated outward nor-
mals that point outward from the enclosed volume (see Figure 6.1).
It is common to infer the outward normal by imposing an ordering
on polygon vertices. A common convention (for convex polygons) is
the “right hand rule”: if the polygon is defined by vertices V1, ..., Vn,
then for any i = 1, ..., n the outward normal is defined to point along
(Vi+1 − Vi) × (Vi+2 − Vi+1).
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Fig. 6.1: Back face culling.

Fig. 6.2: An object for which back face culling is inappropriate
since the polygons do not enclose a volume.
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With these conventions, the outward normal of a polygon can
be used to quickly determine a sufficient condition for invisibility
of the polygon. Intuitively, if the outward normal points away
from the viewer, then the polygon will be totally occluded by one
or more other polygons, and hence it can be culled from further
processing. More specifically, a polygon can be culled in this way if
(P −Eye) · #n > 0, where P is any point in the plane of the polygon,
Eye is the viewpoint, and #n is the outward normal. This test is only
a sufficient condition for invisibility. The full necessary and sufficient
conditions require a general purpose hidden surface algorithm.

6.2. Three-Dimensional Screen Space

Most hidden surface algorithms in use today are of the image space
variety, resolving the hidden surface problem during scan-conversion.
To use such an algorithm, we must extend the graphics pipeline
since the current pipeline projects from the three-dimensional world
space down to the two-dimensional screen space, thus loosing critical
information about relative depth. If an image space algorithm is to
be used, the screen space must be generalized from two dimensions to
three dimensions, and the viewing transformation from world space
to screen space must be set up so the depth ordering of objects (as
seen from the viewpoint) is preserved.

To simplify the following discussion, we assume for the time being
that the scene is to be viewed in orthographic rather than perspective
projection. The extension to perspective viewing will be covered in
Section 7.2.

The geometric situation is indicated in Figure 6.3. By setting up
the viewing transformation so that it maps the clipping volume to
the indicated parallelpiped in the screen space (called the view box),
when objects are transformed through the map their depth orderings
are preserved. Since the screen space is now three-dimensional
instead of two-dimensional, the definition of the device frame must
be extended to include a third vector. It is convenient to introduce
the third device frame vector #dz as shown in Figure 6.3. In Figure 6.3,
the standard frame for the screen space is (#sx, #sy, #sz,Os)T , and the

device frame is denoted by (#dx, #dy, #dz,Od)T . Assuming the same type
of device as in Section 4.5, we have the relations

Od = Os + #sy
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Fig. 6.3: The viewing transformation is such that the clipping
volume is mapped to the view box so as to preserve the depth
ordering of points along projectors.

#dx =
1

XRES
#sx

#dy = − 1

YRES
#sy

#dz = −#sz.

These frames have been set up so that if we transform a point
into the screen space and extract coordinates (x, y, z) relative to the
device frame, then (x, y) determines the pixel to illuminate, and z
reflects the relative depth of the point within the scene such that
increasing z corresponds to increasing depth. Thus, if two points
P1 and P2 have device frame coordinates (x, y, z1) and (x, y, z2),
respectively, then P1 occludes P2 if and only if z1 < z2.

6.3. The Depth Buffer Algorithm

The first hidden surface algorithm we shall consider is a very simple
one called the depth buffer algorithm. The algorithm, originated by
Ed Catmull in 1974 [4], is also called the z-buffer algorithm.

The basic idea behind the algorithm is to maintain an array
of depth values during the scan-conversion of the primitives in the
scene. The depth buffer allocates one entry for each pixel (x, y),
denoted depth[x, y], that contains the depth (i.e., the “z-value”) of
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the nearest object covering pixel (x, y) that has been processed thus
far. The depth buffer is initialized by setting each entry to a value
larger than any realizable depth. (The arrangement described in
Section 6.2 guarantees that the largest possible depth is 1.) During
the scan-conversion of a primitive object O, if O is determined to
cover pixel (x, y), then O is visible at (x, y) if and only if the depth of
O at (x, y) is less than the current value of depth[x, y]. If O is visible
at (x, y), then the pixel is shaded and the depth buffer is updated
to record the fact that O is now the closest object visible at (x, y).
This process is summarized by the code fragment:

if depth of O at (x, y) < depth[x, y] then
fb writePixel(x, y, Shade( O, x, y));
depth[x, y] := depth of O at (x, y);

endif

The Shade() routine implements one of the shading algorithms
described in Chapter 8.

The depth buffer algorithm is very easy to implement, especially
if the scene is tessellated into triangles prior to scan-conversion. To
this end, the triangle scan-conversion algorithm of Section 5.1.3 can
be extended to incrementally compute the depth of the triangle
during scan-conversion (see Exercises 4 and 5 on page 100). In
fact, the depth buffered scan-conversion of triangles is simple enough
that a number of graphics workstations currently implement it
in hardware. Another advantage of the depth buffer algorithm
is that it is an on line algorithm, meaning that it can fully
process display primitives one at a time. Most other hidden
surface algorithms require that all primitives be available before any
occlusion determinations can be made.

A major disadvantage of the depth buffer algorithm, at least as
described above, is that the images it creates suffer from discretiza-
tion effects. For instance, if two triangle interpenetrate, the line of
intersection will appear as a fairly ragged edge.

6.4. Warnock’s Algorithm

Warnock’s algorithm [20] is an early example of a divide and conquer
method that resolves hidden surfaces for the entire viewport by
determining if the image to be rendered is “sufficiently simple” to
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allow hidden surfaces to be determined with simple tests. If the
image within the viewport is too complex, the viewport is split
horizontally and vertically into four subviewports, the polygons are
split and distributed amongst the subviewports, and the algorithm
is called recursively.

Recursion stops when either a subviewport is the size of a pixel
or the image within the subviewport is “simple”. An image within
a subviewport is considered to be simple if at most one polygon
is visible within the subviewport. This can occur either if the
subviewport contains at most one polygon or if the subviewport is
covered by a single polygon. If the subviewport is the size of a pixel
and the image is not simple, the pixel is painted based on the color
of the nearest polygon covering the center of the pixel.

6.5. A Sweep Line Algorithm

In the late 60’s and early 70’s a number of algorithms were developed
that build up an image a scan-line at a time [1, 2, 21, 24]. The basic
idea behind these algorithms is to use the sweep line algorithm for
polygon scan-conversion discussed in Section 5.1.3. In the following
it is assumed that the polygons do not interpenetrate. (If polygons
P1 and P2 do interpenetrate, P1 can be split along the plane of
P2 into two subpolygons using the Sutherland-Hodgman polygon
clipping algorithm.)

The y-bucket table and active edges lists will again be used as
in Section 5.1.3, with the exception that all edges of all polygons
are dealt with simultaneously. Thus, the y-bucket table is initialized
by inserting an edge record for each edge in the scene. The edge
records are essentially as before, with an added field that points
back to a polygon record indicating which polygon the edge belongs
to. Polygon records store data such as the plane equation for the
polygon, color attributes, and so forth.

The active edge list (AEL) is again used to maintain the set
of edges intersected by the current scan-line, sorted in left to right
order. The critical observation in the algorithm is that visibility
changes can occur only at points of intersection between the scan-line
and elements of the AEL (this is only true because of the assumption
of non-interpenetrating polygons). This observation means that the
hidden surface problem can be resolved for entire spans at a time.
Referring to Figure 6.4, span s1 will be painted the color of polygon
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Fig. 6.4: Entire spans are resolved by the sweep line algorithm.

A, span s2 with the color of B, spans s3 and s4 with the color of A,
and so on.

To determine which polygon is visible within each span, a list of
polygons beneath the current span is maintained. This list, called
Inside, is sorted by increasing depth. When a new span is processed,
the polygon P corresponding to the left edge of the span is either
added to or deleted from the Inside list: P is deleted if it is already
present, otherwise it is added to the list in depth sorted order. The
polygon at the front of Inside is the one used to determine the color
of each span.
Here is a brief critique of the sweep line algorithm:

• (+) works well when spans are large.

• (+) each pixel gets painted once.

• (+) amenable to antialiasing.

• (–) fairly difficult to program and debug.

• (–) not on-line.
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Exercises

1. Show that if after clipping polygons tile closed opaque objects,
then a polygon is occluded if (P − Eye) · #n > 0, where P is a
point on the polygon, #n is the outward pointing normal, and
Eye is the view point.

2. The right hand rule given in Section 6.1 is appropriate for
convex polygons only. Give a more general rule that can be
applied to concave as well as convex polygons.

3. For what class of scenes is back face culling both necessary and
sufficient for polygon invisibility?

4. In the depth buffered scan conversion of triangles a “z incre-
ment” must be computed such that if the triangle has depth z
at pixel (x, y), then it has depth z + zinc at pixel (x + 1, y).
(x, y and z denote three-dimensional device coordinates.) If
the triangle has vertices V1, V2, and V3 in screen space, show
that

zinc = −
#dx · #n
#dz · #n

where #dx and #dz denote device frame basis vectors as in
Figure 6.3, and where #n is a vector perpendicular to the plane
of the triangle.

5. Extend the triangle scan-conversion algorithm of Section 5.1.3
to perform depth buffered scan conversion.



       

Chapter 7

Coordinate-Free Geometric Programming II

In Chapter 3 a collection of basic geometric entities were introduced
(points, vectors, etc.). While these objects are sufficient for many
applications, two new objects must be added to fully support the
generation of smooth shaded images of scenes viewed in perspective.
These objects are projective transformations and normal vectors.

7.1. Projective Transformations

In Section 4.1 it was mentioned that perspective projections are not
affine transformations. To model perspective, we must generalize to
the projective transformations. Affine transformations were shown
to carry lines to lines and to preserve ratios of distances along lines.
These two properties can in fact be used as the definition of affine
transformations. That is, if we define Ratio() by

Ratio(P,Q,R) := Q̄R : P̄Q =
Q̄R

P̄Q

for collinear points PQR, where ĀB denotes the length of a line
segment AB, then a map T is affine if for all collinear triples of
points Q0, Q,Q1, their images Q′

0, Q
′, Q′

1 are collinear and

Ratio(Q0, Q,Q1) = Ratio(Q′
0, Q

′, Q′
1). (7.1)

Projective maps do not preserve ratios, but they do preserve cross
ratios. The cross ratio of four collinear points Q0RQQ1 can be
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Fig. 7.1: The cross ratio.

defined as1

CR(Q0, R,Q,Q1) :=
Ratio(Q0, Q,Q1)

Ratio(Q0, R,Q1)
.

Projective maps can therefore be defined as follows:

Definition 7.1.1. A map T : A → B between affine spaces is
said to be projective if lines map to lines in such a way that for all
collinear quartuples Q0RQQ1 the following holds:

CR(Q0, R,Q,Q1) = CR(Q′
0, R

′, Q′, Q′
1) (7.2)

where the primed points are the images of the unprimed points under
T, as indicated in Figure 7.1.

Strictly speaking, Definition 7.1.1 as stated is not completely
precise. The difficulty is that the transformation may be undefined
for a small set of lines (see Example 6). One way to make the
definition precise is to extend the affine domain and range spaces to
their projective completions (see Chapter ??). Roughly speaking, a
projective completion is obtained by adding “points at infinity” in a
way that avoids special cases that arise in affine spaces. Fortunately,
for purposes of perspective viewing the anomalies in Definition 7.1.1
will not be encountered.

Example 6.

1There are several different definitions that can be adopted for cross ratios, but they
are all equivalent in the sense that one is preserved if and only if the others are preserved.
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Fig. 7.2: Central projection maps lines to lines and preserves cross
ratios, hence it is a projective map.

In Section 4.1 it was claimed that perspective projection, also
known as central projection, was a projective map. To verify
the claim, we must demonstrate that lines map to lines and that
cross ratios are preserved under central projection. The following
development is due to Farin [9].

Referring to Figure 7.2, it is clear that lines not containing C
map to lines under perspective projection. In particular, a line Q0Q1

maps to the line of intersection between the projection plane and the
plane containing C, Q0, and Q1. A line through C maps to the point
of intersection between the line and the projection plane. The one
exception to this is for lines through C and parallel to the projection
plane; in fact, the map is not defined for these lines since the line
and the projection plane do not intersect. As mentioned above, for
now we shall simply ignore this small set of anomalous lines.

For those lines that are mapped to lines under central projection,
we must show that cross ratios are preserved. We first notice that

Ratio(Q′
0, Q

′, Q′
1) =

Area(Q′
0, Q

′, C)

Area(Q′, Q′
1, C)

where Area(A,B,C) denotes the area of the triangle whose vertices
are A,B,C. If α = # Q0CR, β = # RCQ, and γ = # QCQ1, then the
law of sines can be used to show that

Area(Q0, Q,C) =
Q0C QC sin(α + β)

2
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implying that CR(Q0, R,Q,Q1) can be written as

CR(Q0, R,Q,Q1) =

¯Q0C Q̄C sin(α + β)
Q̄C ¯Q1C sin(γ)

¯Q0C R̄C sin(α)
R̄C ¯Q1C sin(β + γ)

=
sin(α + β) sin(β + γ)

sin(γ) sin(α)
(7.3)

Equation 7.3 shows that CR(Q0, R,Q,Q1) depends only on angles
between projectors, and not on distances from the points to the
center of projection. Since the projectors for Q0, R,Q,Q1 are shared
by Q′

0, R
′, Q′, Q′

1, we conclude that

CR(Q0, R,Q,Q1) = CR(Q′
0, R

′, Q′, Q′
1),

thus completing the proof that central projection is a projective map.

Since the cross ratio is a generalization of the simple ratio,
every affine transformation is also a projective transformation. It is
possible to show that the composition of two projective maps yields a
projective map (see Exercise 1 on page 118); hence, the composition
of an affine map with a projective map also yields a projective map.

Referring again to Figure 7.1, imagine that the points Q0,
R, and Q1 are fixed and that Q is variable. We would like to
obtain an expression for Q′ = T (Q) in terms of the fixed points
and their images Q′

0, R′, and Q′
1. To do this, let a0 : a1 =

Ratio(Q0, Q,Q1) and let b0 : b1 = Ratio(Q0, R,Q1); similarly let
a′0 : a′1 = Ratio(Q′

0, Q
′, Q′

1) and let b′0 : b′1 = Ratio(Q′
0, R

′, Q′
1),

as shown in Figure 7.1. Since T is projective, Equation 7.2 holds,
implying that

a0 : a1

b0 : b1
=

a′0 : a′1
b′0 : b′1

,

or, equivalently, that

a′0 : a′1 = a0λ0 : a1λ1

where λ0 = b′0/b0, and λ1 = b′1/b1. Thus, Q′ can be expressed as

Q′ =
a′0Q

′
0 + a′1Q

′
1

a′0 + a′1
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=
(a′0 : a′1)Q

′
0 + Q′

1

(a′0 : a′1) + 1

=
(a0λ0 : a1λ1)Q′

0 + Q′
1

(a0λ0 : a1λ1) + 1

=
a0λ0Q′

0 + a1λ1Q′
1

a0λ0 + a1λ1
. (7.4)

Before going further, it is convenient to introduce some simplifying
notation. Let c0, ..., cn be arbitrary scalars and let Q0, ..., Qn be
arbitrary points. We define the bracket notation [·] by

[c0Q0 + · · · + cnQn] :=
c0Q0 + · · · + cnQn

c0 + · · · cn
.

Using this definition of [·], expressions such as [a#v+ b#w+ cO], where
O is a point can be shown to be

[a#v + b#w + cO] =
a

c
#v +

a

c
#w + O.

Equation 7.4 can now be written more simply as

Q′ = [a0λ0Q
′
0 + a1λ1Q

′
1]. (7.5)

Equation 7.5 states that if Q′
0, R

′, and Q′
1 are known, then T (Q)

can be computed for any other point Q on the line Q0Q1. In other
words, T as a map on the line Q0Q1 is completely determined once
the image of three distinct points is known. Contrast this to the
situation for affine maps: An affine map on a line is completely
determined once the image of two points is known.

Figure 7.3 illustrates the case of a projective map on a plane. Let
(a0, a1, a2) and (b0, b1, b2) be the barycentric coordinates of Q and R
respectively relative to the triangle Q0Q1Q2, and let (b′0, b

′
1, b

′
2) be

any numbers such that R′ = [b′0Q
′
0 + b′1Q

′
1 + b′2Q

′
2]. In the case that

Q′
0, Q

′
1, and Q′

2 are affinely independent, these numbers are unique
up to a scale factor. Using a process similar to the one leading to
Equation 7.5, the image of Q under T is given by

T (Q) = T ([a0Q0 + a1Q1 + a2Q2])

= [a0λ0T (Q0) + a1λ1T (Q1) + a2λ2T (Q2)]

= [a0λ0Q
′
0 + a1λ1Q

′
1 + a2λ2Q

′
2] (7.6)
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Fig. 7.3: A projective map T on a plane.

where λi = b′i/bi, i = 0, 1, 2. Thus, for two dimensions, a projective
map is completely determined once the action on a triangle plus one
other point (R) is known. For the general case of n dimensions, a
straightforward generalization of Equation 7.6 holds, implying that
a projective map from an n dimensional affine space is completely
determined once its action on n + 2 points is known (an n-simplex
plus one other point).
Remark: There are two “hidden” assumptions in the above
discussion. First, as mentioned above, the n + 2 points used
to characterize a projective map must be in general position (see
Exercise 2). A collection of n + 2 points is said to be in general
position if whenever one of the points is deleted, the remaining n+1
points are affinely independent. Thus, four points in two-dimensions
are in general position if no three are collinear; similarly, five points
in three-dimensions are in general position if no four are coplanar.
The second implicit assumption is that the points Q′

0, ..., Q
′
n form

an n-simplex. This assumption crept in when we introduced the
barycentric coordinates (b′0, ..., b

′
n) of R′. The requirement that

Q′
0, ..., Q

′
n form an n-simplex is impossible to satisfy if T is not

invertible. For instance, in the three-dimensional case, if T collapses
the whole 3-space into a plane (as in Example 6), then a 3-simplex
in the plane cannot occur since all sets of 4 points in a plane are
affinely dependent. Fortunately, Equation 7.6 still holds as long as
R′ is in the affine span of Q′

0, ..., Q
′
n. !
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Fig. 7.4: The action of a projective map on a line segment.

Even though projective transformations carry points to points, 2

lines to lines, and more generally, hyperplanes to hyperplanes, they
do not preserve the structure of affine spaces (they do, however,
preserve the structure of projective spaces). In particular, they do
not map vectors to vectors. In fact, it is not possible to extend
the domain of a projective transformation to include vectors. In
an attempt to do so, we might be tempted to offer a definition
similar to the one used for affine spaces. That is, suppose T
is a projective transformation and suppose P and Q are points
such that #v = P − Q. If we define the action of T on #v by
T (#v) = T (P−Q) = T (P )−T (Q) we run into a fundamental difficulty.
To be well-formed, the definition of T (#v) should be such that it does
not matter which pair of points are used as long as their difference
is #v. Unfortunately, the value of T (#v) does depend on the choice of
points. An explicit example of this difficulty is shown in Figure 7.4.
The point Q is the midpoint of P,R, implying that Q−P = R−Q.
However, since T does not map Q to the midpoint of T (P ), T (R),
we find that T (Q) − T (P ) 1= T (R) − T (Q). Thus, if we used Q and
P to compute T (#v), we would arrive at a different result than if we
had used Q and R.

2Actually, as mentioned earlier, some points in the domain can be mapped to points
at infinity in the range. These points therefore do not have images in the affine range
space.
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7.1.1. The ProjectiveMap Data Type The fact that projec-
tive transformations cannot map vectors must be reflected in the
geometric algebra and the ADT. The geometric algebra can deal
with the situation simply by leaving it undefined; the ADT can han-
dle the problem by signaling a type-clash if a request is made to map
a vector through a projective transformation.

The ADT can be augmented to support projective maps by
adding a ProjectiveMap data type along with the following proce-
dures:

• ProjectiveMap ← PMCreateP( P0, ..., Pn+1, P ′
0, ..., P ′

n+1 :
Point)
Return the projective map that carries Pi to P ′

i , i = 0, ..., n+1.
The points P0,...,Pn+1 must reside in a common n-space, and
the points P ′

0,...,P
′
n+1 must reside in a common m-space. A

further restriction is that the affine span of P ′
0,...,P

′
m is the

entire range of the transformation.

• ProjectiveMap ← PMPMCompose( F, G : AffineMap or Pro-
jectiveMap)
Return the projective map G ◦ F. An error is signaled if the
domain of G does not match the range of F .

• Point PPMxform( P : Point, PM : ProjectiveMap)
Return the point P transformed by projective map PM.

7.1.2. *Matrix Representations of Projective Maps For an
affine map T , we were able to find a matrix that would transform
coordinates of a point P into coordinates for T (P ). We would now
like to consider the situation when T is projective. It turns out to
be slightly easier to construct a matrix that transforms barycentric
coordinates for P into (frame) coordinates for T (P ).

For notational simplicity, we will again do only the two-
dimensional case; the general case follows immediately. Let T : A →
B be a projective map, and let Q0, Q1, Q2, R ∈ A be in general po-
sition. We will construct a matrix T that transforms barycentric
coordinates (a0, a1, a2) for P relative to Q0, Q1, Q2 into coordinates
for T (P ) relative to a frame FB = (#w0, #w1, OB)T in B. To do this, let
(b0, b1, b2) be the barycentric coordinates of R relative to Q0, Q1, Q2,
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and let (b′0, b
′
1, b

′
2) be the barycentric coordinates for T (R). Since T

is projective,

T (P ) = T ([a0Q0 + a1Q1 + a2Q2])

= [a0λ0T (Q0) + a1λ1T (Q1) + a2λ2T (Q2)],

where λi = b′i/bi. Thus,

T (P ) =




(

a0 a1 a2

)



λ0 0 0
0 λ1 0
0 0 λ2








T (Q0)
T (Q1)
T (Q2)







 .

The points T (Q0), T (Q1), T (Q2) possess coordinates qij relative
to FB, so we can write

T (p) =





(
a0 a1 a2

)



λ0 0 0
0 λ1 0
0 0 λ2








q00 q01 1
q10 q11 1
q20 q21 1





︸ ︷︷ ︸
T

FB





(7.7)
The matrix T is a representation of T in the following sense.

Given (a0, a1, a2), (p′0, p
′
1, 1) can be computed from T as follows.

First compute (x0, x1, x2) by matrix multiplication:

(x0 x1 x2 ) = ( a0 a1 a2 )T.

Thus,

T (P ) = [(x0 x1 x2 )FB]

= [x0 #w0 + x1 #w1 + x2OB]

= p′0 #w0 + p′1 #w1 + OB

where p′0 = x0/x2, p′1 = x1/x2. To reiterate, given (a0, a1, a2),
(p′0, p

′
1, 1) can be computed using a two-step procedure:

(x0 x1 x2 ) := ( a0 a1 a2 )T
( p′0 p′1 1 ) := 1

x2
(x0 x1 x2 ) .

It is only slightly more difficult to find a matrix T′ that
carries frame coordinates for p into frame coordinates for T (p) (see
Exercise 4 on page 118). Once found, P is transformed through T
by applying the two-step procedure above using T′ in place of T.
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Fig. 7.5: For perspective viewing the viewing transformation is such
that the truncated pyramid is mapped to the view box.

7.2. Projective Maps and Perspective Viewing

The idea underlying the creation of hidden surface renderings of
scenes viewed in perspective is essentially the same as was used
in Section 6.2 where a transformation was constructed to map the
clipping volume to the view box (see Figure 6.3). The only difference
in perspective viewing is that the clipping volume forms a truncated
pyramid instead of a parallelpiped. In other words, to support
perspective viewing, we construct a transformation as indicated in
Figure 7.5 that carries the truncated pyramid into the view box. This
transformation is clearly not affine since parallelism is not preserved.
It is, however, projective, meaning that we can fully specify the
transformation by specifying the images of five points in general
position. Using the five points indicated in Figure 7.6, the desired
transformation can be constructed as

ViewTransformPM : ProjectiveMap;
ViewTransformPM := PMCreateP( P0,P1,P2,P3,C,

P ′
0,P

′
1,P

′
2, P

′
3, C

′ : Point)

Once the primitives have been mapped to the view box, the
hidden surface algorithms of Chapter 6 can be used without modifi-
cation.



World

ViewTransform

Screen

ViewBox

Clipping Volume

P1

P2

P3

P0

C

P'0

P'1

P'2

P'3

C'

Coordinate-free Geometric Programming II 111

Fig. 7.6: The perspective viewing transformation can be specified
as the one carrying P0,P1,P2,P3,C to P ′

0,P
′
1,P

′
2, P

′
3, C

′.

7.3. Normal Vectors and the Dual Space

In many graphics and modeling applications it is convenient to
introduce the idea of a normal vector. For instance, in polygonal
modeling it is common to represent objects by polyhedra where each
vertex is tagged with a normal vector that is used in computing
shading information (see Chapter 8). Normal vectors are also
important for ray tracing applications since the surface normal
determines the direction of a reflected ray, and is one of the
determining factors in the direction of a refracted ray.

Unfortunately, the term “normal vector” implies that these ob-
jects behave just like other vectors. While this is nearly correct, there
are important situations where subtleties can occur. A simplified
situation is shown in Figure 7.7 for a hypothetical two-dimensional
polygonal modeling application. The left portion of Figure 7.7 rep-
resents the definition space of a polygonal approximation to a circle.
The right portion of the figure is the image of the polygon under the
indicated embedding, in this case a non-uniform scaling. Notice that
if the normal vectors are transformed as vectors, then their images
do not end up perpendicular to the image of the circle (an ellipse).
In fact, they have become more horizontal when they should have
become more vertical. Such incorrectly transformed normals can
cause visual errors in shading and reflection.
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Fig. 7.7: Normals transforming as vectors. The gray circle on the
left is being approximated by a set of chords. The vector #v is normal
to the circle at the indicated vertex. If #v is mapped through the
non-uniform scaling F , then F (#v) is not perpendicular to the image
of the circle.

One way to understand the problem encountered above is
that vectors were being used to represent two different kinds of
information. The first (and fundamental) use of vectors is to
represent parallelism. (Recall that two lines PQ and P ′Q′ are
parallel if P−Q is a multiple of P ′−Q′.) The transformation rule for
applying affine maps to vectors was constructed precisely to preserve
parallelism. The use of vectors to represent outward pointing
normals is attempting additionally to use vectors to represent
perpendicularity: an outward pointing normal is perpendicular to
the tangent line (or tangent plane) of the object being modeled.
Since perpendicularity is not preserved under affine maps, vectors
fail to be good representatives of tangent lines and tangent planes.

A remedy that is firmly rooted in the fundamentals of geometry
is to introduce a new class of objects, classically known as the dual
vectors, into the algebra. Intuitively, a dual vector will be used
to directly represent oriented tangent hyperplanes. It will then be
possible to construct a transformation rule for dual vectors that
preserves tangency. To make these ideas more precise, we must take
a short excursion into the concepts of linear functionals and dual
spaces.

Warning: The discussion to follow is intended for the purist who
is interested in the algebraic details of dual spaces and how they
relate to normal vectors; for those interested primarily in results,
the remainder of this section should probably be skipped, at least
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on first reading. The results of this section can be summarized as
follows:

• Dual vectors should be used when representing perpendicular-
ity to tangent lines and tangent planes.

• Dual vectors are linear functionals, meaning that a dual vector
φ can be applied to a vector #u to produce a scalar.

• There is a one-to-one association between vectors and dual
vectors in a Euclidean space. A vector #v is in association with
a dual vector λ if for every vector #w, λ(#w) = #v · #w. If #v and
λ are paired in this association, they are called duals of one
another.

• Dual vectors are represented by the Normal data type in the
ADT. It is only really necessary to distinguish between a Vector
and a Normal when mapping through affine maps that do not
preserve angles, such as shears and non-uniform scaling.

For the moment, let us leave the realm of affine and Euclidean
geometry and work instead in the context of vector spaces. A linear
functional λ on a vector space V is a map from V into the reals that
satisfies the linearity condition

λ(α#v + β #w) = αλ(#v) + βλ(#w),

for all #v, #w ∈ V and for all α, β ∈ *. It turns out that the set
of all linear functionals on a vector space V itself forms a vector
space, generally denoted by V∗ (cf. Lang [13]). The vector space
V∗ of linear functionals is called the dual space of V. To reinforce
the dual nature of the spaces V and V∗, the elements of V are more
accurately known as primal vectors and the elements of V∗ are called
dual vectors.

An inner product on the vector space can be used to establish an
association between primal vectors and dual vectors. In particular,
using the bracket notation for the inner product, if #v is held fixed, the
expression 〈#v, #u〉 is a linear functional whose argument is #u; that is,
λ(#u) := 〈#v, #u〉 is a linear functional on V and is therefore a dual vector
(associated with the vector #v). To avoid having to invent a symbol
to act as the argument #u, it is more common to write λ := 〈#v, 〉.



   

114 Computer Graphics

Using this association, we can define the functional 〈#v, 〉 to be the
dual of #v. In equation form,

D"v := 〈#v, 〉.

In this form we recognize that D is actually a linear mapping from
V to V∗ since

Dα"v+β "w = αD"v + βD"w.

In fact, D is one-to-one and onto, implying that it is also invertible.
The definition of D provides another interpretation of the quantity
〈#v, #w〉. By construction, 〈#v, #w〉 = D"v(#w), implying that 〈#v, #w〉 can
be obtained by first dualizing #v, then applying the resulting linear
functional to #w.

It was mentioned in the introduction to this section that dual vec-
tors represent oriented hyperplanes. To see this, notice that D"v(#w)
vanishes whenever #w is perpendicular to #v since perpendicularity im-
plies that 〈#v, #w〉 = 0. Recall that in a vector space the set of vectors
perpendicular to a fixed vector forms a hyperplane that contains the
zero vector. Thus, the linear functional D"v represents an oriented
hyperplane through the origin perpendicular to #v. The hyperplane
is oriented because we can distinguish a positive and negative side.
The vector #w is on the positive side of the hyperplane if D"v(#w) > 0;
it is on the negative side if D"v(#w) < 0.

To translate the above results from vectors in a vector space into
a Euclidean setting, we observe that the freedom of vectors to move
about in Euclidean space means that a dual vector defines only the
orientation of the hyperplane, but does not fix it absolutely in space.
The hyperplane can be fixed by specifying a point through which
the hyperplane must pass. Thus, in a Euclidean space an oriented
hyperplane is represented as a point B together with a dual vector
D"n. A point Q is in the positive half-space, negative half-space, or
on the boundary if the number D"n(Q − B) is positive, negative, or
zero, respectively. This representation for hyperplanes has in fact
already been used in Sections 3.9 and 4.3 in conjunction with the
Sutherland-Hodgman clipping algorithm.

At this point it is not clear that we have gained any new insight
from the introduction of dual spaces and dual vectors. After all, one
could interpret the above discussion as saying nothing more than a
plane is defined by a point P and a vector #v. The advantage of the
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dual vector approach is in the determination of how dual vectors,
and hence planes and hyperplanes, transform under affine maps.

Let F : A &→ B be an invertible affine map and let #v be a vector
in A.V. We would like to extend the domain of F to include the dual
vectors in such a way that perpendicularity is preserved. This goal
can be achieved if we define the action of F on a dual vector D"v as

F (D"v) := D"v ◦ F−1.

To see that perpendicularity is preserved with this definition, let #w
be any non-zero vector in A.V, let #w′ be its image under F ; similarly,
let D′

"v be the image of D"v under F . A consequence of the definition
is that D"v(#w) = D′

"v(#w
′), since

D"v(#w) = 〈#v, #w〉
= 〈#v, F−1 ◦ F #w〉
= 〈#v, F−1 #w′〉
= D′

"v(#w
′).

Thus, if #w lies in the hyperplane defined by D"v (ie, D"v(#w) = 0), then
#w′ will lie in the hyperplane defined by D′

"v (ie, D′
"v(#w

′) = 0).

Remark: As another remark for the purist, we note that dual
vectors, i.e., linear functionals, are an instance of the notion of a
covariant tensor. More specifically, dual vectors are covariant tensors
of order one. In general, a covariant tensor of order k is a k-linear
map from a vector space into the reals (cf. [Spivak ’79]); that is,
a map T (#v1, ..., #vk) is a covariant tensor of order k if it is linear in
each of its arguments. Tensors are useful objects in fields such as
differential geometry, continuum mechanics, and relativity theory.
Programs designed to solve problems in these areas might therefore
benefit from having tensors included in the algebra and the ADT.
!

7.3.1. The Normal Data Type Dual vectors are represented
in the geometric ADT by the Normal data type. The routines for
manipulation of Normals are:

• Normal ← NCreate( f : Frame; c1, ... , ck : Scalar)
Return the Normal whose coordinates in frame f are c1, ... , ck.
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The coordinates of a Normal are defined to be the coordinates
of the vector dual to the normal. Thus, NCreate is equivalent
to VDual( VCreate( f , c1, ... , ck)).

• (c1,...,ck : Scalar) ← NCoords( φ : Normal; f : Frame)
Return the coordinates of φ relative to f.

• Normal ← VDual( V : Vector)
Return the dual to vector V.

• Vector ← NDual( φ : Normal)
Return the vector dual to φ.

• Scalar ← NVApply( φ : Normal, V : Vector)
Apply φ to V, that is, return φ(V).

• Normal ← NAxform( φ : Normal, T : AffineMap)
Return the image of φ under the affine map T ; T is assumed
to be invertible.

7.3.2. *Matrix Representations of Dual Vectors Rather
than representing dual vectors as row matrices as was done for points
and vectors, dual vectors are most naturally represented as column
matrices. This is most easily seen by considering the coordinate
computation of the quantity D"v(#w) = 〈#v, #w〉. If we expand #v and #w
into their coordinates relative to a Cartesian frame (#e1, ..., #en,O)T ,
we find that

D"v(#w) = 〈v1#e1 + · · · + vn#en, w1#e1 + · · · + wn#en〉.

Bi-linearity is used to rewrite this as

D"v(#w) =
∑

i,j

viwj〈#ei, #ej〉 (7.8)

Since the basis vectors are ortho-normal, all cross terms (those with
i 1= j) vanish leaving

D"v(#w) = v1w1 + · · · + vnwn.

Notice that this computation can be written in matrix form as the
product of a row vector and a column vector:

D"v(#w) = (w1 · · · wn 0 ) ( v1 · · · vn 0 )T
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. The row vector is the matrix representation of #w relative to
(#e1, ..., #en,O)T , so we can interpret the column vector as the matrix
representation of D"v relative to the same frame. Multiplication of
these matrices corresponds to the application of D"v on #w, and hence
results in the value D"v(#w).

Recall that D was defined as a linear mapping between a vector
space and its dual space. The fact that a vector #v having coordinates
(v1, ..., vn, 0) is represented by the row matrix ( v1 · · · vn 0 ) and
has a dual D"v represented by the column matrix ( v1 · · · vn 0 )T

implies that the mapping D is realized by the matrix transpose
operator. Since the transpose operator is its own inverse, the inverse
of D is also realized by the matrix transpose operator.

Given that dual vectors can be represented as column matrices,
we now consider the question of how these matrices transform under
the action of affine maps. More precisely, let F : A &→ B be an
affine map whose matrix representation relative to Cartesian frames
in A and B is F, and let w and v be the row and column matrices,
respectively, that represent #w and D"v relative to the chosen basis.
Similarly, let w′ and v′ be the matrix representations of the images
of #w and D"v under F. With these definitions, it is v′ that we seek.
This column vector can be obtained by expanding D"v(#w) in matrix
notation:

D"v(#w) = w v

= w F F−1 v

= w′ F−1 v (7.9)

It was shown earlier that D"v(#w) was invariant under affine maps,
implying that D"v(#w) = D′

"v(#w
′) = w′ v′. Comparing this with

Equation 7.9 reveals that

w′ F−1 v = w′ v′,

which can be rewritten as

w′
(
F−1 v − v′

)
= 0.

If w′ were a totally arbitrary row vector we could use the non-
singularity of F to deduce that

v′ = F−1 v. (7.10)
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There is, however, a problem with taking Equation 7.10 to be the
matrix expression for the transformation of dual vectors.3 Consider
the case when F is a translation, meaning that F is of the form given
in Example 5. The inverse matrix is therefore

F−1 =




1 0 0
0 1 0
−a −b 1



 .

Using this matrix in Equation 7.10 can result in v′ having a non-zero
last component, meaning that it cannot be used as the representation
of a dual vector. The solution to this dilemma is hidden in the fact
that w′ is not totally arbitrary because its last component must be
zero. This means that all but the last component of v′ must agree
with F−1 v, but the last component can, without loss of generality,
be chosen to be zero. This choice can be forced by introducing a
(n+ 1)× (n+ 1) matrix Z that contains all zero elements except for
ones on the first n diagonals. We therefore take as our transformation
rule for dual vectors the matrix expression

v′ = Z F−1 v. (7.11)

One further caveat is in order: Equation 7.11 is only valid when
coordinates are expressed relative to Cartesian frames. If coordinates
are expressed in a non-Cartesian frame, the transformation rule
becomes slightly more complicated. The simplification occurs for
Cartesian frames because the cross terms in Equation 7.8 are
guaranteed to vanish. We leave the generalization to arbitrary frames
as an exercise.

Exercises

1. Show that the composition of two projective maps is projective.

2. What goes wrong if the pre-image points used to define a
projective map are not in general position?

3. Show that planes map to planes under projective maps.

4. Extend the results of Section 7.1.2 to determine a matrix
T′ that carries frame coordinates for a point P into frame
coordinates for the point T (P ), where T is a projective map.

3Thanks to Richard Bartels for pointing this out.
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5. Derive the matrix transformation rule for dual vectors when
arbitrary (i.e., non Cartesian) frames in A and B are chosen.
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Chapter 8

Color and Shading

To create images with smoothly varying, physically plausible, color
variations, we must develop models that approximate the interaction
of light with surfaces. Before developing these lighting models, we
shall look more closely at what is meant by “color” by taking a short
detour through the basics of tri-stimulus color theory.

8.1. Tri-Stimulus Color Theory

Consider the artificially simple situation of a human observer looking
at a single colored light source. We know from elementary physics
that the light source can be physically characterized by an emis-
sion spectrum I(λ) that assigns an intensity of emission to each
wavelength λ of the electromagnetic spectrum. A device such as a
spectrophotometer could be used to physically measure the emission
spectrum from the light source. The human observer on the other
hand would describe the perceived color of the light, perhaps using
words such as “bluish yellow” or “light green”. The key word here is
perceives: whereas nature generates spectra, humans perceive color.

The distinction between spectra and color has been made strik-
ingly clear through experiments in color theory. It is possible for
instance to present two very different spectra to an observer without
the observer being able to tell them apart. (Two distinct spectra
that are perceived as being identical are called metamers.) The
implication of such experiments is that the number of perceivable
colors is much smaller than the number of spectra. This implication
is corroborated by biological evidence. A (normal) human retina
possesses three different types of color receptors. Roughly speaking,
these receptors respond most strongly to long wavelengths, medium

121
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Fig. 8.1: Response curves for the short (S), medium (M), and long
(L) wavelength human color receptors.

wavelengths, and short wavelengths, of light respectively. The ac-
tivity levels for each of the receptors for a variety of wavelengths
have been measured, resulting in the response curves shown in Fig-
ure 8.1. Since the long wavelength receptor peaks in the red portion
of the spectrum, it is commonly referred to as the red receptor. The
medium and short wavelength receptors are commonly known as the
green and blue receptors, respectively.

Tri-stimulus color theory attempts to explain the association
between spectra and color by modeling the low-level or “early”
human vision system as a linear mapping V : Λ → C, where Λ
is the (infinite dimensional) vector space of continuous functions of
wavelength, and C is a three-dimensional vector space called color
space. Specifically, tri-stimulus theory states that V is given by given
by

V (I(λ)) = #c = '#' + m#m + s#s. (8.1)

where the vectors #', #m,#s form a basis for C. The scalars ', m, and s
indicate the level of activity of each of the the three color receptors
in response to stimulation by the spectrum I(λ); they are computed
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according to

' =
∫ ∞

−∞
L(λ)I(λ)dλ

m =
∫ ∞

−∞
M(λ)I(λ)dλ

s =
∫ ∞

−∞
S(λ)I(λ)dλ

where L, M , and S are the receptor response functions of Figure 8.1.
Since the range of V has a smaller dimension than its domain, it is

necessarily a many-to-one mapping, thereby offering an explanation
for the existence of metamers.

Although tri-stimulus theory is adequate for many computer
graphics tasks, it is not adequate for all purposes since there are
many phenomena that the theory fails to predict. For instance, we
have all noticed that the color of a piece of fabric or a paint chip seems
to change depending on what other colors are nearby. Theories that
adequately explain such effects are still an active area of research.

8.1.1. Reproducing Spectral Responses with Frame Buffers
A natural problem to consider in the context of computer graphics
is:

Given: A spectrum I(λ).

Find: r, g, b values to store in a frame buffer so that the
color viewed on the screen evokes the same perceptual
response as I(λ).

To examine this question more closely, we first note that the
specific r, g, b values will clearly depend on the specifics of the
monitor. In particular, it will be critical to know the emission spectra
R(λ), G(λ) and B(λ) of each of the red, green, and blue phosphors,
respectively. Assuming the monitor has been gamma corrected, the
synthesized spectrum I ′(λ) appearing on the monitor corresponding
to a pixel value (r, g, b) is

I ′(λ) = rR(λ) + gG(λ) + bB(λ). (8.2)

Given I(λ) we wish to compute (r, g, b) such that I(λ) and I ′(λ)
are metamers; that is, we require

V (I(λ)) = #c = V (I ′(λ)). (8.3)
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To solve the problem, we first note that as a consequence of the
linearity of integration, the mapping V is a linear transformation,
meaning that for any two spectra X(λ) and Y (λ), and for any scalars
a and b,

V (aX(λ) + bY (λ)) = aV (X(λ)) + aV (Y (λ)).

Linearity of V implies that

V (I ′(λ)) = rV (R(λ)) + gV (G(λ)) + bV (B(λ))

= r#r + g#g + b#b,

where the vectors #r, #g, and #b are V (R(λ)), V (G(λ)) and V (B(λ)),
respectively. Substituting Equations 8.4 and 8.1 into Equation 8.3,
we find that

#c = r#r + g#g + b#b = '#' + m#m + s#m. (8.4)

In vector space terms, Equation 8.4 states that (r, g, b) are the
coordinates of #c in the basis (#r,#g,#b), and (',m, s) are the coordinates
for #c in the basis (#', #m,#s). We therefore recognize the calculation of
(r, g, b) from (',m, s) as a simple change of coordinates; hence there
must exist a 3 × 3 matrix A such that

(
r g b

)
=

(
' m s

)
A.

In fact, it can be shown that (see Exercise 1 on page 134)

A =




αRL αRM αRS

αGL αGM αGS

αBL αBM αBS





−1

(8.5)

where

αXY =
∫ ∞

−∞
X(λ)Y (λ)dλ

X ∈ {R,G,B}, Y ∈ {L,M,S}.

The change of basis matrix A can be computed once the emission
spectra are known for the monitor on which the input spectra are to
be reproduced. Once A is computed, the (r, g, b) triple corresponding
to a spectrum I(λ) can be found by first computing (',m, s), then
multiplying by A to obtain (r, g, b).
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Our coordinate-free machinery can be used to explain the above
process as follows. The human visual system corresponds to the
basis (#', #m,#s) for the color space C since coordinates relative to
this basis indicate the level of activity in human color receptors.
Each monitor corresponds to a different basis (#r,#g,#b), where the
relationship between the “monitor basis” and the “human basis”
depends on the phosphor emission spectra of the monitor. The
monitor basis is therefore the color equivalent of the (spatial) device
frame imposed on screen space.

8.1.2. The CIE Color System An organization called the
Commision Internationale de l’Éclairage (CIE) has devised a color
reproduction process that is somewhat more accurate than the pro-
cess above (inaccuracies in the above process are due to deficiencies
in the tri-stimulus theory). Rather than computing (r, g, b) by first
computing (',m, s) from the spectrum, the CIE developed a two
step process wherein the coordinates (x, y, z) of V (I(λ)) relative to
an agreed upon standard basis (#x, #y, #z) for color space are first com-
puted. The (r, g, b) coordinates appropriate for a particular monitor
are computed from (x, y, z) using a change of basis matrix.

Increased accuracy was achieved by the CIE by experimentally
determining lookup tables that represent the mapping from spectra
to (x, y, z). This was done by presenting human observers with
colored lights corresponding to large number of different wavelengths.
For each wavelength, the subjects were asked to adjust the red, green,
and blue values on a high quality color monitor until the color on
the monitor matched the color of the spectrum. This resulted in a
table that mapped directly from spectra to (r, g, b) for that particular
monitor. The effects of the monitor were then factored out by
performing a change of coordinates from (#r,#g,#b) to (#x, #y, #z). The
famous CIE chromaticity diagram corresponds to the colors lying on
the plane

x#x + y#y + z#z, x + y + z = 1.

8.2. Lighting Models

The problem to be addressed in this section can be stated roughly
as follows:
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Fig. 8.2: A lighting model is used to determine the intensity of
light propagating from a point P visible to the viewer through pixel
p. The vector '̂ points toward the point light source and the vector
v̂ points toward the viewer.

Given: A point P on the surface of a geometric primitive
that has been determined to be visible to the viewer
through a pixel p, a unit vector v̂ from P to the viewer,
and a unit vector '̂ from P toward a point light source
(see Figure 8.2).

Find: The intensity and color of light radiating from
P back toward the viewer. (The computed radiated
intensity is used to set the color of pixel p.)

The above problem is solved by developing a model of the
physical interaction of light with materials. Such a model has come
to be known as a shading or lighting model. Our approach will be to
begin with a very simple lighting model, then successively embellish
it to obtain a series of lighting models that offer increasing realistic
shading effects at the price of higher computational cost.
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Fig. 8.3: The situation at a point P to be illuminated.

8.2.1. Lambertian Shading This is a simple lighting model
based on the assumption that the incident light is uniformly rera-
diated in all directions. This is the so-called diffuse or Lambertian
assumption (named after the French physicist Lambert). To develop
a mathematical model based on the diffuse assumption, we use a
linearity assumption together with the definition of intensity as the
ratio of power (energy/sec) to area. The linearity assumption is that
the outgoing energy is proportional to the incident energy. This as-
sumption is very accurate under normal viewing conditions, but it
is certainly violated for violent conditions such as bombardment by
powerful lasers.

We seek an expression that relates the outgoing intensity Iout to
the incident intensity Iin. To do this, we first determine the incident
energy striking a differential surface area ∆Asurface of the surface

around P . Referring to Figure 8.3, the incident power Ein('̂) in the
direction of '̂ is

Ein('̂) = Iin('̂)∆Ain (8.6)

where ∆Ain is the cross sectional area of the incident beam that
corresponds to the area ∆Asurface on the surface, and where Iin('̂)
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denotes the incident intensity arriving from direction '̂. Using the
linearity assumption, we write

Eout(v̂) = φ(v̂, '̂)Ein('̂) (8.7)

where φ(v̂, '̂) is the constant of proportionality that relates the
incoming power from the direction '̂ to the outgoing power in the
direction of v̂; it is a property of the material, characterizing how
energy is reflected off the surface. Combining Equations 8.6 and 8.7
and using the relation

Iout(v̂) =
Eout(v̂)

∆Aout
,

we find that

Iout(v̂) = φ(v̂, '̂)Iin('̂)
∆Ain

∆Aout
(8.8)

= φ(v̂, '̂)Iin('̂)
∆Ain

∆Asurface

∆Asurface

∆Aout
. (8.9)

Referring to Figure 8.3, the ratio of ∆Ain to ∆Asurface is cos θin;
similarly, the ratio of ∆Aout to ∆Asurface is cos θout, implying that

Iout(v̂) = φ(v̂, '̂)Iin('̂)
cos θin
cos θout

0 ≤ θin, θout ≤ π/2. (8.10)

The diffuse reflection assumption states that Iout(v̂) is independent
of v̂, meaning that

φ(v̂, '̂) = ρ(v̂, '̂) cos θout. (8.11)

The function ρ(v̂, '̂) is called the bidirectional reflectance. The
bidirectional reflectance for a diffusely reflecting surface is assumed
to be a constant kd. Using Equation 8.11, Equation 8.10 can be
rewritten as

Iout(v̂) = kdIin('̂)('̂ · n̂)+ (8.12)

where (x)+ is defined to be x if x ≥ 0, and zero otherwise.
Equation 8.12 is the diffuse lighting model. As a consequence

of the linearity assumption, multiple light sources can be modeled
simply by summing the contributions from each light source. Notice
however that Iin('̂) as used in Equation 8.12 is the intensity of the



     

Lighting Models and Color 129

light source as measured at P . The conservation of energy principle
from physics predicts that the intensity of a point light source obeys
the inverse square law – the intensity falls off as one over the distance
from the source squared. Thus,

Iin('̂) =
I0
r2

where r is the distance from the light source to P , and I0 is the
intensity of the source as measured at unit distance. Although
the inverse square law is physically accurate for a point source, the
lighting effects produced using it are extremely harsh. One reason for
the harshness is that true point light sources are never encountered
in everyday experience. The lighting effects can be improved in a
number of ways. The most physically justified method is to model
light sources with finite extent by integrating Equation 8.12 over
the area of the light source. This is in fact the approach taken by
a number of global illumination methods that will be discussed in
Chapter ??. A much less expensive (empirical) approximation is to
model the intensity fall off as

Iin('̂) =
I0

γ + r

where γ is a constant associated with the light source.
It should also be noted that Iout(v̂) is the intensity leaving P

toward the viewer. The pixel p through which P is visible should
be set to the intensity as measured at p. Thus, strictly speaking, p
should be set to an intensity Iout(v̂)/d2, where d is the distance from
P to p. Once again, this fast decay in intensity produces illumination
effects that are too harsh. It is therefore very common in graphics
to simply ignore the intensity fall off between P and p.

Colored light sources reflecting off colored surfaces are most
accurately modeled by treating Iin, Iout, and kd in Equation 8.12 as
functions of wavelength. Once the final spectrum I(λ) is determined,
it can be mapped to a color by applying the mapping V given in
Equation 8.1. The physically correct method is therefore to perform
all calculations in Λ, then map to C to obtain a color.

In computer graphics, however, it is traditional to handle color
by maintaining red, green, and blue color components separately.
For example, color light sources are typically characterized by their
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red, green, and blue intensities; that is, a light source with spectrum
I(λ) is most often represented by the (r, g, b) coordinates of V (I(λ)).
The diffuse reflectances of colored materials are similarly character-
ized by three coefficients (kd,red, kd,green, kd,blue). For instance, a pre-
dominantly red material would be characterized by a value of kd,red
near one, and values of kd,green and kd,blue near zero.

The approach traditionally taken in computer graphics is essen-
tially to perform all calculations in C rather than in Λ. There are
a number of difficulties with this (virtually universal) approach. For
instance, the physically correct color corresponding to the calcula-
tion I1(λ) + k(λ) ∗ I2(λ) in Λ is

V (I1(λ) + k(λ) ∗ I2(λ)) = V (I1(λ)) + V (k(λ) ∗ I2(λ)). (8.13)

The component-wise color computed by the usual computer graphics
approach can be formally described by

V (I1(λ)) + V (k(λ)) ⊗ V (I2(λ)), (8.14)

where ⊗ is defined follows: if #x = rx#r + gx#g + bx#b and #y =
ry#r + gy#g + by#b, then

#x⊗ #y = rxry#r + gxgy#g + bxby#b.

The two results given in Equations 8.13 and 8.14 will, in general,
not be equal since V does not preserve multiplication of functions.
More precisely, if X(λ), Y (λ) ∈ Λ, V (X(λ)∗Y (λ)) is not, in general,
equal to V (X(λ)) ⊗ V (Y (λ)).

A number of groups, led primarily by Cornell University, have
been advocating the physically correct approach of performing light-
ing calculations in Λ, using for instance, piecewise linear approx-
imations of functions. Unfortunately, the approach is still not
widespread. In the remainder of this chapter, we succumb to the
sin of performing calculations in C using component-wise computa-
tions for the red, green, and blue color coordinates.

Putting all the pieces together, we set the color components of
pixel p to

Iout,c(v̂) =
∑

light source i

ρc(v̂, '̂i)
Ii0,c

γi + ri
('̂i · n̂)+ (8.15)
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c ∈ {red, green,blue}

where ρc(v̂, '̂) = kd,c.
Finally, we mention another simple type of light source called

a directional light source. A directional source models a distannt
point light source such as the sun. Unlike a point light source where
the vector '̂ depends on the point P being illuminated, directional
light sources are modeled using a vector '̂ that does not depend on
P , thus capturing the fact that incoming rays from the light are
parallel. Another difference is that since the light rays are parallel,
there is no intensity fall off with distance.

8.2.2. Ambient Lighting The images produced by the lighting
model of Equation 8.15 are still rather harsh. One reason for the
harshness is that only direct illumination is modeled – there is no
account taken of indirect illumination that is so often present in
natural environments. In an office, for instance, the floor underneath
a desk receives some light even though the area is not directly
illuminated by a light source. The global illumination algorithms in
Chapter ?? are specifically designed to accurately model indirect
illumination. A reasonably effective but very simple empirical
method is to model only ambient illumination. Ambient illumination
refers to a completely uniform level of light that is visible to all
surfaces. The light model can be augmented to including ambient
illumination by replacing Equation 8.15 with

Iout,c(v̂) = ρa,cIa,c +
∑

light source i

ρc(v̂, '̂i)
Ii0,c

γi + ri
('̂i · n̂)+ (8.16)

c ∈ {red, green,blue}

where
• ρc(v̂, '̂) = kd,c is the diffuse bidirectional reflectance.

• ρa,c is the ambient bidirectional reflectance. It is common
to assume that the material diffusely reflects the ambient
illumination, meaning that ρa,c = kd,c.

• Ia,c is the intensity of the ambient illumination.
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8.2.3. Specular Reflection Specular (shiny) surfaces are not
modeled well by diffuse reflection since they exhibit preferential
reradiation. The observed intensity of a point P on a near-perfect
mirror surface, for instance, depends on the position of the viewer
relative to the light source. If the viewer is positioned so that the
reflection of the light source is visible at P , the intensity at P appears
to be very bright. The variation of the intensity of a point with the
position of a viewer is not an effect captured by the diffuse model.

Torrance and Sparrow developed a model of specularly reflecting
surfaces by treating the surface as being composed of microscopic
perfectly reflecting flat facets called microfacets [18, 19]. The
microfacets are assumed to have normal vectors oriented in a
distribution about the macro surface normal n̂, thereby modeling the
microscopic flaws that prevent real materials from being perfectly
mirror-like. Torrance and Sparrow show that the bidirectional
reflectance function for this model of specular reflection is of the
form

ρs(v̂, '̂) = σ
DG

(n̂ · v̂)(n̂ · '̂)
where

• σ is a constant.

• D is a function describing the distribution of microfacet
normals.

• G is a self-shadowing factor, accounting for the shadowing of
some microfacets by other microfacets.

Although the Torrance-Sparrow model was known in the physics
literature in the late 60’s, Phong Bui-Tuong, working at the Univer-
sity of Utah in the computer graphics laboratory in the mid ’70s,
independently developed an empirical model of specular reflection
that is qualitatively very similar to the Torrance-Sparrow model. In
particular, Bui-Tuong used a model of specularity that is equivalent
to the bidirectional reflectance

ρs,c(v̂, '̂) = ks,c
(r̂ · v̂)p+
(n̂ · '̂)+

, c ∈ {red, green,blue}

where r̂ is a unit vector pointing in the mirror direction as shown in
Figure 8.4. This model of specular reflection has come to be known
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Fig. 8.4: The quantities necessary for the Phong lighting model.

as the Phong lighting model. The maximum intensity occurs when
the viewing direction v̂ aligns with the mirror direction r̂, since the
term (r̂ ·v̂)p+ reaches its maximum value of one. The number p, called
the Phong exponent, controls the rate at which a specular reflection
falls off as v̂ moves away from r̂, thereby controlling the width of
specular highlights as seen on the surface. Small values of p cause
broad highlights whereas large values of p create narrow, sharply
focused highlights. The Phong exponent then roughly corresponds
to the “shinyness” of the surface, with large values of p corresponding
to very shiny materials. In terms of the Torrance-Sparrow microfacet
model, p corresponds to the width of the distribution of microfacet
normals about the macro surface normal n̂.

The values ks,red, ks,green, ks,blue characterize the degree to which
the surface specularly reflects in each of the color channels. These
values effectively control the color of specular highlights.

A lighting model incorporating the effects of ambient, diffuse,
and the Phong model of specularity is given by

Iout,c(v̂) = ρa,cIa,c +
∑

light source i

ρc(v̂, '̂i)
Ii0,c

γi + ri
('̂i · n̂)+ (8.17)
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where

ρc(v̂, '̂i) = kd,c + ks,c
(r̂i · v̂)p+
(n̂ · '̂i)+

.

Exercises

1. Prove that the matrix A that changes coordinates relative to
(#', #m,#s) to coordinates relative to (#r,#g,#b) has the form given
in Equation 8.5.

2. Develop a formula for computing the mirror direction vector r̂
from n̂, and '̂.
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