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Abstract
In computer graphics and geometric modeling, shapes are often represe
by triangular meshes. With the advent of laser scanning systems, mes
of extreme complexity are rapidly becoming commonplace. Such mes
are notoriously expensive to store, transmit, render, and are awkward
edit. Multiresolution analysis offers a simple, unified, and theoretical
sound approach to dealing with these problems. Lounsberyet al. have
recently developed a technique for creating multiresolution representati
for a restricted class of meshes withsubdivision connectivity. Unfortunately,
meshes encountered in practice typically do not meet this requirement
this paper we present a method for overcoming the subdivision connectiv
restriction, meaning that completely arbitrary meshes can now be conve
to multiresolution form. The method is based on the approximation of
arbitrary initial meshM by a meshMJ that has subdivision connectivity
and is guaranteed to be within a specified tolerance.

The key ingredient of our algorithm is the construction of a parametriz
tion ofM over a simple domain. We expect this parametrization to be of u
in other contexts, such as texture mapping or the approximation of comp
meshes by NURBS patches.

CR Categories and Subject Descriptors: I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling. - surfaces and object r
resentations; J.6 [Computer-Aided Engineering]: Computer-Aided Desi
(CAD); G.1.2 [Approximation]: Spline Approximation.

Additional Keywords: Geometric modeling, subdivision surfaces
wavelets.

1 Introduction
In computer graphics and geometric modeling, shapes are of
represented by triangular meshes. With the advent of laser sc
ning systems, meshes of extreme complexity are rapidly becom
commonplace. The objects shown in Color Plates 1(k) and 2(
for instance, consist of 69,473 and 103,713 triangles, respective
Such meshes are notoriously expensive to store, transmit, and r
der. They are also awkward to edit, as many vertices typically mu
be moved to make a change of substantial spatial extent.

Multiresolution analysis offers a promising new approach fo
addressing these difficulties in a simple, unified, and theoretica
sound way. A multiresolution representation of a mesh, as recen
developed by Lounsberyet al. [11], consists of a simple base mesh
(Color Plate 1(e)) together with a sequence of local correction term
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calledwavelet coefficients, capturing the detail present in the objec
at various resolutions. Color Plates 1(g)–(h) show a sequence
intermediate resolution models incorporating an increasing numb
of wavelets.

Multiresolution mesh representations are particularly convenie
for a number of applications, including:

� Compression/simplification: A multiresolution mesh can be
compressed by removing small wavelet coefficients. Mor
over, the threshold for removal can be chosen such that t
resulting approximation is guaranteed to be within a specifie
error tolerance of the original mesh. A number of example
are shown in the color plates.

� Progressive display and transmission: An attractive method
for displaying a complex object is to begin with a low reso
lution version that can be quickly rendered, and then progre
sively improve the display as more detail is obtained from dis
or over a network. Using a multiresolution representation, th
is simply achieved by first displaying the base mesh, and th
progressively adding the contributions of wavelet coefficien
in order of decreasing magnitude.

� Level-of-detail control: High performance rendering systems
often use a level-of-detail hierarchy, that is, a sequence of a
proximations at various levels-of-detail. The crudest approx
mations are used when the viewer is far from the object, whi
higher detail versions are substituted as the viewer approach
Multiresolution representations naturally support this type o
display by adding successively smaller wavelet coefficients
the viewer approaches the object, and by removing them
the viewer recedes. Moreover, the coefficients can be add
smoothly, thereby avoiding the visual discontinuities encoun
tered when switching between approximations of different re
olution. This use of multiresolution representations is illus
trated in Color Plates 1(k) and 1(l).

� Multiresolution editing: Editing at various scales can proceed
along the lines developed by Finkelstein and Salesin [4] by o
dering coefficients according to their support, that is, by th
spatial extent of their influence. Color Plates 2(e) and 2(
show edits of a mesh at low and high levels of detail.

Although the multiresolution analysis of Lounsberyet al.[11] can
be applied to meshes of arbitrary topological type, it has a serio
shortcoming: it is restricted to meshes withsubdivision connectiv-
ity, that is, to meshes obtained from a simple base mesh by recurs
4-to-1 splitting (see Figure 1). Figure 6(a) shows an example of
mesh with subdivision connectivity — it results from recursively
splitting the faces of an octahedron four times. Unfortunately, fe
of the meshes encountered in practice have this restricted structu
3
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In this paper we present a method for overcoming the subdivis
connectivity restriction, meaning that completely arbitrary mesh
can now be converted to multiresolution form. Our approach is
develop an algorithm for approximating an arbitrary meshM (as in
Color Plate 1(a)), which might not have subdivision connectivi
by a meshMJ that does (as in Color Plate 1(f)), and is guarante
to be within a prescribed tolerance�1 ofM . We refer to this process
asremeshing, and we callMJ theremesh.

Multiresolution analysis of an arbitrary meshM thus proceeds in
two steps: we first use remeshing to approximateM by a meshMJ

with subdivision connectivity, and then use the method of Loun
bery et al. to convertMJ to multiresolution representation. (Al-
though we cannot reproduce here all the results of Lounsberet
al. [11], we have included a brief summary in Appendix A.)

The key ingredient of the remeshing procedure — and the p
cipal technical contribution of the paper — is the construction o
parametrization ofM over abase complexK0 possessing a small
number of faces. We then sample the parametrization to prod
the remesh. Considerable care is taken to create a parametriz
and a sampling pattern so that the resulting remesh can be wel
proximated with relatively few wavelet coefficients.

The construction of parametrizations for complex shapes o
simple domains is a fundamental problem that occurs in num
ous applications, including texture mapping, and the approxim
tion of meshes by NURBS patches. We therefore expect that
parametrization algorithm will have uses outside of remeshing.

The remainder of the paper is organized as follows. In Section
we describe the relationship between our work and previously p
lished methods. In Section 3, we give a high level overview of t
major steps of the remeshing algorithm. The details of the algorit
are presented in Sections 4-7. In Section 8, we apply our metho
meshes of varying complexity, and give examples of compress
level-of-detail control, and editing. We close with conclusions a
future work in Section 9.

2 Related Work
The difficulty of dealing with complicated shapes is evidenced
the extensive recent research on the topic.

The problems of compression/simplification and level-of-det
control have been addressed by Turk [20], Schroederet al. [19],
Hoppeet al. [8], Rossignac and Borrel [16], and Varsney [22]. Ou
approach differs from these methods in three principal respe
First, it provides guaranteed error bounds, whereas the approa
of Turk, Schroederet al., and Hoppeet al. do not. Second, it pro-
duces a single compact representation from which a continuous f
ily of lower resolution approximations can be quickly and easi
constructed, whereas the previous methods generate a discret
of models of varying complexity. (We should note, however, th
Turk, and Rossignac/Borrel, and Varsney present methods for
terpolating between models.) Third, our representation can be s
ply and conveniently edited at multiple scales, whereas it is hard
imagine how one would achieve similar results using the previo
approaches.

The editing of complex shapes was a central motivation for t
introduction of hierarchical B-splines by Forsey and Bartels [6
Forsey and Bartels [5] and Forsey and Wang [7] have subseque
developed methods for fitting hierarchical B-splines to meshes to
logically equivalent to a disk. Finkelstein and Salesin [4] hav
demonstrated how wavelet representations of B-spline curves
tensor product surfaces can be used to achieve similar benefits.
main advantage of our method is its ability to deal with shapes
arbitrary topological type.

The problem of parametrizing meshes has recently been c
1
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sidered by Maillotet al. [12] in the context of texture mapping.
However, the parametrizations they construct are not useful f
our purpose: their surface tiles are not triangular, and their loc
parametrizations do not fit together continuously. Additionally, ou
local parametrizations, based on the well-established theory of h
monic maps, are simpler to compute than the ones used by Mailloet
al., and seem to produce parametrizations of comparable qua
(see Section 4).

Finally, the technique of Schröder and Sweldens [18] could be
used in place of Lounsberyet al. for multiresolution analysis of the
remesh.

3 Overview of Remeshing
The basic idea of remeshing is to construct a parametrization ofM
over a suitably determined domain meshK0. This parametrization
is then resampled to produce a meshMJ that has subdivision con-
nectivity and is of the same topological type asM .

Our remeshing algorithm consists of three steps, as illustrated
Color Plates 1(a)-1(h):

1. Partitioning: PartitionM into a number of triangular regions
T1; :::; Tr, as shown in Color Plate 1(d). We want the numbe
r of regions to be small, because the lowest complexity ap
proximation we can construct hasr faces, as shown in Color
Plate 1(e). Basic tools used in partitioning are harmonic map
maps that preserve as much of the metric structure (lengths, a
gles, etc.) ofM as possible. Harmonic maps are described i
Section 4. A detailed description of our partitioning algorithm
is given in Section 5.
Identifying each of them vertices ornodesof the triangulation
T1; :::; Tr with a canonical basis vector ofRm defines a mesh
in Rm, called thebase complex, with a face corresponding
to each of ther triangular regions. This mesh serves as th
domain of the parametrization constructed in the next step.

2. Parametrization:For each regionTi of M construct a (local)
parametrization�i : Fi ! Ti over the corresponding faceFi
of the base complexK0. The local parametrizations are made
to fit together continuously, meaning that collectively they de
fine a globally continuous parametrization� : K0 ! M . We
want the coordinate functions of the parametrization to vary a
little as possible since such functions have multiresolution ap
proximations with few significant wavelet coefficients, leading
to high compression ratios. Harmonic maps in a sense min
mize distortion and therefore are particularly well suited fo
this purpose. A description of the parametrization step is pre
sented in Section 6.

3. Resampling:PerformJ recursive 4-to-1 splits on each of the
faces ofK0 (see Figure 1). This results in a triangulation
KJ of K0 with subdivision connectivity. The remeshMJ , as
shown in Color Plate 1(f), is obtained by mapping the vertice
of KJ intoR3 using the parametrization�, and constructing
an interpolating mesh in the obvious way;MJ therefore has
vertices lying onM , and has subdivision connectivity.
The resampling step is described more fully in Section 7, an
it is shown thatJ can be determined so thatMJ andM differ
by no more than a specified remeshing tolerance�1.

4 Harmonic maps
A crucial building block of our remeshing algorithm is a method
for constructing a parametrization of a (topological) diskD � M
over a convex polygonal regionP � R

2. This method is used in
two places: in the construction of the triangulationT1; : : : ; Tr of
74
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Figure 1: 4-to-1 splitting of a triangular face: (a) the initial face; (b
after one 4-to-1 split; (c) after two 4-to-1 splits.

M (see Section 5), and in the parametrization ofM over the base
complexK0 (see Section 6). We want this parametrization to ha
small distortion; for example, ifD is (close to) planar, we want the
parametrization to be (close to) linear. Because the region may
geometrically complex (see, for example, Figure 2), some distort
is usually inevitable.

While it is not clear in general how to find a parametrizatio
� with small distortion, there is a closely related and well-studie
problem that has a unique solution: Fix a homeomorphismg be-
tween the boundary ofD and the boundary of the polygonal region
P ; then there is a uniqueharmonic maph : D ! P that agrees
with g on the boundary ofD and minimizesmetric dispersion(see
Eells and Sampson [3], pages 114–115, and the survey article
Eells and Lemaire[2]). Metric dispersion is a measure of the exte
to which a map stretches regions of small diameter inD. It is thus
a measure of metric distortion.

In addition to minimizing metric distortion, the harmonic maph
has a number of important properties: (i) It is infinitely differen
tiable on each face ofD; (ii) it is an embedding [17]; and (iii) it is
independent of the triangulation ofD. Becauseh : D ! P is an
embedding, the inverseh�1 is a parametrization ofD overP . We
will return below to the issues of choosing the boundary mapg and
of computing approximations toh.

The dispersion minimizing property of harmonic maps is illus
trated in Figure 2, which shows a piecewise linear approximation
a harmonic map from a geometrically complex region onto a pol
gon. The relatively dense regions of the polygon correspond to
ears and nose of the cat. Notice that the aspect ratios of triang
tend to be preserved. Notice also that the map introduces a cer
amount of area compression. This is inevitable because the reg
has a large area relative to its circumference, and consequently
embedding must introduce some distortion in edge lengths. T
harmonic map tends to minimize such distortion while maintainin
the embedding property and attempting to preserve aspect ratio
triangles.

Harmonic maps can be visualized as follows. ImagineD to be
composed of elastic, triangular rubber sheets sewn together al
their edges. Stretch the boundary ofD over the boundary of the
polygonP according to the mapg. The harmonic map minimizes
the total energyEharm[h] of this configuration of rubber sheets.

Rather than constructing the harmonic map directly, we com
pute a piecewise linear approximation. Assume thatn vertices
v1; : : : ; vn, calledcorners, have been selected on the boundary@D
of D (see Figure 2), and (for technical reasons) assume that the
gree of each of the remaining boundary vertices is at least 3.

We choose the polygonP by mapping the corners ofD onto the
vertices of ann-gon inR2. The vertices of then-gon are positioned
on a circle such that the sides subtend angles proportional to the
lengths of the boundary segments ofD joining the corresponding
corners. We then defineg to be the piecewise linear map that send
the corners of@D to the vertices ofP , and is a homothety (i.e. an
isometry up to a constant factor) between each boundary segm
of D and the corresponding side ofP (Figure 2).
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(a) Original mesh tile (b) Harmonic embedding

Figure 2: The harmonic map for the head of a cat. The neck of th
cat is mapped onto the boundary of the polygon. The “corner” ver
tices (thoses sent to vertices of the polygon) are indicated by sma
balls.

Now suppose thath is any piecewise linear map that agrees with
g on the boundary. It is therefore uniquely determined by its value
h(i) at the vertices ofD. By explicitly integrating the functional
Eharm over each face, one finds thatEharm can be reinterpreted
as the energy of a configuration of springs with one spring place
along each edge ofD:

Eharm[h] = 1=2
X

fi;jg2Edges(D)

�i;jkh(i)� h(j)k2 ; (1)

where the spring constants�i;j are computed as follows: For each
edgefi; jg, let Li;j denote its length as measured in the initial mesh
D, and for each facefi; j; kg, let Areai;j;k denote its area, again as
measured inD. Each interior edgefi; jg is incident to two faces,
sayfi; j; k1g andfi; j; k2g. Then

�i;j =
�
L2i;k1 + L2j;k1 � L2i;j

�
=Areai;j;k1 +�

L2i;k2 + L2j;k2 � L2i;j
�
=Areai;j;k2

The formula for spring constants associated to boundary edges h
only one term.

Although the spring constants�i;j can assume negative values,
the function (1) is positive definite, and its unique minimum can be
found by solving a sparse linear least-squares problem for the va
uesh(i). In contrast to the harmonic map itself, its piecewise linear
approximation is not always an embedding. In our experience, th
problem occurs extremely rarely (3 times in the roughly 1000 har
monic maps we computed). In these cases we use uniform sprin
constants.

For the remainder of this paper we refer to the unique piecewis
linear function minimizing (1) as a harmonic map, although strictly
speaking it is only an approximation.

Others have developed similar approaches to embedding dis
like regions. One such approach, described by Kentet al. [9], is
also based on minimizing the energy of a network of springs. The
choose spring constants to be either all equal or inversely propo
tional to edge lengths. Maillotet al. [12] introduced another func-
tional, also based on elasticity theory.

Figure 3 illustrates the behavior of the various embedding
schemes in a simple example where the regionD (see Figure 3(a))
is a triangulation of a planar polygonP andg : @D ! @P is the
identity. The harmonic map (Figure 3(b)) is the identity map and
therefore has no metric distortion. The method of Kentet al. with
either choice of spring constants produces considerable metric di
tortion (Figure 3(c) and (d)).
5
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Figure 3: Comparison of various “spring embeddings”. From le
to right: (a) Original mesh; (b) Harmonic map and embedding
Maillot et al. with � = 1; (c) �i;j = 1; (d) �i;j = 1=Li;j ; (e)
Embedding of Maillotet al.with � = 1=2.

The mathematical properties of the functional proposed by Ma
lot et al. are not entirely clear. In particular, the smooth theory
which it is an approximation does not yield planar embeddings
geometrically complex regions. This led them to introduce a us
specified tuning parameter�. In the example of Figure 3, the choice
� = 1 also produces the identity map, whereas the choice� = 1=2
leads to small distortion (see Figure 3(e)). The method of Maillotet
al. appears produce results whose quality is comparable to o
(for appropriately chosen�). However, their method requires non
linear optimization, whereas our method requires only the solut
of a sparse linear least-squares problem.

5 Partitioning
Our partitioning scheme is based on the concepts of Voronoi d
grams and Delaunay triangulations. Let us first see how these c
cepts could be used to partition a dense triangulation of a pla
region into a small number of large triangles. We could begin by s
lecting a set of relatively uniformly distributed vertices of the den
triangulation, and then compute the Delaunay triangulation for t
selected vertices. One method for computing the Delaunay trian
lation for a set of sites in the plane is to first construct the Voronoi d
agram. Its polyhedral dual is the Delaunay triangulation if Voron
tiles meet three at a corner.

By analogy, our approach is to first partition the faces ofM into
a set of Voronoi-like tiles�i using a discrete approximation of the
Voronoi diagram as described in Section 5.1. Unlike typical us
of Voronoi diagrams, we do not know the sitesa priori — they are
determined dynamically as the Voronoi diagram is constructed.

We then construct the dual to the Voronoi diagram, resulting in
Delaunay-like partition ofM into triangular regionsTi, as described
in Section 5.2.

5.1 Constructing the Voronoi diagram

As mentioned above, we use a discrete version of the Voronoi
agram to partitionM into a set of Voronoi-like tiles. An efficient
algorithm for constructing true Voronoi diagrams on the surface
a mesh has been developed by Mount [15], but it is rather diffic
to implement, and is unnecessary for our purposes.

We first describe an algorithm for computing tiles�1; :::; �s given
a set of sites logically positioned at the centroids of thesite faces
S = ff1; : : : ; fsg. We then present an algorithm for selecting
setS of site faces for which the induced Voronoi diagram is du
to a triangulation. The results of applying the Voronoi algorithm
shown in Color Plate 1(b).

Constructing the Voronoi diagram for a given set of site faces
A Voronoi tile �i consists of all faces for which the closest site fac
is fi. Our measure of distance between faces is an approximat
of geodesic distance over the surface. It is defined by constructin
dual graph to the mesh: the nodes of the graph correspond to fa
of M , and the edges of the graph connect nodes correspondin
17
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adjacent faces. We set the cost of edges in this dual graph to be
distance between centroids of the corresponding faces. The dista
between two faces is defined as length of the shortest path in
dual graph.

Constructing the Voronoi diagram is a multi-source shortest pa
problem in the dual graph, which we solve using a variant of D
jkstra’s algorithm [1]. The algorithm simultaneously grows th
Voronoi tiles from their site faces until they coverM .

Selecting the site faces In this section we describe an algorithm
for selecting a setS of site faces such that the induced Voronoi d
agram, computed as above, is dual to a triangulation. Although
algorithm for selecting such site faces can be applied to any m
M , let us assume for the moment thatM does not possess bound
aries. With this assumption, the Voronoi diagram must satisfy t
following conditions to be dual to a triangulation:

1. tiles must be homeomorphic to disks;

2. no pair of tiles may share more than onecut (a cut is a contigu-
ous set of edges ofM along which a pair of tiles touch);

3. no more than three tiles can meet at any vertex.

The algorithm begins by initializingS with a single randomly
chosen site face. In the outer loop we then incrementally add face
S until the induced tiling satisfies conditions (1) through (3) abov

In the inner loop (tile growth), tiles associated with the faces
S are grown until either they coverM , in which case tile growth
terminates, or until condition (1) is violated. Violation of condition
(1) can be detected by examining only the neighborhood of the m
recently added face. If condition (1) is violated, this face is add
to S and tile growth is resumed.

When tile growth is complete, conditions (2) and (3) are checke
If condition (2) is violated, a face along one of the offending share
cuts is selected as a new site face. If condition (3) is violated, o
of the faces adjacent to the offending vertex is selected as a site
all adjacent faces already are sites, the Voronoi algorithm fails. Th
has never happened in any of the examples we have run. If it w
to happen, we would simply use the original mesh as the base me

To accommodate boundaries, we introduce a singlefictitious
Voronoi tile, logically outside ofM , that touches each of the bound
aries ofM . Conditions (1) through (3) can then be applied withou
change. To ensure that the Delaunay-like triangulation coversM ,
we require that boundary tiles (those adjacent to the fictitious til
have sites on the boundary ofM . This issue is addressed again in
the next section. To achieve this requirement, the algorithm add
new boundary site face whenever an interior tile touches a boun
ary. As before, when tile growth stops, conditions (2) and (3) a
checked, and if violated, appropriate new sites are added.

It sometimes happens that tiles have adjacent short cuts, a s
ation that leads to Delaunay-like triangles with poor aspect ratio
and hence to poor compression rates. We therefore add to the
of conditions one that disallows such tiles. Adjacent cuts of a ti
are deemed short if the sum of their lengths is less than 10% of
length of the boundary of the tile. When an offending pair of cuts
found, one of the faces they share is added as a new site.

Properties of the Voronoi algorithm The time complexity of the
Voronoi algorithm depends on the numbers of sites that are needed,
for which there is no general formula. For a fixed set ofs sites, the
Voronoi tiles can be constructed using ans-source version of Dijk-
stra’s algorithm. Like the ordinary single source Dijkstra algorithm
the s-source version can be implemented efficiently (O(n log n)
time) using a priority queue, where the priority of a face is the dis
tance to the nearest site.
6
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Figure 4: Construction of initial Delaunay paths onM .
.

Naively rerunning Dijkstra’s algorithm from scratch each time
new site face is added would requireO(s n log n) time. However,
the algorithm can be sped up significantly by incrementally updat
the priority queue as new sites are added toS.

Finally, because our site selection algorithm uses a greedy sea
it cannot be expected to produce a minimal set of sites.

5.2 Constructing the Delaunay triangulation

The partition ofM into Voronoi tiles obtained in the previous sec
tion has the property that its dual graph consists of 3-sided fac
However, mapping these 3-sided faces onto the surface is a n
trivial problem. The obvious approach of connecting pairs
Voronoi sites by the shortest paths on the surface — as is don
constructing the Delaunay triangulation in the plane — is not gu
anteed to produce a valid triangulation for arbitrary manifolds sin
the resulting paths can cross. Moreover, finding the shortest pa
between two points on a mesh is itself a difficult problem [14]. O
alternative uses harmonic maps twice: once to produce an in
Delaunay triangulation, and then again to improve the triangulat
by straightening its edges.

Constructing an initial Delaunay triangulation. The first step
is to compute the harmonic maphi that carries each Voronoi tile
�i into an appropriate planar polygonPi, as described in Section 4.
The inverse ofhi provides a parametrization of�i overPi which
we use to construct paths lying onM .

Let �i and�j denote two adjacent interior Voronoi tiles as illus
trated in Figure 4. The path of the initial Delaunay triangulatio
joining these tiles is constructed as follows: the cut shared by
tiles is mapped to an edgeei;j of Pi by the harmonic maphi; sim-
ilarly, the cut is mapped to an edgeej;i of Pj by hj (see Figure 4).
We construct a lineLi;j from the centroid ofPi to the midpoint of
ei;j , and a lineLj;i from the centroid ofPj to the midpoint ofej;i.
The path is formed by mapping these lines ontoM using the inverse
harmonic maps. That is, the path is obtained by joiningh�1i (Li;j)

andh�1j (Lj;i).1

The construction of a path between an interior tile�i and a bound-
ary tile �k is slightly different, as indicated in Figure 4. In orde
for the Delaunay triangulation to coverM , it is necessary to con-
struct paths from the boundary. (The site selection algorithm of S
tion 5.1 was designed with this goal in mind in that it guarante

1Note that this path does not connect the site faces as one might exp
We have found that the method described here produces more uniform
angulations than were obtained by connecting site faces.
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that boundary tiles have site faces on the boundary.) We therefo
select a boundary vertexvk of the site facefk, and constructLk;i as
the line fromhk(vk) to the midpoint ofek;i. The lineLi;k is con-
structed as before from the centroid ofPi to the midpoint ofei;k.

Finally, two adjacent boundary tiles�k and�` are connected by
the path along the boundary betweenvk andv`.

The edges of the paths thus constructed are generally not ed
ofM . For convenience in constructing the parametrizations of Se
tion 6, we refineM to include the path edges.

Straightening the Delaunay edges.The edges of the initial
Delaunay triangles constructed in the first step can have kin
where they cross the border between two Voronoi tiles (see Col
Plate 1(c)). To straighten a Delaunay edge, we construct a seco
harmonic map from the union of the two Delaunay triangles adja
cent to the edge into a planar quadrilateral, as described in Section
We then replace the edge by the image of the corresponding diago
of the quadrilateral under the inverse harmonic map. This straigh
ening step is applied to all Delaunay edges in an arbitrary orde
resulting in a final triangulationT1; :::; Tr. Color Plate 1(d) shows
the result of straightening the edges in Color Plate 1(c).

6 Parametrization
Identifying each of them vertices ornodesof the triangulation
T1; :::; Tr with a canonical basis vector ofRm defines the base com-
plexK0 � R

m, with a face corresponding to each of ther trian-
gular regions. The goal of this section is to construct a continuou
parametrization� : K0 !M of the initial mesh overK0. We map
each triangleTi onto a triangular region of the plane, again using
harmonic maps described in Section 4. We then affinely map the t
angular region onto the corresponding faceFi of the base complex.
The composition of the two maps is an embedding, and therefore
inverse�i defines a parametrization ofTi overFi. By construction,
the maps�i agree on shared boundaries, and thus the�i collectively
define a continuous parametrization� of M overK0.

7 Resampling

In this section, we describe a method for producing a meshMJ

with subdivision connectivity from the parametrization� : K0 !
M constructed in Section 6. We also show how to determine th
subdivision levelJ so thatMJ andM differ by no more than a
specified remeshing tolerance�1.

For a given value ofJ , we first produce a triangulationKJ of
K0 by performingJ recursive 4-to-1 splits of the faces ofK0. We
then approximate� by a function�J defined as the piecewise linear
interpolant to� onKJ ; that is,�J is such that�J (xJi ) = �(xJi ),
where the pointsxJi (calledknots) denote the vertices ofKJ .

The simplest strategy for performing a 4-to-1 split of a face is to
position the split points at midpoints of edges, as illustrated in Fig
ure 1. We refer to this process asparametrically uniform resampling
since the faces ofKJ are of equal size. Alternatively, we could at-
tempt to place the knots so that the images of triangles ofKJ , that
is, the triangles of the remeshMJ , are of equal size. We refer to
this asgeometrically uniform resampling.

As one of our fundamental objectives is high compression rat
we evaluate the performance of a resampling strategy by the numb
of wavelet coefficients needed for a given compression tolerance�2.
This number is governed by at least two competing factors:

1. As mentioned in Section 3, the coordinate functions of�
should be as slowly varying as possible; this is largely achieve
by the distortion minimizing property of the harmonic map
parametrizations.
7
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�2 Geom. Uniform Hybrid Param. Uniform
0.5% (2679) [5422] (1768) [3562] (2224) [4502]
1.0% (1100) [2180] (795) [1591] (1044) [2079]
2.0% (416) [809] (385) [758] (455) [881]
5.0% (112) [223] (130) [245] (143) [302]

Table 1: Performance of the three sampling strategies on the
model. Parentheses denote the number of significant wavelet c
ficients; square brackets denote the number of triangles. All exa
ples were run using�1 = 1:0%. Errors are measured as a percenta
of the object’s diameter.

2. The triangles ofMJ should be of roughly uniform size.
Lounsberyet al. define wavelets so that the magnitude of
wavelet coefficient is a measure of the “unweighted” leas
squares error that would be incurred if the coefficient were s
to zero. By unweighted we mean that deviations on large t
angles ofMJ are counted no more heavily than deviations o
small triangles. IfMJ has triangles of roughly uniform size,
magnitudes of wavelet coefficients are better measures of
ometric error.

The strategy that has performed best in our experiments is a
brid strategy using geometrically uniform sampling in the first fe
splitting steps (the first three steps in all our examples), and pa
metrically uniform sampling in subsequent steps. Intuitively, th
strategy does a reasonable job of uniformly distributing the tria
gles on a coarse scale, while still remaining faithful to the harmon
parametrization on smaller scales.

This intuition is supported by numerical results. Our tests ha
shown that hybrid resampling typically results in wavelet expa
sions with fewer significant coefficients than either parametrica
uniform or geometrically uniform resampling. Moreover, the num
ber of subdivisionsJ necessary to satisfy a remeshing tolerance�1
is often smaller and hence the remesh is often faster to compute
requires less storage. Table 1 presents the results of an experim
for the cat mesh (shown in Color Plate 2(d)) for various wavel
compression tolerances�2. Notice that hybrid resampling is partic-
ularly advantageous for small tolerances.

7.1 Geometrically uniform resampling

The task of determining new knotsxji 2 K0 so that the trian-
gles generated are roughly uniform in size is an optimization pro
lem whose solution we approximate using the following recursiv
greedy algorithm.

In the parametrically uniform resampling process the knotx
j

i at
levelj is simply computed as midpoint of the edge of the two (neigh
boring) knotsxj�1

n1(i)
andxj�1

n2(i)
at levelj�1. Instead of performing

uniform subdivision, we define

x
j

i = (1� �
j

i ) � x
j�1

n1(i)
+ �

j

i � x
j�1

n2(i)
with �

j

i 2 (0; 1);

where the splitting parameter�ji is determined as follows: Split the
two faces adjacent to the edge fromxj�1

n1(i)
toxj�1

n2(i)
, as illustrated in

Figure 5. Our goal is to find�ji so that the regionsRj

i = 4j

i;1[4
j

i;3

andSji = 4j

i;2 [4j

i;4 map to regions of equal area onM .

In the current implementation we have simplified the area com
putations by using a discrete approximation: We scatter a rough
uniform collection of points on the faces ofM , then map these sam-
ple points back toK0 using��1 (��1 is the harmonic map, so it is
already known). We then use binary search to compute the para
eter�ji so that the number of sampled points in the regionsRj

i and
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Figure 5: Computing the new knotxji

Sji are nearly equal.

7.2 Bounding the remeshing error

In this section we describe how to determineJ such that the remesh
MJ and the initial meshM deviate by no more than a remeshing
tolerance�1 in anL1 sense. That is, we seek to find the smallestJ
such that

max
x2K0

k�(x)� �
J
(x)k � �1:

Our strategy for determiningJ will be to perform successive steps
of 4-to-1 splitting until the error bound is satisfied.

To bound the error for a given value ofJ , letE(x) := �(x) �

�J (x) denote the (vector-valued) error function. First, note that the
preimages of the triangles ofM under� form a partition� of K0,
and that� is a linear function on each triangle of�. Next, recall
that�J is linear within each of the triangles of the partitionKJ of
K0. Thus,E(x), the difference between the two, is linear within
each cell of the union partition�J = � [KJ . The squared norm
of E(x) is therefore quadratic and convex up over each cell of�J ,
and so must achieve is maximum value at a vertex of�J .

TheL1 error for a given value ofJ can therefore easily be de-
termined by evaluatingE(x) at the vertices of�J . Using a local
marching technique such as the one in Kentet al. [9], these vertices
can be found in time proportional to the total number of vertices in
� andKJ .

8 Results
Color Plates 1 and 2 illustrate the steps of the algorithm and prese
examples of its applications.

Color Plate 1(a)-1(h) demonstrate the complete process of mu
tiresolution analysis for a mesh of genus 3. We first partition the
original mesh of Color Plate 1(a) into Voronoi-like tiles shown
in Color Plate 1(b). We then construct the initial Delaunay-like
triangulation (Color Plate 1(c)), and straighten its edges (Colo
Plate 1(d)). The Delaunay triangles define a simple base comple
that serves as the domain for the parametrization of the mesh. R
sampling this parametrization using the hybrid strategy describe
in Section 7 with a remeshing tolerance of�1 = 0:75 % required
J = 4 subdivision steps and produced the remesh shown in Colo
Plate 1(f) consisting of 17,920 triangles. The lowest resolution ap
proximation, shown in Color Plate 1(e), is a piecewise linear em-
bedding of the base complex. Color Plates 1(g) and 1(h) show mor
detailed approximations using, respectively, 366 and 2,614 faces.

Table 2 summarizes the remeshing process for a variety of othe
meshes. (All computing times were measured on a SGI Onyx Re
ality Engine 2 with 256MB of memory.) Note that the number of
Voronoi tiles is influenced more by the geometry of the model than
by the number of faces ofM .

Approximating the dinosaur and the phone with low tolerances
would require high subdivision levels. This is due to the presence
8
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object # faces # Voronoi # Delaunayremesh.subdiv. time
of M tiles�i trianglesTi tol. �1 level J mins

holes3 11,776 31 70 0.5 % 4 4.6
bunny 69,473 88 162 0.5 % 5 33.5
cat 698 7 9 1.0 % 6 0.8
dino 103,713 117 229 1.0 % 5 39.3
phone 165,896 69 132 2.5 % 5 346.6

Table 2: Summary of results of the remeshing algorithm

Color object # faces compr. # wavelet # faces time
Plate of MJ tol. �2 coeff. mins

1(g) holes3 17,920 4.0 % 179 366 0.9
1(h) holes3 17,920 0.5 % 1,298 2,614 1.0
2(a) bunny 165,8880.07 % 18,636 37,598 4.5
2(b) bunny 165,888 0.7 % 2,268 4,639 3.7
2(c) bunny 165,888 1.5 % 952 1,921 3.5
2(i) dino 234,496 0.5 % 2,329 4,725 5.0
2(l) phone 135,168 0.1 % 7,920 16,451 3.3

Table 3: Summary of results of the algorithm of Lounsberyet al.

of jagged boundaries which can only be well approximated usin
large number of subdivisions.

Computing times are strongly dependent on the ratio of the nu
ber of faces ofM to the number of Delaunay triangles, since th
bottleneck of the algorithm, the harmonic map computation, r
quires solving sparse least-squares problems whose time comple
is proportional to the square of the number of vertices in the tria
gles.

Table 3 summarizes the results of wavelet compression applie
remeshed models. Each line of the table gives the number of face
the remesh, the compression tolerance�2 used in the wavelet com-
pression method described in Appendix A.2, the number of wave
coefficients, the number of faces of the resulting approximation, a
the time required for filterbank analysis and synthesis. The total d
viation between the compressed model and the original is boun
by � = �1+�2, the sum of the remeshing tolerance and the compre
sion tolerance. Note that for storage and transmission purposes
relevant performance measure is the number of wavelet coefficie
rather than the number of faces, since only the wavelet coefficie
(and their indices) have to be stored or transmitted.

Color Plates 1(k)-1(l) illustrate level-of-detail control. The origi
nal model (Color Plates 1(f) and 1(k)) was created from laser ran
data using the mesh zippering algorithm of Turk and Levoy [21
Color Plates 1(k) and 1(l) show views of the original model an
of lower resolution approximations from three different distance
Color Plates 2(a)-2(c) are close-ups of the approximations in Co
Plate 2(l). Note the enormous reduction in the number of triang
when the multiresolution approximations are viewed from afar.

Color Plates 2(d)-(f) illustratemultiresolution editing. Color
Plate 2(e) shows a large-scale modification caused by changin
wavelet coefficient at the coarsest level, whereas Color Plate 2
corresponds to changing two coefficients at an intermediate lev
of-detail.

Color Plates 2(g)-(l) show the application of remeshing and mu
tiresolution analysis to two additional meshes.

9 Conclusion
We have described an algorithm for solving the remeshing proble
that is, the problem of approximating an arbitrary mesh by a me
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with subdivision connectivity. Combined with the previous work
of Lounsberyet al., our remeshing algorithm allows multiresolu-
tion analysis to be applied to arbitrary meshes. Multiresolution rep
resentations support efficient storage, rendering, transmission, a
editing of complex meshes in a simple, unified, and theoreticall
sound way.

We have applied our remeshing algorithm and multiresolutio
analysis to complicated meshes consisting of more than 100,0
triangles. Examples of compression, level-of-detail rendering, an
editing are shown in the Color Plates.

The key ingredient of our remeshing procedure — and the prin
cipal technical contribution of the paper — is the construction of
continuous parametrization of an arbitrary mesh over a simple d
main mesh. Parametrizing complex shapes over simple domains
a fundamental problem in numerous applications, including textur
mapping and the approximation of meshes by NURBS patches. W
therefore expect that our parametrization algorithm will have use
outside of multiresolution analysis. We intend to explore these use
in future work.

Acknowledgments

This work was supported in part by a postdoctoral fellowship for the
lead author (Eck) from the German Research Foundation (DFG
Alias Research Inc., Microsoft Corp., and the National Scienc
Foundation under grants CCR-8957323, DMS-9103002, and DMS
9402734. We are grateful to Marc Levoy and his students at Sta
ford University for providing the bunny, dinosaur, and phone mod
els.

References
[1] A. Aho, J.E. Hopcroft, and J.D. Ullman.Data structures and algo-

rithms. Addison-Wesley, Reading, Mass., 1983.
[2] J. Eells and L. Lemaire. Another report on harmonic maps.Bull.

London Math. Soc., 20:385–524, 1988.
[3] J. Eells and J.H. Sampson. Harmonic mappings of Riemannian man

folds. Amer. J. Math., 86:109–160, 1964.
[4] Adam Finkelstein and David Salesin. Multiresolution curves.Com-

puter Graphics (SIGGRAPH ’94 Proceedings), 28(3):261–268, July
1994.

[5] D. Forsey and R. Bartels. Hierarchical B-spline fitting.ACM Trans-
actions on Graphics. To appear.

[6] D. Forsey and R. Bartels. Hierarchical B-spline refinement.Computer
Graphics, 22(4):205–212, 1988.

[7] David Forsey and Lifeng Wang. Multi-resolution surface approxima-
tion for animation. InProceedings of Graphics Interface, 1993.

[8] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle
Mesh optimization. Computer Graphics (SIGGRAPH ’93 Proceed-
ings), pages 19–26, August 1993.

[9] James R. Kent, Wayne E. Carlson, and Richard E. Parent. Shape tran
formation for polyhedral objects.Computer Graphics (SIGGRAPH
’92 Proceedings), 26(2):47–54, July 1992.

[10] J. Michael Lounsbery.Multiresolution Analysis for Surfaces of Arbi-
trary Topological Type. PhD thesis, Department of Computer Science
and Engineering, University of Washington, September 1994. Avail
able as ftp://cs.washington.edu/pub/graphics/LounsPhd.ps.Z.

[11] Michael Lounsbery, Tony DeRose, and Joe Warren. Multiresolu
tion analysis for surfaces of arbitrary topological type. Submit-
ted for publication. Preliminary version available as Technical Re
port 93-10-05b, Department of Computer Science and Enginee
ing, University of Washington, January, 1994. Also available as
ftp://cs.washington.edu/pub/graphics/TR931005b.ps.Z.

[12] J. Maillot, H. Yahia, and A. Verroust. Interactive texture mapping.
Computer Graphics (SIGGRAPH ’93 Proceedings), 27(3):27–34, Au-
gust 1993.

[13] Stephane Mallat. A theory for multiresolution signal decomposition:
The wavelet representation.IEEE Transactions on Pattern Analysis
and Machine Intelligence, 11(7):674–693, July 1989.

[14] J.S. Mitchell, D.M. Mount, and C.H. Papadimitriou. The discrete
geodesic problem.SIAM Journal of Computing, 16(4):647–668, 1987.
9



-

-
s

-

ts

e-

at

t

e
or
er-
...
A A A

Wavelet coefficients

B

Wavelet coefficients

B ...(a) (b) (c)

Figure 6: Decomposition of a mesh.

[15] David M. Mount. Voronoi diagrams on the surface of a polyhedro
Department of Computer Science CAR-TR-121, CS-TR-1496, Un
versity of Maryland, May 1985.

[16] J. Rossignac and P. Borrel. Multi-resolution 3D approximations f
rendering. In B. Falcidieno and T.L. Kunii, editors,Modeling in Com-
puter Graphics, pages 455–465. Springer-Verlag, June-July 1993.

[17] Richard Schoen and Shing-Tung Yau. Univalent harmonic maps
tween surfaces.Inventiones math., 44:265–278, 1978.

[18] P. Schr̈oder and W. Sweldens. Spherical wavelets: Efficiently repr
senting functions on the sphere.Computer Graphics, (SIGGRAPH ’95
Proceedings), 1995.

[19] William Schroeder, Jonathan Zarge, and William Lorensen. Decim
tion of triangle meshes.Computer Graphics (SIGGRAPH ’92 Pro-
ceedings), 26(2):65–70, July 1992.

[20] Greg Turk. Re-tiling polygonal surfaces.Computer Graphics (SIG-
GRAPH ’92 Proceedings), 26(2):55–64, July 1992.

[21] Greg Turk and Marc Levoy. Zippered polygon meshes from range i
ages.Computer Graphics (SIGGRAPH ’94 Proceedings), 28(3):311–
318, July 1994.

[22] Amitabh Varshney. Hierarchical Geometric Approximations. PhD
thesis, Department of Computer Science, University of North Caroli
at Chapel Hill, 1994.

A Multiresolution Analysis of Subdivi-
sion Meshes

As mentioned in Section 1, the main idea of multiresolution analy
is to decompose a function into a low resolution part and a set of c
rection or “detail” terms at increasing resolutions. Multiresolutio
analysis was first formalized by Mallat [13] for functions define
onRn. Lounsbery [10] and Lounsberyet al. [11] have recently ex-
tended the notion of multiresolution analysis to functions define
on base complexes of arbitrary topological type. Their results c
be used to construct multiresolution representations of meshes w
subdivision connectivity. The purpose of this appendix is to sum
marize their basic results and algorithms at a high level.

A.1 Background

The two basic ingredients of multiresolution analysis are a seque
of nested linear function spaces and an inner product. Lounsberet
al. use a sequence of spacesV 0 � V 1 � � � � associated with the
base complex. To describe meshes, the approximation spacesV j

consist of piecewise linear functions; specifically,V j is the space
of continuous piecewise linear functions over a partitionKj ofK0

created by performingj recursive steps of 4-to-1 splitting to the
faces ofK0, as shown in Figure 1. Asj increases, the triangulation
Kj becomes more dense, and so the functions inV j are better able
to model arbitrary continuous functions onK0. The inner product
used by Lounsberyet al. is the standard inner product defined as

hf; gi :=

Z
x2K0

f(x)g(x)dx

wheredx is the differential area ofK0 embedded inRm, so that all
faces have unit area.
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The inner product is used to define the following orthogonal com
plement spaces, also calledwavelet spaces,

W
j
:= ff 2 V j+1 j hf; gi = 0 8g 2 V jg:

Intuitively,W j captures the detail that is missed when a function in
V j+1 is approximated by a function inV j .

Basis functions forV j are calledscaling functions. In the piece-
wise linear case, particularly simple scaling functions forV j are the
“hat functions” onKj : thei-th hat function�ji 2 V

j is the unique
function inV j that is one atxji and zero at all other knots ofKj .

A wavelet ki (x) is a basis function for one of the wavelet spaces
W k. Lounsberyet al. [11] give constructions for wavelet bases
on arbitrary base complexesK0. A wavelet basisfor V j con-
sists of a basis forV 0 together with bases for the wavelet spaces
W 0; :::;W j�1.

The parametrization�J 2 V J for V j can be expanded in the hat
function basis as

�
J
(x) =

X
i

v
J
i �

J
i ; x 2 K

0
(2)

wherevJi denote the vertex positions ofMJ . A multiresolution
representationof �J refers to its expansion in a wavelet basis

�
J
(x) =

X
i

v
0

i �
0

i (x) +

J�1X
j=0

X
i

w
j

i 
j

i (x); x 2 K0
; (3)

wherewj

i denote the wavelet coefficients.

An algorithm known asfilterbank analysiscan be used to con-
vert between the hat function expansion and the multiresolution rep
resentation. The geometric interpretation of filterbank analysis i
shown in Figure 6. The full detail model, described by�J(x) is
successively decomposed into a lower resolution approximation to
gether with a collection of coefficients that multiply the wavelets.
The result is a simple base mesh together with wavelet coefficien
at various levels of detail. The operatorsA andB in Figure 6 refer
to sparse matrices whose entries are given by Lounsberyet al.. The
filterbank analysis has an inverse process called filterbank synth
sis that recovers the full resolution model from its multiresolution
representation.

A.2 L
1 Wavelet compression

TheL1 error caused by wavelet compression is theL1 norm of the
difference function�(x) = �J(x) � ~�J (x), where~�J(x) denotes
the compressed approximation to�J(x). This difference function is
simply the sum of the wavelet terms that have been removed from
�J (x). Since�(x) is a piecewise linear function onKJ , its L1

norm can be determined as in Section 7.2 by recording its values
the vertices ofKJ .

Compression in principle proceeds by considering the wavele
coefficients in order of increasing magnitude. A coefficient is re-
moved if doing so does not cause theL1 norm of�(x) to exceed
�2. If removal of a coefficient would violate the error tolerance,
the coefficient is retained and the next coefficient is examined. Th
procedure terminates when all coefficients have been considered f
removal. The examples presented in this paper have used a cons
vative approximation to this approach where a bound on theL1

norm of�(x) is maintained, rather than maintaining�(x) itself; we
plan to implement the principled approach in the near future.
0



(a) Original mesh M (11,776 faces) (b) Voronoi diagram (31 tiles) (c) Initial Delaunay triangulation (70 tri.)

(d) Straightened Delaunay triangulation (e) Base mesh (70 faces) (f) Remesh MJ (J = 4; 17,920 faces)

(g) Approx. (� = 4:5%; 366 faces) (h) Approx. (� = 1:0%; 2,614 faces) (i) Delaunay triangulation (162 tri.)

(j) Base mesh (162 faces) (k) Original mesh (69,473 faces) (l) LOD using multiresolution approx.

Color Plate 1: (a-g) Example of partition, parameterization, resampling, and approximation of a mesh using multiresolution
analysis; (h-k) Level-of-detail approximations of a dense mesh.
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(a) Approx. (� = 0:57%; 37,598 faces) (b) Approx. (� = 1:2%; 4,639 faces) (c) Approx. (� = 2:0%; 1,921 faces)

(d) Original mesh (698 faces) (e) Surface editing at a coarse level (f) Surface editing at a finer level

(g) Original mesh (103,713 faces) (h) Base mesh (229 faces) (i) Approx. (� = 1:5%; 4,725 faces)

(j) Original mesh (165,896 faces) (k) Base mesh (132 faces) (l) Approx. (� = 2:6%; 16,451 faces)

Color Plate 2: (a-c) Multiresolution approximations used in Color Plate 1(l); (d-f) Example of multiresolution surface editing;
(g-l) More results of multiresolution surface approximation.
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