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Abstract calledwavelet coefficientsapturing the detail present in the object
at various resolutions. Color Plates 1(g)—(h) show a sequence of

In computer graphics and geometric modeling, shapes are often representggermediate resolution models incorporating an increasing number
by triangular meshes. With the advent of laser scanning systems, meshST wavelets

of extreme complexity are rapidly becoming commonplace. Such meshes

are notoriously expensive to store, transmit, render, and are awkward to Multiresolution mesh representations are particularly convenient
edit. Multiresolution analysis offers a simple, unified, and theoretically for a number of applications, including:

sound approach to dealing with these problems. Lounsbiea). have

recently developed a technique for creating multiresolution representations ¢ Compression/simplificationA multiresolution mesh can be
for arestricted class of meshes wétlbdivision connectivitydnfortunately, compressed by removing small wavelet coefficients. More-
meshes encountered in practice typically do not meet this requirement. In over, the threshold for removal can be chosen such that the

this paper we present a method for overcoming the subdivision connectivity . . P L i
restriction, meaning that completely arbitrary meshes can now be converted resun,ltniq apprOXIrfngtlon '.S _gularantehed;o be Vg'th'nfa Spec'fl'ed
to multiresolution form. The method is based on the approximation of an error tolerance or the original mesh. A number or examples

arbitrary initial mesh\ by a meshvs7 that has subdivision connectivity are shown in the color plates.

and is guaranteed to be within a specified tolerance. e Progressive display and transmissioAn attractive method
The key ingredient of our algorithm is the construction of a parametriza- for displaying a complex object is to begin with a low reso-

tion of M over a simple domain. We expect this parametrization to be of use lution version that can be quickly rendered, and then progres-

in other contexts, such as texture mapping or the approximation of complex sively improve the display as more detail is obtained from disk

meshes by NURBS patches. or over a network. Using a multiresolution representation, this

CR Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: is simply achieved by first displaying the base mesh, and then

Computational Geometry and Object Modeling. - surfaces and object rep-  progressively adding the contributions of wavelet coefficients

resentations; J.6 [Computer-Aided Engineering]: Computer-Aided Design in order of decreasing magnitude.

(CAD); G.1.2 [Approximation]: Spline Approximation.

Additional Keywords: Geometric modeling, subdivision surfaces,

wavelets.

e Level-of-detail control High performance rendering systems
often use a level-of-detail hierarchy, that is, a sequence of ap-
proximations at various levels-of-detail. The crudest approxi-

. mations are used when the viewer is far from the object, while

1 Introduction higher detail versions are substituted as the viewer approaches.

] ) ] Multiresolution representations naturally support this type of

In computer graphics and geometric modeling, shapes are often  gisplay by adding successively smaller wavelet coefficients as

represented by triangular meshes. With the advent of laser scan-  the viewer approaches the object, and by removing them as

ning systems, meshes of extreme complexity are rapidly becoming  the viewer recedes. Moreover, the coefficients can be added
commonplace. The objects shown in Color Plates 1(k) and 2(g)  smoothly, thereby avoiding the visual discontinuities encoun-
for instance, consist of 69,473 and 103,713 triangles, respectively. tered when switching between approximations of different res-

Such meshes are notoriously expensive to store, transmit, and ren-  ojution. This use of multiresolution representations is illus-

der. They are also awkward to edit, as many vertices typically must  trated in Color Plates 1(k) and 1()).

be moved to make a change of substantial spatial extent.

Multiresolution analysis offers a promising new approach for
addressing these difficulties in a simple, unified, and theoretically
sound way. A multiresolution representation of a mesh, as recently
developed by Lounsbemst al.[11], consists of a simple base mesh
(Color Plate 1(e)) together with a sequence of local correction terms,

e Multiresolution editing Editing at various scales can proceed
along the lines developed by Finkelstein and Salesin [4] by or-
dering coefficients according to their support, that is, by the
spatial extent of their influence. Color Plates 2(e) and 2(f)
show edits of a mesh at low and high levels of detail.

Although the multiresolution analysis of Lounsbetyal.[11] can
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mesh with subdivision connectivity — it results from recursively
splitting the faces of an octahedron four times. Unfortunately, few
of the meshes encountered in practice have this restricted structure.
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In this paper we present a method for overcoming the subdivisiosidered by Maillotet al. [12] in the context of texture mapping.
connectivity restriction, meaning that completely arbitrary meshesiowever, the parametrizations they construct are not useful for
can now be converted to multiresolution form. Our approach is tamur purpose: their surface tiles are not triangular, and their local
develop an algorithm for approximating an arbitrary méstfasin  parametrizations do not fit together continuously. Additionally, our
Color Plate 1(a)), which might not have subdivision connectivity,local parametrizations, based on the well-established theory of har-
by a meshM 7 that does (as in Color Plate 1(f)), and is guaranteednonic maps, are simpler to compute than the ones used by Maillot
to be within a prescribed toleraneeof M. We refer to this process al., and seem to produce parametrizations of comparable quality
asremeshingand we call\/’ theremesh (see Section 4).

Multiresolution analysis of an arbitrary mes#ithus proceeds in Finally, the technique of Sctder and Sweldens [18] could be
two steps: we first use remeshing to approxiniét®y a meshi/’ used in place of Lounsbest al. for multiresolution analysis of the
with subdivision connectivity, and then use the method of Lounsremesh.
beryet al. to convertM” to multiresolution representation. (Al-

though we cannot reproduce here all the results of Lounsbery ; :
al. [11], we have included a brief summary in Appendix A.) 3 Overview of RemeShmg

The key ingredient of the remeshing procedure — and the prinThe basic idea of remeshing is to construct a parametrizatid of
cipal technical contribution of the paper — is the construction of agver a suitably determined domain mesR. This parametrization
parametrization ofi/ over abase complex<® possessing a small s then resampled to produce a medH that has subdivision con-
nhumber ofhfacces. }(/jVe tr;)len sample tEe parametrization to produggectivity and is of the same topological type/ds
the remesh. Considerable care is taken to create a parametrization . . . . .
and a sampling pattern so that the resulting remesh can be well a&'o(l)ourrPrﬁaTeessrl]l(g?-ﬂ%?mhm consists of three steps, as illustrated in
proximated with relatively few wavelet coefficients. ’

The construction of parametrizations for complex shapes over 1. Partitioning: Partition M into a number of triangular regions
simple domains is a fundamental problem that occurs in numer-  Th,...,T,, as shown in Color Plate 1(d). We want the number
ous applications, including texture mapping, and the approxima-  r of regions to be small, because the lowest complexity ap-
tion of meshes by NURBS patches. We therefore expect that our ~ proximation we can construct hadaces, as shown in Color
parametrization algorithm will have uses outside of remeshing. Plate 1(e). Basic tools used in partitioning are harmonic maps,

The remainder of the paper is organized as follows. In Section2, ~ Maps that preserve as much of the metric structure (lengths, an-

we describe the relationship between our work and previously pub- ~ 91€S: tc.) of\ as possible. Harmonic maps are described in
lished methods. In Section 3, we give a high level overview of the ~ Section 4. A detailed description of our partitioning algorithm
major steps of the remeshing algorithm. The details of the algorithm 'S 9iven in Section 5. . , .

are presented in Sections 4-7. In Section 8, we apply our method to  !dentifying each of ther. vertices omodeof the triangulation
meshes of varying complexity, and give examples of compression, 11, ..., T with a canonical basis vector 8™ defines a mesh

level-of-detail control, and editing. We close with conclusions and ~ in R™, called thebase complexwith a face corresponding
future work in Section 9. to each of the- triangular regions. This mesh serves as the

domain of the parametrization constructed in the next step.

2. Parametrization:For each regiofT; of M construct a (local)
2 Related Work parametrizationp; : F; — T; over the corresponding fade
of the base complek®. The local parametrizations are made
to fit together continuously, meaning that collectively they de-
fine a globally continuous parametrizatipn K° — M. We

The difficulty of dealing with complicated shapes is evidenced by
the extensive recent research on the topic.

The problems of compression/simplification and level-of-detail ~ want the coordinate functions of the parametrization to vary as
control have been addressed by Turk [20], Schroedex. [19], little as possible since such functions have multiresolution ap-
Hoppeet al.[8], Rossignac and Borrel [16], and Varsney [22]. Our proximations with few significant wavelet coefficients, leading

approach differs from these methods in three principal respects.  to high compression ratios. Harmonic maps in a sense mini-
First, it provides guaranteed error bounds, whereas the approaches mize distortion and therefore are particularly well suited for
of Turk, Schroedeet al., and Hoppeet al. do not. Second, it pro- this purpose. A description of the parametrization step is pre-
duces a single compact representation from which a continuous fam-  sented in Section 6.
ily of lower resolution approximations can be quickly and easil . . .
c)(;nstructed, whereas th%pprevious methods ggnerat)é a discretg sgf fesamg"”gipe”ormj recurS|veh_4—to-1 Tpl'ts on e_ach Olf t_he
of models of varying complexity. (We should note, however, that a(?]esfo 5( _(ﬁee Figure 1). This resu tshln a t“angu ation
Turk, and Rossignac/Borrel, and Varsney present methods for in- }; of K W'} sulbdlwsnon_ corkw)ne_ctl\(/jltk))/. The re_meﬂ;ﬂ ,as
terpolating between models.) Third, our representation can be sim- S OWJn.'n Co gf Plate 1(f), is obtained by mapping the vertices
ply and conveniently edited at multiple scales, whereas it is hard to of K into R™ using th_e parametrizatiop a?d constructing
imagine how one would achieve similar results using the previous an |_nterpo_lat|ng mesh in the Obv'.Ol.Js. way ther_efore has
vertices lying onM, and has subdivision connectivity.

approaches. h ) . ) . i
. L e resampling step is described more fully in Section 7, and

The editing of complex shapes was a central motivation for the i’ shown that/ can be determined so that” and M differ

introduction of hierarchical B-splines by Forsey and Bartels [6]. by no more than a specified remeshing tolerance

Forsey and Bartels [5] and Forsey and Wang [7] have subsequently

developed methods for fitting hierarchical B-splines to meshes topo-

logically equivalent to a disk. Finkelstein and Salesin [4] have Harmonic maps

demonstrated how wavelet representations of B-spline curves an

tensor product surfaces can be used to achieve similar benefits. Theqrcial building block of our remeshing algorithm is a method

main advantagelof our method is its ability to deal with shapes of,, constructing a parametrization of a (topological) diskc M

arbitrary topological type. over a convex polygonal regioR ¢ R?. This method is used in
The problem of parametrizing meshes has recently been coriwo places: in the construction of the triangulatidn . . ., 7). of

174



@) (b) ©

Figure 1: 4-to-1 splitting of a triangular face: (a) the initial face; (b)
after one 4-to-1 split; (c) after two 4-to-1 splits.

) ) o (a) Original mesh tile (b) Harmonic embedding
M (see Section 5), and in the parametrization\ffover the base

complexK?° (see Section 6). We want this parametrization to have_. . .
small distortion; for example, i is (close to) planar, we want the F19ure 2: The harmonic map for the head of a cat. The neck of the

parametrization to be (close to) linear. Because the region may bgft iS mapped onto the boundary of the polygon. The “corner” ver-
geometrically complex (see, for example, Figure 2), some distortiorgces (thoses sent to vertices of the polygon) are indicated by small
al

is usually inevitable.
While it is not clear in general how to find a parametrization

p with small distortion, there is a closely related and well-studied o suppose thdi is any piecewise linear map that agrees with
problem that has a unique solution: Fix a homeomorphysbe- o the houndary. It is therefore uniquely determined by its values
tween the boundary db and the boundary of the polygonal region 7, ;) at the vertices oD. By explicitly integrating the functional

P; then there is a uniquearmonic maph : D — P thatagrees g, ' over each face, one finds thA,.... can be reinterpreted
with g on the boundary oD and minimizesmetric dispersior(see 45 the energy of a configuration of springs with one spring placed
Eells and Sampson [3], pages 114-115, and the survey article bé‘iong each edge db:

Eells and Lemaire[2]). Metric dispersion is a measure of the extent

to which a map stretches regions of small diametebint is thus

a measure of metric distortion. Enarm[h] = 1/2 Z i j]

In addition to minimizing metric distortion, the harmonic miap ti.s}cBdgesn)

has a number of important properties: (i) It is infinitely differen- where the spri .

. AL . : g pring constarks ; are computed as follows: For each
Fle:jble ondea?h ff?ﬁe th (if) Ilttl's ar};meeddmgl['lg, a“dPS".') LIS adge{s, j}, let L; ; denote its length as measured in the initial mesh
independent of the tnangu'ation &1. Because: : L = LIS an — p "ang for each facéi, j, k}, let Areg ; i, denote its area, again as

) . 5 o
embedd'ng' the |nversh_a Is a parametrizafion ab overp. We measured irD. Each interior edg€:, j} is incident to two faces,
will return below to the issues of choosing the boundary mapd say{i, j, k1} and{i, j, k2 }. Then

of computing approximations to.

h(i) RGP, (1)

The dispersion minimizing property of harmonic maps is illus- kij = (Lin, +L5k, —L3;) /Area ik, +
trated in Figure 2, which shows a piecewise linear approximation of ) ) )
a harmonic map from a geometrically complex region onto a poly- ('-z',kz + Ly — '—i,j) /AT€d, ik,

gon. The relatively dense regions of the polygon correspond to the . .
ears and nose of the cat. Notice that the aspect ratios of triangle® formula for spring constants associated to boundary edges has
tend to be preserved. Notice also that the map introduces a certafly one term.
amount of area compression. This is inevitable because the region Although the spring constants ; can assume negative values,
has a large area relative to its circumference, and consequently arlye function (1) is positive definite, and its unique minimum can be
embedding must introduce some distortion in edge lengths. Théund by solving a sparse linear least-squares problem for the val-
harmonic map tends to minimize such distortion while maintaininguesh(z). In contrast to the harmonic map itself, its piecewise linear
the embedding property and attempting to preserve aspect ratios approximation is not always an embedding. In our experience, this
triangles. problem occurs extremely rarely (3 times in the roughly 1000 har-
Harmonic maps can be visualized as follows. Imaginéo be monic maps we computed). In these cases we use uniform spring
composed of elastic, triangular rubber sheets sewn together alorfPnstants.
their edges. Stretch the boundary Bfover the boundary of the For the remainder of this paper we refer to the unique piecewise
polygon P according to the map. The harmonic map minimizes linear function minimizing (1) as a harmonic map, although strictly
the total energyEsq.-m [h] Of this configuration of rubber sheets.  speaking it is only an approximation.

Rather than constructing the harmonic map directly, we com- Others have developed similar approaches to embedding disk-
pute a piecewise linear approximation. Assume thatertices like regions. One such approach, described by Kerdl. [9], is

v1, ..., Uy, Calledcorners have been selected on the boundary also based on minimizing the energy of a network of springs. They

of D (see Figure 2), and (for technical reasons) assume that the dehoose spring constants to be either all equal or inversely propor-

gree of each of the remaining boundary vertices is at least 3. tional to edge lengths. Maillat al. [12] introduced another func-
We choose the polygoR by mapping the corners db onto the ~ tional, also based on elasticity theory.

vertices of am-gon inR2. The vertices of the-gon are positioned Figure 3 illustrates the behavior of the various embedding
on a circle such that the sides subtend angles proportional to the aschemes in a simple example where the redib¢see Figure 3(a))
lengths of the boundary segments@fjoining the corresponding is a triangulation of a planar polygadR andg : 8D — 9P is the
corners. We then defingto be the piecewise linear map that sendsidentity. The harmonic map (Figure 3(b)) is the identity map and
the corners 0B D to the vertices of?, and is a homothety (i.e. an therefore has no metric distortion. The method of Ketnal. with
isometry up to a constant factor) between each boundary segmeaither choice of spring constants produces considerable metric dis-
of D and the corresponding side Bf(Figure 2). tortion (Figure 3(c) and (d)).
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adjacent faces. We set the cost of edges in this dual graph to be the
distance between centroids of the corresponding faces. The distance
between two faces is defined as length of the shortest path in this

dual graph.

Constructing the Voronoi diagram is a multi-source shortest path

Figure 3: Comparison of various “spring embeddings”. From leftproblem in the dual graph, which we solve using a variant of Di-
to right: (a) Original mesh; (b) Harmonic map and embedding ofikstra’s algorithm [1]. The algorithm simultaneously grows the
Maillot et al. with @ = 1; (¢) ki; = 1; (d) ks; = 1/L; ; (e)  Voronoitiles from their site faces until they covif.

Embedding of Mailloket al. with « = 1/2.

Selecting the site faces In this section we describe an algorithm
for selecting a sef of site faces such that the induced Voronoi di-
The mathematical properties of the functional proposed by Mailagram, computed as above, is dual to a triangulation. Although our
lot et al. are not entirely clear. In particular, the smooth theory toalgorithm for selecting such site faces can be applied to any mesh
which it is an approximation does not yield planar embeddings ofi/, let us assume for the moment thet does not possess bound-
geometrically complex regions. This led them to introduce a usergries. With this assumption, the Voronoi diagram must satisfy the
specified tuning parametet Inthe example of Figure 3, the choice following conditions to be dual to a triangulation:
a = 1 also produces the identity map, whereas the cheieel/2
leads to small distortion (see Figure 3(e)). The method of Matiot 1. tiles must be homeomorphic to disks;
al. appears produce results whose quality is comparable to ours2, no pair of tiles may share more than a#(a cut is a contigu-
(for appropriately chosea). However, their method requires non- ous set of edges d¥f along which a pair of tiles touch);
linear optimization, whereas our method requires only the solution 3. no more than three tiles can meet at any vertex.
of a sparse linear least-squares problem.
The algorithm begins by initializing with a single randomly
Hiani chosen site face. Inthe outer loop we then incrementally add faces to
S Pamtlonmg S until the induced tiling satisfies conditions (1) through (3) above.

Our partitioning scheme is based on the concepts of Voronoi dia- In the inner loop (tile growth), tiles associated with the faces in
grams and Delaunay triangulations. Let us first see how these coi$- are grown until either they cove¥/, in which case tile growth
cepts could be used to partition a dense triangulation of a planaerminates, or until condition (1) is violated. Violation of condition
region into a small number of large triangles. We could begin by sef1) can be detected by examining only the neighborhood of the most
lecting a set of relatively uniformly distributed vertices of the denserecently added face. If condition (1) is violated, this face is added
triangulation, and then compute the Delaunay triangulation for théo .S and tile growth is resumed.
selected vertices. One method for computing the Delaunay triangu- \yhen tile growth is complete, conditions (2) and (3) are checked.
lation for a set of sites in the plane is to first construct the Voronoi dit «ondition (2) is violated, a face along one of the offending shared
agram. Its polyhedral dual is the Delaunay triangulation if Voronoig,ts s selected as a new site face. If condition (3) is violated, one
tiles meet three at a corner. of the faces adjacent to the offending vertex is selected as a site. If
By analogy, our approach is to first partition the facedbfnto all adjacent faces already are sites, the Voronoi algorithm fails. This
a set of Voronoi-like tiles; using a discrete approximation of the has never happened in any of the examples we have run. If it were
Voronoi diagram as described in Section 5.1. Unlike typical useso happen, we would simply use the original mesh as the base mesh.
of Voro_noi diagram_s, we do not know t_he_ simpri(_)ri — they are To accommodate boundaries, we introduce a siffigitious
determined dynamically as the Voronoi diagram is constructed.  \pronoi tile, logically outside ofZ, that touches each of the bound-

We then construct the dual to the Voronoi diagram, resulting in aaries of M. Conditions (1) through (3) can then be applied without
Delaunay-like partition o into triangular region%’;, as described change. To ensure that the Delaunay-like triangulation caV&rs

in Section 5.2. we require that boundary tiles (those adjacent to the fictitious tile)
have sites on the boundary df. This issue is addressed again in
5.1 Constructing the Voronoi diagram the next section. To achieve this requirement, the algorithm adds a

new boundary site face whenever an interior tile touches a bound-

As mentioned above, we use a discrete version of the Voronoi diary. As before, when tile growth stops, conditions (2) and (3) are
agram to partition}/ into a set of Voronoi-like tiles. An efficient checked, and if violated, appropriate new sites are added.
algorithm for constructing true Voronoi diagrams.o.n the surfgc_e of It sometimes happens that tiles have adjacent short cuts, a situ-
a mGSh has been (_jeveloped by Mount [15], but it is rather d'ff'cu'tc\tion that leads to Delaunay-like triangles with poor aspect ratios,
to implement, and is unnecessary for our purposes. and hence to poor compression rates. We therefore add to the list

We first describe an algorithm for computing tites ..., 7 given  of conditions one that disallows such tiles. Adjacent cuts of a tile
a set of sites logically positioned at the centroids ofshie faces  are deemed short if the sum of their lengths is less than 10% of the
S = {fi,..., fs}. We then present an algorithm for selecting a length of the boundary of the tile. When an offending pair of cuts is
setS of site faces for which the induced Voronoi diagram is dualfound, one of the faces they share is added as a new site.
to a triangulation. The results of applying the Voronoi algorithm is

shown in Color Plate 1(b).
(®) Properties of the Voronoi algorithm  The time complexity of the

Voronoi algorithm depends on the numbef sites that are needed,
Constructing the Voronoi diagram for a given set of site faces for which there is no general formula. For a fixed set sftes, the
A \Voronoi tile 7; consists of all faces for which the closest site face Voronoi tiles can be constructed using éasource version of Dijk-
is f;. Our measure of distance between faces is an approximatiostra’s algorithm. Like the ordinary single source Dijkstra algorithm,
of geodesic distance over the surface. Itis defined by constructingthe s-source version can be implemented efficiently(« log n)
dual graph to the mesh: the nodes of the graph correspond to facéise) using a priority queue, where the priority of a face is the dis-
of M, and the edges of the graph connect nodes corresponding tance to the nearest site.
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that boundary tiles have site faces on the boundary.) We therefore
select a boundary vertey, of the site facefy, and construcLy ; as

the line fromhy (v ) to the midpoint ofe, ;. The lineL; j is con-
structed as before from the centroid@fto the midpoint ofe; 1.

Finally, two adjacent boundary tileg andr, are connected by
the path along the boundary betwagnandw,.

The edges of the paths thus constructed are generally not edges
of M. For convenience in constructing the parametrizations of Sec-
tion 6, we refine) to include the path edges.

Straightening the Delaunay edges. The edges of the initial
Delaunay triangles constructed in the first step can have kinks
where they cross the border between two Voronoi tiles (see Color
Plate 1(c)). To straighten a Delaunay edge, we construct a second
harmonic map from the union of the two Delaunay triangles adja-
centto the edge into a planar quadrilateral, as described in Section 4.
We then replace the edge by the image of the corresponding diagonal
of the quadrilateral under the inverse harmonic map. This straight-
ening step is applied to all Delaunay edges in an arbitrary order,
resulting in a final triangulatioffy, ..., T;.. Color Plate 1(d) shows
the result of straightening the edges in Color Plate 1(c).

Naively rerunning Dijkstra’s algorithm from scratch each time a

new site face is added would requitd s n log n) time. However, 6 Parametrization
the algorithm can be sped up significantly by incrementally updating

Figure 4: Construction of initial Delaunay paths bh

the priority queue as new sites are addef to Identifying each of then vertices ornodesof the triangulation
Finally, because our site selection algorithm uses a greedy search,, ..., T, with a canonical basis vector B defines the base com-
it cannot be expected to produce a minimal set of sites. plex K° ¢ R™, with a face corresponding to each of thérian-
gular regions. The goal of this section is to construct a continuous
5.2 Constructing the Delaunay triangulation parametrizatiop : K° — M of the initial mesh ovek®. We map

. ) o ) ) ) each triangl€T; onto a triangular region of the plane, again using
The partition of} into Voronoi tiles obtained in the previous sec- harmonic maps described in Section 4. We then affinely map the tri-
tion has the property that its dual graph consists of 3-sided facegngular region onto the corresponding fageof the base complex.
However, mapping these 3-sided faces onto the surface is & nofthe composition of the two maps is an embedding, and therefore its
trivial problem. The obvious approach of connecting pairs Ofinversep; defines a parametrization @f over F;. By construction,
Voronoi sites by the shortest paths on the surface — as is done We maps; agree on shared boundaries, and thugthllectively
constructing the Delaunay triangulation in the plane — is not guargefine a continuous parametrizatipiof M over K°.
anteed to produce a valid triangulation for arbitrary manifolds since
the resulting paths can cross. Moreover, finding the shortest pathi
between two points on a mesh is itself a difficult problem [14]. Our
alternative uses harmonic maps twice: once to produce an initial
Delaunay triangulation, and then again to improve the triangulatiorin this section, we describe a method for producing a mggh
by straightening its edges. with subdivision connectivity from the parametrization K° —
M constructed in Section 6. We also show how to determine the

is to compute the harmonic map that carries each Voronoi tile SuPdivision levelJ so thatM” and M differ by no more than a
7; into an appropriate planar polygdh, as described in Section 4. SPecified remeshing toleraneg
The inverse of; provides a parametrization ef over P; which For a given value off, we first produce a triangulatioR” of
we use to construct paths lying d. K?° by performingJ recursive 4-to-1 splits of the faces Af°. We

Let ; and7; denote two adjacent interior Voronoi tiles as illus- then approximate by a function,” defined as the piecewise linear
trated in Figure 4. The path of the initial Delaunay triangulationNtérpolant top onJK ; thatis, p” is such thap™ (x;') :f(xi )
joining these tiles is constructed as follows: the cut shared by th&here the points;’ (calledknot§ denote the vertices df .
tiles is mapped to an edge ; of P; by the harmonic map;; sim- The simplest strategy for performing a 4-to-1 split of a face is to
ilarly, the cut is mapped to an edgg; of P; by h; (see Figure 4).  position the split points at midpoints of edges, as illustrated in Fig-
We construct a lind.; ; from the centroid ofP; to the midpoint of  ure 1. We refer to this processarametrically uniform resampling
es,;, and a lineL; ; from the centroid ofP; to the midpoint ofe; ;. since the faces ok’ are of equal size. Alternatively, we could at-
The path is formed by mapping these lines ahfasing the inverse  tempt to place the knots so that the images of trianglds bfthat
harmonic maps. That is, the path is obtained by joififg (L ;) is, the triangles of the remesi’, are of equal size. We refer to
andhj’l(Lj,i).1 this asgeometrically uniform resampling

The construction of a path between an interiorjland a bound- As one of our fundamental objectives is high compression rate,
ary tile 7, is slightly different, as indicated in Figure 4. In order we evaluate the performance of a resampling strategy by the number
for the Delaunay triangulation to cover, it is necessary to con- of wavelet coefficients needed for a given compression tolefance
struct paths from the boundary. (The site selection algorithm of Secthis number is governed by at least two competing factors:
tion 5.1 was designed with this goal in mind in that it guarantees 1. As mentioned in Section 3, the coordinate functionspof

INote that this path does not connect the site faces as one might expect.  Should be as slowly varying as possible; this is largely achieved

We have found that the method described here produces more uniform tri- by the distortion minimizing property of the harmonic map
angulations than were obtained by connecting site faces. parametrizations.

Resampling

Constructing an initial Delaunay triangulation. The first step
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€2 Geom. Uniform Hybrid Param. Uniform
0.5% || (2679) [5422] | (1768) [3562]| (2224)[4502
1.0% || (1100)[2180] | (795)[1591] | (1044)[2079
2.0% (416) [809] (385) [758] (455) [881]
5.0% (112) [223] (130) [245] (143) [302]

Table 1: Performance of the three sampling strategies on the cat xi;(li)

model. Parentheses denote the number of significant wavelet coef-
ficients; square brackets denote the number of triangles. All exam-
ples were runusing; = 1.0%. Errors are measured as a percentage

of the object’s diameter.

Figure 5: Computing the new knsaf

S7 are nearly equal.

2. The triangles ofM” should be of roughly uniform size. 7.2 Bounding the remeshing error

Lounsberyet al. define wavelets so that the magnitude of a ] ) ] )
wavelet coefficient is a measure of the “unweighted” least-IN this section we describe how to determiheuch that the remesh

squares error that would be incurred if the coefficient were sef” ~ and the initial meshl/ deviate by no more than a remeshing
to zero. By unweighted we mean that deviations on large tri-tolerances; inanL> sense. Thatis, we seek to find the smallest

angles ofA/” are counted no more heavily than deviations on Such that

small triangles. If\/”7 has triangles of roughly uniform size, max lo(x) — p” (x)]| < €.
magnitudes of wavelet coefficients are better measures of ge- XeK
ometric error. Our strategy for determining will be to perform successive steps

The strategy that has performed best in our experiments is a hy?f 4-to-1 splitting until the error bound is satisfied.
brid strategy using geometrically uniform sampling in the first few  To bound the error for a given value df let E(x) := p(x) —
splitting steps (the first three steps in all our examples), and parg;’(x) denote the (vector-valued) error function. First, note that the
metrically uniform sampling in subsequent steps. Intuitively, thiSpreimages of the triangles & underp form a partitionr of K°,
strategy does a reasonable job of uniformly distributing the trian-and thatp is a linear function on each triangle af Next, recall
gles on a coarse scale, while still remaining faithful to the harmoniqhath is linear within each of the triangles of the partitiéf’ of
parametrization on smaller scales. K°. Thus,E(x), the difference between the two, is linear within

This intuition is supported by numerical results. Our tests havesach cell of the union partition” = = U K. The squared norm
shown that hybrid resampling typically results in wavelet expan-of E(x) is therefore quadratic and convex up over each cett’of
sions with fewer significant coefficients than either parametricallyand so must achieve is maximum value at a vertex”of
uniform or geometrically uniform resampling. Moreover, the num- The L™ error for a given value off can therefore easily be de-
ber of subdivisiong/ necessary to satisfy a remeshing tolerasnce termined by evaluatingZ(x) at the vertices of’. Using a local
is often smaller and hence the remesh is often faster to compute ar?ﬁ rching technique such as the one in Ketrdl. [9], these vertices
requires less storage. Table 1 presents the results of an experim n be found in time proportional to the totallnur’nber of vertices in
for the cat mesh (shown in Color Plate 2(d)) for various Wavelet7r andK”’
compression tolerances. Notice that hybrid resampling is partic- '
ularly advantageous for small tolerances.

8 Results

. . ) Color Plates 1 and 2 illustrate the steps of the algorithm and present
The task of determining new knotg € K° so that the trian- examples of its applications.

gles generated are roughly uniform in size is an optimization prob- Color Plate 1(a)-1(h) demonstrate the complete process of mul-

lem whose s_olutlon we approximate using the following reCUrSIVeiiresolution analysis for a mesh of genus 3. We first partition the
greedy algorithm.

_ original mesh of Color Plate 1(a) into Voronoi-like tiles shown
In the parametrically uniform resampling process the lsgjoat in Color Plate 1(b). We then construct the initial Delaunay-like
levelj is simply computed as midpoint of the edge of the two (neigh-triangulation (Color Plate 1(c)), and straighten its edges (Color
boring) knotsﬂ;é) andxgjw atlevelj —1. Instead of performing  Plate 1(d)). The Delaunay triangles define a simple base complex
uniform subdivision, we define that serves as the domain for the parametrization of the mesh. Re-

sampling this parametrization using the hybrid strategy described
x{ =(1- A{) . Xi;(lo + Af xg(ll) with )\g € (0,1), in Section 7 with a remeshing toleranceeef = 0.75 % required
J = 4 subdivision steps and produced the remesh shown in Color
Plate 1(f) consisting of 17,920 triangles. The lowest resolution ap-
. -1 1 . . proximation, shown in Color Plate 1(e), is a piecewise linear em-
two faces adjacent to the edge frmi]l(i) to Xiz(w ! as |IIu§trateq n bedding of the base complex. Color Plates 1(g) and 1(h) show more
Figure 5. Our goalis to findl] so that the regiong;] = A7 UA] , detailed approximations using, respectively, 366 and 2,614 faces.
ands] = Aﬁ,g U Af,4 map to regions of equal area oi. Table 2 summarizes the remeshing process for a variety of other
In the current implementation we have simplified the area comMeshes. (All computing times were measured on a SGI Onyx Re-

putations by using a discrete approximation: We scatter a roughllity Engine 2 with 256MB of memory.) Note that the number of
uniform collection of points on the faces bf, then map these sam-  voronoi tiles is influenced more by the geometry of the model than
ple points back td<® usingp ! (o~ ! is the harmonic map, soitis Dy the number of faces a¥/.

already known). We then use binary search to compute the param- Approximating the dinosaur and the phone with low tolerances
eter\] so that the number of sampled points in the regiBisind  would require high subdivision levels. This is due to the presence

7.1 Geometrically uniform resampling

where the splitting parametd({ is determined as follows: Split the
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object| # faces|# Voronoi| # Delaunay remesh[subdiv] time with subdivision connectivity. Combined with the previous work

of M | tilest; |trianglesT; | tol. e; |level J| mins of Lounsberyet al, our remeshing algorithm allows multiresolu-
holes3 11,776] 31 70 05%| 4 46 tion analysis to be applied to arbitrary meshes. Multiresolution rep-
bunny| 69,473| 88 162 05%]| 5 335 resentations support efficient storage, rendering, transmission, and
cat 698 7 9 1.0%| 6 0.8 editing of complex meshes in a simple, unified, and theoretically
dino [103,713 117 229 10%| 5 39.3 sound way.
phone|165894 69 182 [25%] 5 [346.§ We have applied our remeshing algorithm and multiresolution

analysis to complicated meshes consisting of more than 100,000
triangles. Examples of compression, level-of-detail rendering, and
editing are shown in the Color Plates.

The key ingredient of our remeshing procedure — and the prin-

Table 2: Summary of results of the remeshing algorithm

Table 3: Summary of results of the algorithm of Lounsbetrgl.

Color|object| # faces| compr.|# wavelet# faces time . . Il - !

Plate of M7 |tol. €5 | coeff. mins cipal technical contribution of the paper — is the construction of a
1(g) [holesd 17,920 4.0%]| 179 366 1 00 continuous parametrization of an arbitrary mesh over a simple do-
1(h) [holes3 17,920/ 0.5 %| 1,298 | 2,614 1.0 main mesh. Parametrlz!ng complex shapes over glmple.domalns is
2(a) [bunny|165,8890.07 %9 18,636 37,598 4.5 a fundamental problem in numerous applications, including texture
2(b) [bunny|165,889 0.7 % 2,268 | 4,639| 3.7 mapping and the approximation of meshes by NURBS patches. We
2(c) |bunny|165,889 1.5%| 952 | 1,921| 35 therefore expect that our parametrization algorithm will have uses
2() [dino 234,49 05%| 2,329 | 4,725| 5.0 outside of multiresolution analysis. We intend to explore these uses
2() [phone[135,164 0.1%| 7,920 (16,451 3.3 in future work.
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quires solving sparse least-squares problems whose time complexity
is proportional to the square of the number of vertices in the trian-
gles.

Table 3 summarizes the results of wavelet compression applied to
remeshed models. Each line of the table gives the number of faces B4
the remesh, the compression toleraac@sed in the wavelet com-
pression method described in Appendix A.2, the number of wavele[lZ]
coefficients, the number of faces of the resulting approximation, angs)
the time required for filterbank analysis and synthesis. The total de-
viation between the compressed model and the original is bounddd]
by e = €1 + €2, the sum of the remeshing tolerance and the compres-
sion tolerance. Note that for storage and transmission purposes, t
relevant performance measure is the number of wavelet coefficients
rather than the number of faces, since only the wavelet coefficientg
(and their indices) have to be stored or transmitted.

Color Plates 1(k)-1(l) illustrate level-of-detail control. The origi- 7]
nal model (Color Plates 1(f) and 1(k)) was created from laser ranggy)
data using the mesh zippering algorithm of Turk and Levoy [21].
Color Plates 1(k) and 1(I) show views of the original model and
of lower resolution approximations from three different distances!®]
Color Plates 2(a)-2(c) are close-ups of the approximations in Color
Plate 2(I). Note the enormous reduction in the number of triangle:[;lo]
when the multiresolution approximations are viewed from afar.

Color Plates 2(d)-(f) illustratenultiresolution editing Color
Plate 2(e) shows a large-scale modification caused by changing )
wavelet coefficient at the coarsest level, whereas Color Plate 2(
corresponds to changing two coefficients at an intermediate level-
of-detail.

Color Plates 2(g)-(I) show the application of remeshing and mul-
tiresolution analysis to two additional meshes. [12]

9 Conclusion [13]

We have described an algorithm for solving the remeshing proble

14]
that is, the problem of approximating an arbitrary mesh by a mes
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D e The inner product is used to define the following orthogonal com-
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WS, A A plement spaces, also callecvelet spaces
NEARRAL
N X

W ={feV'*™|(f,g)=0 VgeV}.

Intuitively, W7 captures the detail that is missed when a function in
Vi+l s approximated by a function 7.

Basis functions fol/7 are calledscaling functionsin the piece-
wise linear case, particularly simple scaling functionsiférare the
“hat functions” onK”: thei-th hat functionp! € V7 is the unique
function inV” that is one ak? and zero at all other knots @7 .

(©)

Wavelet coefficients ~ Wavelet coefficients
Figure 6: Decomposition of a mesh.

A wavelet)F (x) is a basis function for one of the wavelet spaces
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An algorithm known adilterbank analysisan be used to con-
vert between the hat function expansion and the multiresolution rep-
resentation. The geometric interpretation of filterbank analysis is

A Multiresolution Analysis of Subdivi-
shown in Figure 6. The full detail model, described pY(x) is

sion Meshes
As mentioned in Section 1, the main idea of multiresolution analysissgfﬁeefa;}f[ﬁlédceoﬁlz rgt?fﬁ%? ::r:)tgﬁailcli?ewn(tesr {ﬁ;?lﬁqtl;?t? ?pﬁ:nglvrgsgloer:sto-
Is to decompose a function into a low resolution part and a set of COLQil'he result is a simple base mesh together with V\?a)\//elet coeﬁicien.ts
rection or “detail” terms at increasing resolutions. Multiresolution at various levels ofpdetail The o erzgt xsandB in Fiqure 6 refer
analysis was first formalized by Mallat [13] for functions defined : P 9

onR". Lounsbery [10] and Lounsbesy al.[11] have recently ex- to sparse matrices whose entries are given by Loungtedy The

tended the notion of multiresolution analysis to functions define filterbank analysis has an inverse process called filterbank synthe-

on base complexes of arbitrary topological type. Their results car?'S :22;;?;&‘)’?3 the full resolution model from its multiresolution
be used to construct multiresolution representations of meshes wit P '

subdivision connectivity. The purpose of this appendix is to sum-

marize their basic results and algorithms at a high level.

A.1 Background

The two basic ingredients of multiresolution analysis are a sequen
of nested linear function spaces and an inner product. Lounsbery

al. use a sequence of spadé$ c V' C - .- associated with the

base complex. To describe meshes, the approximation spéces

consist of piecewise linear functions; specificall§/, is the space
of continuous piecewise linear functions over a partitishof K°
created by performing recursive steps of 4-to-1 splitting to the
faces ofK?°, as shown in Figure 1. Agincreases, the triangulation
K’ becomes more dense, and so the functiorig’irmre better able
to model arbitrary continuous functions @&%. The inner product
used by Lounsbergt al. is the standard inner product defined as

/x 10990

wheredx is the differential area ok ® embedded iR™, so that all
faces have unit area.

(f.9):

A.2 L*> Wavelet compression

The L*° error caused by wavelet compression iskie norm of the
difference functiord(x) = p”(x) — p” (x), wherep”’ (x) denotes

Ctge compressed approximationad(x). This difference function is

simply the sum of the wavelet terms that have been removed from
p’(x). Sinceé(x) is a piecewise linear function oK, its L™

norm can be determined as in Section 7.2 by recording its values at
the vertices of<”.

Compression in principle proceeds by considering the wavelet
coefficients in order of increasing magnitude. A coefficient is re-
moved if doing so does not cause th& norm of §(x) to exceed
e2. If removal of a coefficient would violate the error tolerance,
the coefficient is retained and the next coefficient is examined. The
procedure terminates when all coefficients have been considered for
removal. The examples presented in this paper have used a conser-
vative approximation to this approach where a bound onltfte
norm ofé(x) is maintained, rather than maintainifigk) itself; we
plan to implement the principled approach in the near future.

180



(d) Straightened Delaunay triangulation () Base mesh (70 faces)

g
/I

-

A

aNwvy

(9) Approx. (e = 4.5%; 366 faces) (h) Approx. (e = 1.0%; 2,614 faces)

(j) Base mesh (162 faces) (k) Original mesh (69,473 faces)

(c) Initial Delaunay triangulation (70 tri.)

(f) Remesh M’ (J = 4; 17,920 faces)

() LOD using multiresolution approx.

Color Plate 1: (a-g) Example of partition, parameterization, resampling, and approximation of a mesh using multiresolution

analysis, (h-k) Level-of-detail approximations of a dense mesh.




(a) Approx. (e = 0.57%; 37,598 faces)

(d) Original mesh (698 faces)

(h) Base mesh (229 faces)

(j) Original mesh (165,896 faces) (k) Base mesh (132 faces) () Approx. (e = 2.6%; 16,451 faces)

Color Plate2: (a-c) Multiresolution approximations used in Color Plate 1(1); (d-f) Example of multiresol ution surface editing;
(g-1) More results of multiresolution surface approximation.




