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In this paper we introduce a class of surface patch representations, called S-patches, that unify and 
generalize triangular and tensor product Bezier surfaces by allowing patches to be defined over any 
convex polygonal domain; hence, S-patches may have any number of boundary curves. Other 
properties of S-patches are geometrically meaningful control points, separate control over positions 
and derivatives along boundary curves, and a geometric construction algorithm based on de Casteljau’s 
algorithm. Of special interest are the regular S-patches, that is, S-patches defined on regular domain 
polygons. Also presented is an algorithm for smoothly joining together these surfaces with C” 
continuity. 
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ing]: computer-aided design (CAD) 
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1. INTRODUCTION 

The Bezier curve form was developed independently by P. Bezier and P. de 
Casteljau in the late 1950s and early 1960s for use in the automotive industry. 
Since that time, much has been written about the numerous properties of these 
curves, and the techniques have been effectively applied in many areas of 
computer-aided geometric design (CAGD). Bezier and de Casteljau also consid- 
ered extensions of their ideas to surfaces, but the resulting surface forms are 
quite different. These differences begin with the shape of the domain: de Castel- 
jau’s surface has a triangular domain (so-called Bezier triangles), whereas Bezier’s 
surface has a rectangul,ar domain (so-called tensor product Bezier surfaces). 
Although defined on different domains, the resulting patches are remarkably 
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similar. Both methods share many interesting and useful properties, including 

-the shape of the surface is “intuitively related” to a collection of control points, 
-the surface is confined to the convex hull of the control points, 
-the shape of the surface is independent of the coordinate system in which the 

control points are expressed, 
-the “corner” control points are interpolated, 
-the boundary curves are Bezier curves, 
-the mathematical representation of the surface is a parametric polynomial (or 

possibly rational polynomial), and 
-there is a simple geometric algorithm for constructing points lying on the 

surface. 

Despite these similarities, the theory (and implementation) of these techniques 
have progressed independently. 

In this paper we present a theory of surface patches that exposes a deep 
connection between Bezier triangles and tensor product Bezier surfaces, and 
extends these techniques to n-sided convex polygonal domains. The unification 
of Bezier triangles and tensor product surfaces is important from a theoretical 
perspective because it provides new insight into the similarities possessed by 
both techniques. It may also prove to be useful from a practical standpoint 
because it allows both methods to be implemented with a single, more general 
algorithm. The need for extensions to n-sided domains has been recognized for 
some time in the CAGD literature (cf. [15] and [27]). Charrot and Gregory 
pioneered the development of n-sided patches in the spirit of Coons’ patches 
[2, 14-161. Some work has been done to generalize triangular and tensor product 
Bezier patches, but the proposed methods impose severe restrictions on the 
number of sides of the domain polygon [19, 251. 

Our method overcomes these limitations while maintaining the properties 
listed above. However, the polynomial degree and storage requirements for these 
patches (with boundary curves of comparable degree) increase as a function of n. 
For instance, a bicubic tensor product Bezier surface requires more storage and 
is of higher total degree than a cubic Bitzier triangle. This, together with the fact 
that an n-sided patch may be simulated by collections of 3- or 4-sided patches 
(cf. [3], [ll], and [17]), may stir debate over the practicality of true n-sided 
patches for n > 4. It should be pointed out, however, that arguments against the 
use of true n-sided patches are often quantitative (i.e., they appeal to time and 
space considerations), as opposed to qualitative (i.e., which surface is the fairest). 
Others might contend that the inclusion of multiple surface types in a modeling 
system increases software complexity via a proliferation of special cases. The 
unifying nature of this work has precisely the opposite effect since only one 
surface type need be implemented. 

Although the ideas will be made more precise in later sections, roughly 
speaking, our approach is as follows: While Bezier methods (also called Bern- 
stein-Bezier methods) have not previously been generalized to arbitrary domain 
polygons, they have been generalized to arbitrary dimensions to describe volumes, 
hypervolumes, and so on. This is accomplished using multivariate Bernstein 
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Fig. 1. Schematic representation of S-patches. 

polynomials, leading to functions defined on simplexes (a two-dimensional sim- 
plex is a triangle, a three-dimensional simplex is a tetrahedron, and so forth for 
higher dimensions). The theory of the resulting functions, called Bezier simplexes 
or B-forms, is well developed (cf. [4], [6], and [22]). Conceptually, we construct 
an n-sided patch S by embedding its n-sided domain polygon P into a simplex A 
whose dimension is one less than the number of sides of the polygon, A BQzier 
simplex B is then constructed using A as a domain. The patch representation S 
is obtained by restricting the Bezier simplex to the embedded domain polygon. 
If E denotes the embedding, the patch representation S can be expressed as a 
composition 

S(P) = B o E(P), P E p, 

as indicated in Figure 1. The control net of S is then defined to be the control 
net of B. 

We call these representations “S-patches” to emphasize their connection to 
the theory of Bezier sim:plexes. Much of the power of the method is derived from 
the way in which the domain polygon P is embedded in the simplex A. Bezier 
simplexes have the property that the position and boundary derivatives at the 
edges of the domain simplex can be controlled individually (cf. [4]). This property 
is exploited in S-patches by requiring that the embedding of the polygon into the 
simplex be such that the edges of the polygon map to edges of the simplex. In 
this way, it is guaranteed that the edges of the polygon map to individually 
controllable Bezier curves and that a large degree of separation is achieved in 
ACM Transactions on Graphics, Vol. 8, No. 3, July 1989. 
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controlling boundary derivatives. Higher order derivatives also behave nicely, as 
is discussed more fully in Section 5. 

The separation of boundary control makes S-patch representations potentially 
attractive tools for CAGD applications, where surface patches of an indeterminate 
number of sides must be joined together in a smooth fashion. The primary 
purpose of this paper is to uncover basic S-patch properties and algorithms. We 
must stress, however, that there remains much to be done and that many 
fundamental questions are still open, a number of which are summarized in 
Section 8. 

The paper is structured as follows: Background material is presented in 
Section 2. In Section 3 the basic definitions are presented, and an example of an 
embedding satisfying our requirements is constructed. In Section 4 we address 
the issue of how S-patch control nets are represented. In Section 5 many of the 
fundamental properties of S-patches are enumerated. In Section 6 a particularly 
useful special case of S-patches, called regular S-patches, is introduced, and in 
Section 6.1 it is shown that regular 4-sided S-patches are very closely related to 
tensor product Bezier surfaces. In Section 6.2 a useful property of the regular 
embedding is identified and proved, and in Section 7 this property is used to 
develop a geometric algorithm for connecting regular S-patches to Bezier triangles 
with Ck continuity. 

2. BACKGROUND 

Readers not proficient in the basic theory of triangular and tensor product Bezier 
surfaces are encouraged to consult [ 11, [ 121, and [ 131. An abbreviated account of 
simple concepts and terminology of affme geometry and Bezier simplexes can be 
found in [6]. More complete treatments of these topics can be found in [4], [7], 
and [9]. It is the purpose of this section to familiarize the reader with our notation 
and with the basic notions of Ramshaw’s development of polar forms [22, 231. 
(Historical note: In [22] and [23], the term blossom was used instead of polar 
form. Polar form is the currently accepted term so as to conform more closely 
with classical multilinear algebra [ 241.) 

In what follows, multi-indexes will be denoted by italic characters ornamented 
with a diacritical arrow, as in i. For our purposes, multi-indexes are tuples of 
nonnegative integers, the components of which are subscribed starting at one; 
for instance, f = (& , . . . , i,).’ Following Farin, the norm of a multi-index l, 
denoted by ] z?] , is defined to be the sum of the components of l. By setting l= 
(4, . . . . ik+l) and requiring that ] i] = d, the k-variate Bernstein polynomials of 
degree d can be defined by 

where (;) is the multinomial coefficient defined by 

d 

0 

d! - = 
1 il! ip! “’ iktl! 

’ In many works indexes are chosen to run from 0 to k rather than from 1 to k + 1. We have chosen 
the latter convention because it simplifies later discussions. 
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and where u,, . . . , uk+l are real numbers that sum to one. It is well known that 
every polynomial Q: PI -+ ZZ of degree d, where ZI is an affine space of 
dimension k and ZZ is an affine space of arbitrary dimension, can be represented 
uniquely in Bernstein-Bezier form once a domain simplex 6 is chosen in ZYI. 
That is, for every polynomial Q: pI + F~, there exist unique points V; in PZ 
such that 

Q(u) = CV;@(u,, . . . , uk+l), (2.1) 

where ul, . . . . uk+l are the barycentric coordinates of u relative to the domain 
simplex 6. Summations such as the one in eq. (2.1) above are intended to be 
taken over all multi-indexes whose norm matches the degree of the Bernstein 
polynomial. Thus, in eq. (2.1), the multi-index lis to take on all values such that 
I;1 =d. 

The points V; are individually referred to as control points and collectively 
referred to as the BQzier control net for Q relative to 6. We shall refer to 
polynomials represented as in eq. (2.1) as Bezier simplexes; when k = 2, we shall 
refer to such representations as Bezier triangles, and when k = 3, we shall refer 
to such representations as Bezier tetrahedrons. 

Ramshaw [22, 231 h.as recently uncovered a beautiful and powerful con- 
nection between Bezier simplexes and symmetric multiaffine maps. (A map 
fb,, *-*, ud ) is said to be multiaffine if it is affine when all but one of its 
arguments is held fixed; it is said to be symmetric if its value does not depend on 
the ordering of the arguments.) Associated with every polynomial Q: Z1 -+ ZZ 
of degree d there is a unique, symmetric, d-affine map that agrees with Q on its 
diagonal (the diagonal of a multiaffine function f (u,, . . . , ud) is the function 
obtained when all arguments are equal: F(u) = f (u, u, . . . , u)). Ramshaw refers 
to this multiaffine map as the polarization of Q. Ramshaw also shows that the 
Bezier control net for a polynomial relative to a domain simplex can be obtained 
by evaluating the polynomial’s polarization at the vertices of the simplex. More 
precisely, if zI is an affine space of dimension k, if Q: ?I + 92 is a polynomial 
of degree d having polarization q, and if A = (v,, . . . , uk+l) is a simplex in PI, 
Ramshaw shows that the Bezier control net of Q relative to A is given by 

d 

v;=q&..., 
n \ 

ul, VZ, . . . , u2, . . . , uk+l, . . . , vk+l). 

&WV v 

11 12 lk+l 

Rational polynomial maps can also be described using Bernstein-Bezier meth- 
ods and polar forms. Rational polynomial maps of degree d can be represented 
as Bezier simplexes by tagging each of the control vertices with a positive weight. 
These representations take the form 

Q(u) = c; w;V&(ul, . . . , uk+l) 

c; U++;(u,, . . . , uk+l) ’ 

Associated with each of these representations is a unique, symmetric, d-projective 
map called its projective polarization. 
ACM Transactions on Graphics, Vol. 8, No. 3, July 1989. 
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3. BASIC DEFINITIONS 

Referring to Figure 1, an n-sided S-patch is obtained by restricting a Bezier 
simplex of dimension n - 1 to a surface obtained by smoothly embedding the 
n-sided domain polygon P in such a way that edges of the polygon map to edges 
of an intermediate simplex A, and the interior of the polygon maps to the interior 
of the intermediate simplex. In the remainder of this paper, these ideas are made 
more precise, and some basic properties of S-patches are identified. 

Unless otherwise stated, we use P to denote the domain space (an affine plane) 
of an n-sided S-patch S, and we denote by .H the modeling space (i.e., the range 
of S); we use P C 2 to denote the convex polygonal domain having vertices 
PI,..., pn; we use M to denote an affine space of domain n - 1; and we use A to 
denote a simplex in y having vertices ul, . . . , u, (see Figure 1). 

Remark. All indexes are to be interpolated in a cyclic fashion. That is, every 
index i is to be mapped into the range 1, . . . , n according to [(i - 1) mod n] + 1. 

Definition 3.1. A C” mapping E: P + $Y is said to be an edge-preserving 
embedding of P into A if 

(i) p in the interior of P implies that E(p) is in the interior of A and 
(ii) p on an edge of P implies that E(p) is on an edge of A. 

We note that every embedding can be written as 

E(P) = el(ph + -.. + en(pbn, 

where el, . . . , e,. * P + R are functions that partition unity and are nonnegative 
whenever p E P (a set of functions is said to partition unity if it sums to one at 
every point of its domain). A simple consequence of the definition is that edge- 
preserving embeddings must carry vertices in P into vertices in A. 

We now construct a particularly useful instance of an edge-preserving embed- 
ding, which we shall denote by L. (Throughout the remainder of this paper, the 
symbol E will be used to represent an arbitrary edge-preserving embedding, 
whereas the symbol L shall refer to the particular edge-preserving embedding 
that follows.) 

Let ai (p) denote the ratio of the signed area of the triangle ppipi+l to the area 
of the triangle pipi+lpi+*, as shown in Figure 2, where the sign is chosen to be 
positive if p is inside P. Let Ni (p) denote the product of all as, except for ai- (p) 
and ai( that is, 

ri(P) = al(P) ‘*. %-2(P) ~i+l(P) ‘*’ (.yn(P), i=l , *-a, n; 

and let 

k(P) = 
Ti(P) 

T(P) + *-* + 7rn(P)’ 
i=l f “‘2 n. 

Remark. For those concerned about the use of Euclidean concepts in the 
definitions above, it should be noted that since ai is defined in terms of ratios of 
areas it is actually an affinely invariant function. In fact, a strict affine definition 
is “ai: P += R is the unique affine function that vanishes at pi and pi+1 and 
achieves the value 1 at pi+2.” A more symmetric definition would have the 
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Fig. 2. Geometry of the affne functions used to construct 
the embedding L. 

function achieve a value i at the centroid of P. We use the former definition to 
simplify subsequent proofs. 

By construction, the functions l,, . . . , 1, form a partition of unity and are 
rational polynomial functions of degree n - 2. Moreover, they are guaranteed to 
be nonnegative whenever p E P since each of the functions ai are nonnegative in 
this case. 

Example 3.1. Consider the construction of the embedding L for the pentagonal 
case. The normalized area functions ai (p) may be defined as 

, (3.1) 

where K is a normalization constant that need not be computed, and superscripts 
u and u denote coordinat.es with respect to some coordinate system on the domain 
2. The functions ri (p) for i = 1, . . . ,5 are defined as 

m(P) = dPh(Ph(P), 

G(P) = %(P)%(P)%(P), 

Q(P) = %(P)%(P)%(P), 

Tb(P) = %(P)W(P)%(P), 

Q(P) = %(P)%(P)%(P). 

Finally, the functions C(p) for i = 1, . . . , 5 are defined as 

b(P) = - 
=1 (PI 

a:,(P) + n(P) + n(P) + K4(P) + %(P)’ 

L(P) = - 
r2 (PI 

II(P) + Q(P) + n(P) + Tc(P) + %l(P) ’ 

b(P) = - 
a3 (P) 

Tl (P) + n(P) + %(P) + T,(P) + %(P) ’ 

l,(P) = - 
=4 (PI 

Tl (P) + Q(P) + T3(P) + al(P) + Q(P) ’ 

l,(P) = - 
7r5 (P) 

Tl(P) + %(P) + 7rB(P) + X4(P) + %(P) * 

ACM Transactions on Graphics, Vol. 8, No. 3, July 1989. 
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For a coordinate definition of (3.3), (3.1) may be expanded and substituted in 
(3.2) and (3.3). This is rather cumbersome to do by hand, but very easy to 
program. 

Since the functions II, . . . , 1, partition unity and are nonnegative whenever p 
is inside the domain polygon, the embedding L: P + A given by 

L(P) = L(Ph + *-a + L(Phz, P E p, (3.4) 

maps the interior of the polygon P into the interior of the simplex A. TO show 
that L is actually edge-preserving, let pe be a point on the edge p1 pz. In this case, 
the function (Ye vanishes, implying that all Zis vanish except for 1, and 12 since 
these are the only two that do not contain CQ (cf. eqs. (3.2) and (3.3)). Thus, 
L(p,) can be written as 

UP,) = h(Peh + L(Peh, (3.5) 

which is clearly a point on the ulvz edge of A, showing that the p1p2 edge of P 
maps to the ulu2 edge of A, for all i = 1 . . . n. By symmetry, the edge pipi+ 
of P is mapped to the UiUi+l edge of A. 

It is interesting to note that the functions II, . . . , 1, are actually a generalization 
of barycentric coordinates. Taking n = 3, we find that 

h(P) = 
ffz(P) 

aI (P) + crz(P) + e(P) * 

The denominator is an affine function that has value 1 at the vertices p, , p2, and 
pa-it must therefore be identically 1. Thus, Z1 (p) = a2 (p), implying that 1i is 
the unique affine function that vanishes at p2 and p3, and attains the value 1 at 
p,. Since these are exactly the defining characteristics of barycentric coordinates, 
l1 must be a barycentric coordinate function; a symmetric argument holds for l2 
and 13. The affine nature of II, 12, l3 means that L is simply an affine map from 
PlpZP3 onto ulu2u3. 

The behavior of the functions Zi (p) for various values of n is illustrated in 
the contour plots of Figure 3. These plots empirically demonstrate the edge- 
preserving character of the functions. 

Before returning to the case of a general edge-preserving embedding E, we 
should point out that functions l,, . . . , 1, are not new to CAGD. Herron [17] and 
Charrot and Gregory [2] discuss equivalent formulations in connection with n- 
sided convex combination surface schemes. 

We are now in a position to rigorously define the class of S-patch surfaces: 

Definition 3.2. An n-sided S-patch of depth d is a map S: P + & of the form 
S = B 0 E, where E: P + A is an edge-preserving embedding of P into A and 
B: A + M is a rational Bezier simplex of degree d, expressed relative to the 
domain simplex A. 

We use the word depth in the definition of S-patches to avoid confusion with 
the rational polynomial degree of the patch itself. In fact, depending on the 
functional form of the embedding E, S may not even be a rational polynomial 
map. However, if the map L from eq. (3.4) is used as the embedding, then the 
S-patch will be a rational polynomial surface whose degree is the product of 
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\ 0 

Fig. 3. Contour plots of the fu.nctions l;(p) from eq. (3.4). Contours are drawn every f of a unit. 

the degrees of B and L. Thus, when L is used as the embedding, an n-sided 
S-patch of depth d is of rational degree d (n - 2). 

Just as the domain triangle of a B6zier triangle does not affect the shape of 
the resulting patch, the simplex A does not affect the shape of an S-patch. This 
is most easily seen by writ:ing S as 

s(p) = 2 w;V7B$kl(p), . . . , e,(p)) 
1:; wjBf(el(p), . . . , e,(p)) ’ P E P, (3.6) 

where 

-V; are the S-patch control points for S relative to P; 
--WC is the rational weight associated with the control point V;; and 
-h(p), . . . , e,(p)) are the barycentric coordinates of E(p) relative to A. 

Equation (3.6) also points out that the shape of S is controlled by manipulating 
the control net VI and the weights w,t. Equation (3.6) can also be used to define 
ACM Transactions on Graphics, Vol. 8, No. 3, July 1989. 
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S-patch blending functions. Specifically, eq. (3.6) can be rewritten as 

where 

S(p) = yq(PL P E p, 

W!(p) = 
w$f(el(p), . . . , e,(p)) 

C; w;Bf(el(p), . . . , e,(p)) ’ 

is defined to be the lth S-patch blending function of depth d. 
Alternatively, S = path blending functions may be found by forming a multi- 

nomial expansion of the embedding component functions (the e;s) and grouping 
like monomial terms. Since 

it follows that 

1 = cl(p) + e(p) + --a + e,(p), 

1 = kl(p) + e(p) + -. . + e,(p)Y 

=T 7 0 e(p)“;e(p)i * -a e(p)?, 
I 

(3.7) 

from the multinomial theorem. The terms of (3.7) are S-patch blending functions 
with rational weights w; = 1; that is, 

W;(p) = ! e(p)ie(p)$ .-- 
0 

e(p)?. 

Example 3.2. As a specific example, consider the construction of S-patch 
blending functions using the embedding L for the case n = 5 and d = 2, with all 
rational weights set to 1. From (3.7), the complete set of blending functions are 

w&,0,0,0,0, (PI = 4 (P)“, w,',,,,",,,,(p) =2&(p)&(p), W,",,,,,,,,(p) = 2l,(P)l3(P), 
wx,,,,,,,o,(p) = %(P)l‘l(P), wl,o,o,",*,(P) = 24(P)&(P), wwmO.O~(P) = L(P)*> 
W,",,,*,,o,,,(p) =2&(p)&(p), W&,,,o,,,o,(P) =24(P)&(P), WO,vm~~(P) = 2b(P)k(P), 
%,0,2,0,0~(P) = L(PY, W:,,o,,,,,o,(P) = 2d(P)L(P), Rw,W~(P) = 2k(P)k(P), 
W&,o,o.2,o,(P) = b(PY, W:,,o,o,,.,,(P) = 2L(P)k(P), wo.0,0,0,2,(P) = k(PY. 

4. CONTROL NETS 

The shapes of S-patches are intuitively related to their control nets, at least 
when L is used as the embedding. It is therefore convenient to describe how 
S-patch control nets are depicted graphically. 

Since the control net of an S-patch is the control net of a Bezier simplex, 
S-patch control nets could be drawn in the same way that control nets for Bezier 
simplexes are drawn. For example, the control net for a 4-sided S-patch could be 
drawn as a control net for a Bezier tetrahedron, as shown in Figure 4a. 

Although the position of the points in the net is crucial, the connectivity of 
the points is somewhat arbitrary. In particular, when drawing control nets for 
Bezier simplexes the usual rule for connecting points V; and V; is that there 
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\ I \ 
7 7 
A \ 

(4 (b) 

Fig. 4. (a) The control net for a B6zier tetrahedron; (b) the S-patch control net obtained by using 
the connectivity rule given in eq. (4.2). 

must exist integers r and s such that the multi-indexes i and 3 satisfy 
f * - f * 
1 - e, - J - e,, (4.1) 

where 6, denotes the multi-index having zeros in all components except for the 
ath component, which is one. This connectivity rule is appropriate for Bezier 
simplexes since it reflects the fact that the domain simplex has all vertices 
connected to all other vertices. This reflects the fact that there is no natural 
ordering on the vertices of the simplex. 

However, for S-patches there is a natural ordering on the vertices in the 
domain polygon. Since E must carry vertices in P into vertices in A, a natural 
ordering on the vertices in A is imposed. The ordering can be reflected in the 
depiction of the control net by modifying the connectivity rule. The rule we shall 
use is that V; and V; are connected if there exists an integer r such that 

t - - ? * 
L - e, - j - e,,,. (4.2) 

Examples of control nets using this rule are shown in Figures 4b, 5, and 6. A 
detailed labeling of the control points appropriate for Example 3.2 is shown in 
Figure 7. 

5. GENERAL PROPERTIES 

The compositional structure of S-patches allows many of their properties to be 
immediately deduced from corresponding properties of Bezier simplexes. Below, 
we list several such properties. 

5.1 Geometric Construction Algorithm 

The point S(p) can be evaluated by first evaluating E(p), and then evaluating 
B at the point E(p) using de Casteljau’s algorithm. The fact that de Casteljau’s 
algorithm has an elegant geometric interpretation provides a geometric construc- 
tion for points on S-patches, as shown in Figure 8. 
ACM Transactions on Graphics, Vol. 8, No. 3, July 1989. 
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Fig. 5. Examples of S-patch control nets for various numbers of sides and depths. 
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Fig. 7. Labeling of control points for a 5-sided S-patch of
depth 2.

5.2 Convex Hull

S-patch surfaces are confined to the convex hull of their control nets. This is a
direct consequence of two simple facts: (1) Edge-preserving embeddings map the
interior of the domain polygon P into the interior of the intermediate simplex A,
and (2) Bézier simplexes are confined to the convex hull of their control nets.
ACM Transactions on Graphics, Vol. 8, No. 3, July 1989.
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Fig. 8. The S-patch geometric construction algorithm. 

5.3 Depth Elevation 

Another property possessed by S-patches that is directly inherited from Bezier 
simplexes is an algorithm for depth elevation. That is, given an S-patch control 
net of depth d describing a surface S = B 0 E, the S-patch control net of depth 
d + 1 for S can be constructed by using the Bezier simplex degree elevation 
algorithm on the control net of B (cf. [4] and [22]). 

Repeated degree elevation of a Bezier simplex produces control nets that 
converge to the image simplex. The implication for S-patches is that repeated 
depth elevation produces control nets that converge to the image of A; they do 
not, in general, converge to the surface patch, except when n = 3. 

5.4 Boundary Behavior 

Perhaps the most important properties of S-patches stem from their behavior 
along the boundary curves. First, we note that each of the n boundary curves of 
an S-patch of depth d are rational Bezier curves of degree d defined by the control 
points associated with the boundary. (An example of this behavior is shown in 
Figure 6 for the case of depth 2 S-patches of 3,4, and 5 sides.) This follows from 
the fact that the edges of the domain polygon map to edges of the simplex, which 
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in turn map to rational Bkzier curves under B (cf. [4]). Moreover, if the rational 
weights associated with the boundary control points are equal, the resulting 
S-patch will have purely polynomial Bbzier curves as boundaries. Note that this 
occurs even if the embedding is not a polynomial or rational polynomial map. 
Thus, S-patches automa.tically achieve separation of boundary curve behavior in 
that only a few control points determine each of the boundary curves. It is 
therefore trivial to insert an S-patch into a network of, say, Bkzier triangles or 
tensor products in a Co fashion (as long as the degree of the triangles or tensor 
products does not exceed the depth of the S-patch). 

Not only do S-patches enjoy separation of positional behavior along the 
boundary curves, they also exhibit separation of derivative control along the 
boundaries. For instance, first-order derivatives along a boundary curve are 
completely determined by the boundary vertices and the vertices adjacent to 
them (using the usual Bkzier simplex connectivity rule of eq. (4.1)). Again, this 
follows immediately from the fact that the S-patch is obtained by restriction of 
a Bbzier simplex to an embedded surface. Higher order derivatives behave 
similarly: The rth-order derivative behavior along a boundary curve is determined 
completely by the vertices a “distance” r or less from the boundary vertices. The 
term distance here refers to the number of edges of the control net that are 
traversed in a path from a boundary control point (using the Bbzier simplex 
connectivity rule of eq. (4.1)). 

6. REGULAR S-PATCHES 

By a regular S-patch, we mean an S-patch 5’ = B 0 L, where L is the embedding 
of eq. (3.4) and S is defined on a domain polygon that is the affine image of a 
regular n-gon (we call such polygons regular). Several interesting phenomena 
appear when L is used on a regular domain polygon. 

The first occurs when n = 3, that is, for triangular domains. In this case, L is 
an affine map, implying that the image of S = B 0 L is the same as the image of 
B. Thus, 5’ is simply a rational Bbzier triangle. In other words, regular S-patches 
generalize rational B6zier triangles. 

The second interesting thing occurs when n = 4, that is, for parallelogram 
domains. In Section 6.1 .it is shown that, when the domain is a parallelogram, 
S-patches generalize rational bi-d-ic tensor product Bkzier surfaces. 

Remark. Since regular S-patches generalize both the BBzier triangles and the 
bi-d-ic tensor product B(izier surfaces, the theory of regular S-patches can be 
used to unify the theories of Bkzier triangles and tensor products. For instance, 
in Section 6.4 we derive an algorithm for representing an m-sided regular 
S-patch as an n-sided regular S-patch. Unification implies that this algorithm 
is both an algorithm for converting B&zier triangles into tensor product form 
(set m = 3 and n = 4) and an algorithm for converting tensor product surfaces 
into Bkzier triangle form (set m = 4 and n = 3). Unification also shows that 
the de Casteljau algorithms for Bi?zier triangles and tensor product surfaces are 
specific manifestations of a common, more general construction. 

The third interesting thing that occurs for regular S-patches concerns a special 
property of L. In general, L is a rational polynomial mapping. However, when 
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P4 P3 

Fig. 9. The domain of a regular 4-sided S-patch. 

P2 

the domain polygon is regular, L has, in a sense to be precisely defined in 
Section 6.2, an extremely simple inverse. This fact has striking practical impli- 
cations. In particular, it is the key to a construction for joining regular S-patches 
to Bezier triangles and tensor product Bezier surfaces with Ck continuity. 

6.1 Regular 4-Sided S-Patches and Tensor Product Surfaces 

To investigate the relationship between regular 4-sided S-patches and tensor 
product surfaces, we establish a coordinate system in the domain space 2 by 
placing the origin at pl, choosing the unit vector in the u direction to be p2 - pl, 
and the unit vector in the u direction to be p4 - pl, as shown in Figure 9. The 
representations of the functions aI, . . . , 01~ in this system are particularly simple. 
Referring to Figure 9, if p has coordinates (u, u) in this system, then 

%(P) = u 
a%(p) = 1 - U 

as(p) = 1 - u 

%lPl = u. 

These representations give rise to functions L, . . . , l4 that are also simply 
expressed. In fact, the common denominator of these functions is identically one: 

T(P) + Q(P) + %(P) + al(P) 
= u(1 - u) + (1 - u)(l - u) + (1 - u)u + uu = 1. 

Thus, the functions II, . . . , 1, become 

h(P) = (1 - u)(l - u) 
l,(P) = u(l - u) 

/3(P) = uu 
l,(p) = (1 - u)u. 

The simple product structure of these expressions shows a connection to tensor 
product blending functions. The precise nature of this connection is established 
in the following lemma: 
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LEMMA 6.1. Let p be a point having coordinates (u. u) in the coordinate system 
of Figure 9, and let-l= (i,, iz, iB, i4) be such that 1 i’( = 2. Then 

0 
Bf o L(P) = (i2 ~ i)ii3 ~ i~:+i.(u,8:+i,(u~. 

PROOF 

Bf 0 L(p) 
= B%(P), UP), k(p), L(P)) 

= Bf((1 - u)(l - /I), u(1 - U), UU, (1 - u)u) 

= 
0 

i (1 _ u)i~(l _. u)i~ui2(l - u)i2uGui3(1 - u)i4ui4 

~(i~~i~~3~i,(i~~i,)(i~~i~u~z+~3~l-u~~~+~4u~3+i4~l u) 
i,+i, 

An immediate consequence of Lemma 6.1 is that the regular S-patch blending 
functions are not always linearly independent. As a specific instance, Lemma 6.1 
shows that 

For practical design applications, it is necessary for blending functions to be 
independent, so the question of exactly when S-patch blending functions are 
dependent is an important. one. Although the general question is currently open, 
it is interesting to note that the dependence of the blending functions in the n = 
4 case is precisely what is needed to establish a connection between S-patches 
and tensor product surfaces, as the next lemma shows: 

LEMMA 6.2. Let S be a regular d-sided S-patch of depth d having control points 
V; and rational weights w,t = 1. S can be written as the following (nonrational) 
bi-d-ic tensor product surface: 

S(P) = C Wi,jB:‘(u)B~(u), 
ij 
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where p has coordinates (u, v) relative to the coordinate system of Figure 9 and 
where 

PROOF 

S(p) = ; V;Bf 0 UP) 

0 
= ?“I (i2 ~ l$, ~ i3Bti,(“)B~+i4(v) 

0 

=: 2;+!.(i;:i);i3.$)vi B3u)B3v) 

= C Wi,jBy(u)Bjd(U). Cl 
i,j 

Remark. A slight generalization shows that Lemma 6.2 holds for rational 
bi-d-ic tensor product Bezier surfaces. 

Lemma 6.2 provides a simple algorithm for converting a regular 4-sided 
S-patch into tensor product form. It also shows that, if each of the S-patch 
control points V;, for all f such that iz + is = i and is + il = j, coincide at a point 
Wij, then the S-patch control net is identical to the tensor product control net. 
In other words, regular 4-sided S-patches generalize bi-d-ic tensor product Bezier 
surfaces. In order to represent a general r-by-s tensor product surface (i.e., one 
that is degree r in u and degree s in v, where r # s), the S-patch must be of depth 
max(r, s). 

6.2 The Pseudoaffine Property 

In the introduction to Section 6, it is claimed that the embedding L possesses a 
certain property when the domain polygon P is regular. The property of interest 
is a generalization of a property satisfied by barycentric coordinates for triangles. 
The definition of barycentric coordinates for triangles associates with each point 
p in a triangle p1p2p3 a triple of numbers /3,, &, p3 that partition unity and are 
such that 

P = PlPl + PZPZ + t%P3- 
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More generally, the embedding L associates with each point p in an n-gon 
Pl, **-9 p,, a collection of numbers l1 (p), . . . , Z,(p). In order to generalize bary- 
centric coordinates as cl’osely as possible, we would like the &s to be such that 

p = h(P)Pl + *** + L(P)Pn. (6.1) 

Loosely speaking, when this relation holds, we say that L possesses the pseu- 
doaffine property (motivation for this term will be explained shortly). Although 
L does not possess the ps’eudoaffine property for arbitrary n-gons, in the appendix 
it is shown that L does possess it when the n-gon is regular. Rather than defining 
pseudoaffineness by making explicit reference to components of L (the &s), we 
shall find it more convenient for later use to phrase pseudoaffineness for arbitrary 
maps without reference to the components of the map. 

Definition 6.1. Let M: F1 + ZZ be any map from an afflne space ZY1 into an 
affine space 2Y2. M is said to be pseudoaffine if there exists an affine map F: 
ZZ ---, Z, such that F 0 M is the identity map on 9,. When such a map F exists, 
we say that M is pseudoaffine with respect to F. 

The term pseudoaffine is motivated by the fact that, if a map M is pseudoaffine, 
then, even if M is itself nonaffine, it has a left inverse that is affine. Intuitively 
speaking, a map is pseudoaffine if its nonaffine behavior can be affinely “projected 
out.” In the appendix the following claim is proved, showing that the embedding 
L is such a map whenever the domain polygon is regular: 

CLAIM 6.1. Let A: y -3 S? be the unique affine map that carries ui into pi for 
i=l,..., n. The embedding L: P + M is pseudoaffine with respect to A whenever 
P is regular. 

PROOF. See Appendix A. 0 

It is the pseudoaffine property that allows polynomial functions to be repre- 
sented in S-patch form. This has a number of useful consequences: It allows 
B6zier triangles to be represented as n-sided S-patches (see Section 6.4), it allows 
the graphs of scalar valued functions to be represented as S-patches (see 
Section 6.5), and it allows S-patches to inherit algorithms for connecting Bkzier 
triangles with geometric continuity (see Section 7). 

6.3 Subdivision 

Subdivision algorithms are among the most powerful techniques currrently used 
in CAGD. It is therefore natural to study the character of subdivision algorithms 
for S-patches. Unfortunately, it is rather unlikely that such algorithms exist, at 
least in the usual sense. To investigate this further, we note that a subdivision 
algorithm for regular S-patches would typically be characterized as follows: 

Given. A control net for an n-sided S-patch S of depth d defined on an n-gon 
P. Also input to the problem is another n-gon P’. 

Find. The control net for an n-sided S-patch of depth d defined on P’ that 
exactly reproduces S. 

If an algorithm existed to solve this problem, then the fact that S-patch 
boundaries are Bhzier curves implies that the images of the edges of P ’ are curves 
ACM Transactions on Graphics, Vol. 8, No. 3, July 1989. 



A Multisided Generalization of Bgzier Surfaces l 223 

Fig. 10. The geometric interpretation of eq. (6.2). 

of degree d. However, in general, the image of a line on an n-sided S-patch of 
depth d is a rational curve of degree d (n - 2). Thus, if an algorithm exists at all, 
it cannot exist for an arbitrary polygon P ‘. Tensor product surfaces provide an 
example of a technique where subdivision does not exist for arbitrary P’, but 
does exist for specially chosen ones (P ’ must be a parallelogram whose sides are 
parallel to the sides of P). If special polygons P’ exist for general S-patches, we 
have yet to identify them. 

6.4 Representation Theorems 

In this section we show that the space of bivariate polynomials of degree d is 
contained in the span of regular n-sided S-patches of depth d, for all n 2 3. We 
then derive an algorithm for the construction of an S-patch control net for a 
given polynomial. As a consequence of the pseudoaffine behavior of L, the 
S-patch control net for a polynomial Q is shown to be intimately related to the 
theory of polar forms in that the S-patch control points correspond to certain 
values of Q’s polarization. 

CLAIM 6.2. The space of bivariate polynomials of degree d is contained in the 
space of regular n-sided S-patches of depth d. 

PROOF. Let Q: Z + M denote an arbitrary bivariate polynomial of degree d 
for which the existence of an S-patch representation is to be demonstrated, and 
let A : y ---) 2 be the affine map that carries u; into pi for all i. 

Recall that A as defined above is such that, as a consequence of Claim 6.1, the 
map A 0 L: 2 + Z is the identity map I of 2 onto itself. The key to the proof 
(and the algorithm) is as follows, the geometric interpretation of which is shown 
in Figure 10: 

Q=QoI 
= Q 0 (A 0 L) (6.2) 
= (Qo A) 0L 
=BoL. 
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Since B = Q 0 A : A -+ nC is a composition of purely polynomial maps, B is itself 
a purely polynomial map; thus, Q written as Q = B 0 L is a map in regular 
S-patch form. The S-patch control net of Q is the control net of B, the 
construction of which is described in Claim 6.3. 0 

CLAIM 6.3. Let Q: 2? + M be a polynomial of degree d having polarization q. 
The regular S-patch representation of depth d for Q on the (regular) polygon pl, 
. . . ) p,, has control points given by 

vs = q(p1, * * a, Pl, P2, *. . , pa, *. * , pn, . * * , PA 
\I-- - 

h 12 L 

with rational weights that are all equal to unity. 

PROOF. The proof is actually a special case of Claim 4.3 of [6]. Here we offer 
an alternative proof tailored to the special case that is substantially shorter and 
more to the point. 

From the proof of Claim 6.2, the S-patch control net of Q is the control net of 
the composition map B := Q 0 A, where A is the affine map carrying vi onto pi, 
i=l * * 3 n. This control net can be determined by appropriate evaluation of 
the polarization b of B. The polarization b can be written as 

b(ul, . . . , ud) = q(Ab,), . . . , A(Q)) 

since this is the unique symmetric d-affine function whose diagonal agrees with 
B. Evaluating b at the vertices of the simplex A yields B’s control net and, 
hence, the S-patch control net for Q: 

Vr = b(vl, . . . , ~1, ~2, . . . , ~2, . . . , v,, . . . , v,) 
Y1y y- 

11 12 bz 

= q(Ah), . . . , Alp,), A(q), . . . , A(s), . . . , Ah), . . . , A(d) 

--- M 

11 12 bl 

= 4(Pl, *..,Pl,P2, -**,P2, **.,Pn, *..,PA 

-- - 

El 552 bz 

which completes the proof. 0 

Claim 6.3 establishes the algebraic relationship between a polynomial’s polar- 
ization and S-patch control nets for it. Owing to- the close connection between 
geometric constructions and polar forms, the algebraic relationship of Claim 6.3 
leads immediately to a geometric construction for an S-patch control net given a 
Bezier control net for a polynomial surface. This is demonstrated in the following 
example for a quadratic Bezier triangle: 

Example 6.1. As a spec.ific example of the construction of an S-patch control 
net for a polynomial surface, let Q be a quadratic Bezier triangle with polarization 
q. The control points for Q on the triangle rst are obtained by evaluating q at the 
points rst, as shown in Figure 11. We shall describe the construction of the 
regular s-sided S-patch control net for Q on the pentagon abcde. 
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Fig. 11. The domain triangle and control net for a BBzier triangle Q that is to be 
represented as a regular 5-sided S-patch. Also shown is the domain pentagon for the 
S-patch. 

The first step is to construct the image of abcde under the affine map that 
carries the triangle rst onto the triangular “panel” q(rr)q(rs) q(rt). The points 
thus constructed are the polar values (i.e., values of the polarization) q (ra), q (rb), 
q(rc), q(rd), and q(re). Using a similar process to find the image of abcde on the 
other two panels results in the situation shown in Figure 12a. Next, find the 
image of abcde under the affine map that carries the triangle rst onto the triangle 
q(ra) q(sa)q(ta), thereby computing the polar values q (au), q(ab), . . . , q(ae), as 
shown in Figure 12b. According to Claim 6.3, the points thus constructed are 
S-patch control points. The remaining S-patch control points are found by 
constructing the image of abcde on the panels q (rb) q (sb) q (tb), q (rc) q (SC) q (tc), 
q(rd)q(sd)q(td), and q(re)q(se)q(te), as shown in Figure 12~. 

Example 6.2. As another example of S-patch representations of polynomial 
maps, consider the construction of a regular n-sided depth d S-patch represen- 
tation of the identity map. That is, we seek control points P; such that 

p = c Potful, . *. , L(P)). 

A simple solution to this problem is to construct the d-affine polarization of 
the identity and then to evaluate it at the locations indicated by Claim 6.3. The 
d-affine polarization of the identity map is given simply by 

u1 + t‘2 + * * - + ud 
d 

Evaluating this polar form at the vertices of P as indicated in Claim 6.3, we find 
that 

p7= ilp, + i2p2 + --- + Lp, 
1 

d (6.3) 

Examples of control nets produced in this way for various n and d are given in 
Figure 5. 
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(a) (b) 

(cl 

Fig. 12. The construction of a 5-sided regular S-patch control net. 

We would now like to generalize Claims 6.2 and 6.3 in a number of ways. First, 
these claims can be generalized to include the case in which Q is a rational 
polynomial. The construc:tion of S-patch control nets is very similar in this case, 
the exception being that t.he weights take on values other than one and projective 
images of the polygon are constructed rather than affine images. Second, recall 
that rational Bkzier triangles are identical to 3-sided regular S-patches. The 
claims can therefore be interpreted as stating that 3-sided regular S-patches can 
be represented as n-sided regular S-patches. One might conjecture that a similar 
result is more generally true for the case in which an m-sided regular S-patch is 
to be represented as an n-sided regular S-patch. This conjecture holds, as we now 
show. Moreover, the proof is constructive in that it provides an algorithm for 
computing the n-sided representation given the m-sided representation. 

CLAIM 6.4. For every m-sided regular S-patch of depth d, there exists an 
equivalent n-sided regular S-patch of depth d (m - 2). In other words, the space of 
m-sided regular S-patches of depth d is contained in the space of n-sided regular 
S-patches of depth d (m - 2). 
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Table I. Corollaries of Claim 6.4 

m n Interpretation 

3 4 Triangle + Tensor product 
4 3 Tensor product + Triangle 
3 n Triangle - S-patch 
4 Tensor product + S-patch 
m ; S-patch -+ Triangle 
m 4 S-patch - Tensor product 

PROOF. Let .Li denote the embedding L for an i-sided S-patch, let Ai denote 
the affine map with respect to which Li is pseudoaffine, and let I denote the 
identity mapping on the domain space 2. Also, denote by S = B, 0 L, the 
m-sided S-patch for which an n-sided representation is to be constructed. The 
proof proceeds by using essentially the same reasoning as was used in the proof 
of Claim 6.2: 

S = B, 0 L, 
= B, 0 L, 0 I 
= B, 0 L, 0 (A, 0 L,) 
= (B, 0 L, 0 A,) 0 L,. 

The term in parentheses consists of the composition of three rational polynomial 
maps. Control nets for B, and A,, are already known, and the control net for L, 
can be obtained by evaluating its multiprojective polarization. A slight generali- 
zation of the Bezier simplex composition algorithm developed in [6] can therefore 
be used to compute the control points for the map B, := B, 0 L, 0 A,, [8]. This 
definition of B, allows S to be written as S = B, 0 L,, which is an n-sided 
S-patch representation. Since B, is of degree d, L,,, is of degree m - 2, and 
since A, is of degree 1, B, is of degree d (m - 2), implying that S = B, 0 L, is 
an S-patch representation of depth d(m - 2). Cl 

Claim 6.4 has a number of corollaries, one of which is Claim 6.2. Other 
corollaries can be interpreted as change of representation algorithms; these are 
summarized in Table I. 

6.5 Nonparametric S-Patches 

The coefficients of a real-valued polynomial expressed in Bernstein form, also 
known as Bezier ordinates [12, 131, have a simple geometric interpretation. In 
particular, they are closely related to the geometric locations of the triangular 
BQzier control points for the graph of the polynomial. As a direct consequence of 
the pseudoaffine property of Section 6.2, a similar results holds more generally 
for real-valued functions given in regular S-patch form when the rational weights 
are set to one. Suppose that F: P + R is a real-valued function given in regular 
S-patch form as 
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Fig. 13. The graph of a depth 2 &sided function in regular S-patch 
form. 

The graph of F is the parametric function GF(p) = (p, F(p)). The S-patch 
control points G; of GF must therefore be such that the first component represents 
the identity map and the last component represents F. Using the results of 
Example 6.2, these control points are therefore given by 

Gr = ilp, + - - - + i,p, 
d 

Figure 13 shows the graph of a depth 2 &sided function. 

7. JOINING REGULAR S-PATCHES TO BiZlER TRIANGLES 

Using Claim 6.3 for representing polynomials in S-patch form, it is a simple 
matter to derive an algorithm for smoothly joining (in a Ck sense) regular S- 
patches to Bezier triangles. To do this, suppose that Q is the Bezier triangle to 
be joined to with Ck continuity, let T denote Q’s domain triangle, and let q denote 
Q’s polarization. The algorithm consists of the following steps: 

(1) Using Claim 6.3, compute the S-patch control net for Q defined on an 
adjacent domain polygon P. The S-patch thus constructed meets Q with Cm 
continuity since they :represent the same function. 

(2) If the S-patch control points within k vertices of the boundary are kept fixed, 
the first k derivatives of the S-patch remain equal to Q’s derivatives, and 
therefore the S-patch and Q meet Ck. 
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Fig. 14. C’ joining of a regular S-patch to a Bézier triangle.

The geometric interpretation of this construction for C’ is shown in Figure 14.
Note that adjacent panels must be affine images of the domain polygons and
hence are coplanar. Figure 15 shows an example of this method for a degree 2
Bézier triangle joined in a C1 fashion to a 5-sided, depth 2 S-patch.

A slight generalization can be used to achieve Gk continuity (cf. [5] and [18]),
assuming that there exists a construction for joining Bézier triangles together
with Gk continuity. (Farin [10] and Piper [21], for instance, have exhibited such
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constructions for k = 1.) This hypothesized construction can be used as follows 
to achieve a Gk join of an S-patch to a Bkzier triangle Q: 

(1) Use the hypothesized construction to determine a Bbzier triangle B that 
meets Q with Gk continuity. 

(2) Use Claim 6.3 to compute the S-patch control net for Q. The resulting 
S-patch also meets Q with Gk continuity. 

(3) The S-patch control points further than k vertices from the boundary can be 
moved at will without. destroying the Gk join. 

The important aspect of this result is that a pair of S-patches are no more 
difficult to join together than a pair of B&zier triangles. Since S-patches in general 
have more control points influencing derivatives across boundaries than do equal- 
depth Bbzier triangles, more general Gk joins may be possible. Further work in 
this direction is needed. 

8. SUMMARY 

In this paper we have int.roduced a new class of surface representations, called 
S-patches, that may be defined on arbitrary convex polygonal domains. Based 
on the idea of restricting Bc5zier simplexes to embedded surfaces, the theory of 
S-patches can be derived largely by adapting results from the theory of multivar- 
iate Bernstein-B6zier representations. Using this technique, we have shown that 
S-patches can be geometrically constructed, that they possess a depth elevation 
algorithm, that they lie in the convex hull of their defining points, and that the 
positional and derivative behavior of their boundary curves is determined entirely 
by control points “near” the boundary. 

It was shown that regular S-patches, that is, S-patches defined on regular 
polygonal domains, possess additional special properties. In particular, it was 
shown that regular S-patches unify the theory of Bkzier triangles and bi-d-ic 
tensor product BQzier surfaces; it was also shown that regular S-patches can be 
joined to Bbzier triangles with either Ck continuity for arbitrary k, or G’ 
continuity. However, it appears unlikely that regular S-patches possess a recur- 
sive subdivision algorithm. 

Quite a lot of work remains to be done to fully develop the theory of S-patches. 
Here we list a number of topics for future research: 

Linear independence. We have shown that regular S-patch blending functions 
are not necessarily linearly independent. In particular, linear dependence of the 
blending functions was shown to occur for parallelogram domains. It is desirable 
to know exactly when S-patch basis functions are linearly independent. 

Pseudoaffine embeddings on irregular domains. The pseudoaffine property has 
been shown to be very useful in developing algorithms for representing polyno- 
mials and for joining polynomials and S-patches. However, the embedding (L 
from eq. (3.4)) we have used in this paper is pseudoaffine only when the domain 
polygon is regular. If pseudoaffine embeddings can be constructed on arbitrary 
convex polygons, many of the results in this paper could be immediately extended. 
The use of piecewise smooth embeddings can also be considered. 

Smooth interpolation to scattered data. The problem that originally motivated 
the development of S-patches is that of constructing smooth surfaces that 
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interpolate the vertices of an arbitrary polyhedron. This problem has been 
previously addressed by a number of authors for the case in which the vertices 
of the polyhedron are interpolated using only triangular and/or quadrilateral 
patches (cf. [3], [ll], [20], [al], and [26]). We are currently developing a scheme 
that uses S-patch representations to construct surfaces given polyhedrons whose 
faces have any number of sides. 

Derivatives of S-patches. Detailed knowledge of derivative behavior at the 
boundaries and over the interior of surface patches is important for constructions 
ensuring geometric continuity, as well as for high-quality surface-shading algo- 
rithms. The compositional structure of S-patches allows these derivatives to be 
studied using the chain rule. That is, an S-patch S = B 0 E has a differential 
given by DS = DB 0 DE. Thus, knowledge of S-patch derivative behavior can 
be determined once the differentials of B and E are known. The joining of patches 
with geometric continuity is not only of theoretical interest, it is necessary for 
developing effective solutions to the scattered data interpolation problem. 

APPENDIX A. Proof of Claim 6.1 

The proof proceeds by showing that A 0 L is the identity map when restricted to 
an edge of the domain polygon P. We can then use degree arguments to show 
that A 0 L must be the identity everywhere. Before proving the claim, a few 
preparatory lemmas are in order. 

LEMMA A.l. If f : R2 + R is a polynomial map of degree less than or equal to d 
that vanishes on the line g(x, y) = 0, then g divides f. 

PROOF. Set up a coordinate system (x’, y’ ) so that the 1~’ axis coincides with 
the line g(3c, y) = 0. In the primed system, g can be expressed as 

gb’, Y’) = ay’ 

where a is a constant, and f can be expressed as 

fb’,Y’) =Poh’) +p1b’)Y +P2(x’)Y’2 + *-* +Pd(X’)Y’d 

where pO, . . . , pd are univariate polynomials. Since f vanishes when g does, the 
polynomial po(x’ ) must be identically zero. Thus, f can be written as 

fb’,Y’) =Y’[Plb’) +PZb’)Y + **- +pd(X’)y’d-l] 

= i g(xt, Y’)[Pl(X’) + Pz(X’)Y’ + * * * + Pd (x’ )Y’“-‘I, 

showing that g does in fact divide f. Cl 

LEMMA A.2. Let $J be an affine functional defined on an affine plane that 
vanishes at the points P, and P,. If Q1 and Q2 are two points on a line parallel to 
f’1P2, then @(Ql) = $((&2). 

PROOF. If Q1 and QZ lie on the line P, P2, the lemma is trivially true. Otherwise, 
write Q2 barycentrically with respect to the triangle PlP2Ql and use the fact that 
~75 is an affine map. Cl 

LEMMA A.3. The restriction of L to an edge of P is a pseudoaffine map with 
respect to A whenever P is regular. 
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PROOF. If n = 3, L is everywhere affine as shown in Section 3, so its restriction 
to each edge is affine. If n > 3, consider the restriction L, of L to the edge p1p2 
(the other edges follow from symmetry). Referring to eq. (3.5), L, will be of the 
form 

L?(P) = ZI(Ph + l2(Ph, P E PIPZ- 

The composition map A 0 L, is therefore of the form 

A o -L(P) = AV,(ph + I~(P)u~) 

= k(pM(u,) + 12(~M(u2) 

= L(P)Pl + l2(P)P2 

= ~l(P)Pl + ~2(P)P2 

Al + ~z(P) * 

The functionals ?rl and r2 share the product CY~ - . . (Y,-~ as a common factor. 
Since this common factor never vanishes on p1p2, it can be divided out, leaving 

A o L,(P) = 
dP)P* + %(P)P2 

c.u2(P) + %(P) ’ 
P E P1P2. 

In this form, we recognize that A 0 L, is a projective map from the line plpz onto 
itself. We can show that this is the identity map by showing that it fixes three 
points on the line. It is particularly easy to show that two points, namely, p1 and 
p2, are fixed: The point p1 is fixed under A 0 L, since (Ye vanishes at p1 ; a similar 
argument holds for p2 since a2 vanishes at p2. Showing fixture of a third point 
requires us to use regularity of the domain polygon P. First, recall that az(p4) = 
1. If P is regular, the the line p1p4 is parallel to p2p3. By Lemma A.2, we conclude 
that an(pl) = 1. With these simple facts, fixture of the midpoint follows readily: 

A o Ltl +p2) 4+9Pl + %4+9P, 

- = 
e 2 *45J?-j + 4Jh ;P2) 

Ly2(Pl) + ~z(P2) %(Pl) + Gz(P2) 

2 Pl + 2 PZ 
= 

a*(p1) + cuz(P2) + %(Pl) + h(P2) 

2 2 

PI + P2 =- 
2 . 

17 

We are now in a position to prove the claim. 

PROOF OF CLAIM 6.1. Consider the following map H that carries points in 2 
into vectors in P: 

H(P) = (A o L(P) - P)(~I(P) + ... + m(p)). (A.11 

If we establish a coordinate system on P’, then H is represented by two functions 
Hx, Hy, each of which maps R2 into R. Since the second factor of eq. (A.l) 
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cancels the denominator of L, Hx and Hy are (nonrational) polynomials. They 
are each of degree n - 1 since p (represented by the polynomials x and y) is a 
linear polynomial and the second factor of eq. (A.l) is a polynomial of degree n 
- 2. By Lemma A.3, H(p) is the zero vector wheneverp is on an edge of P. Thus, 
Hx and Hy each vanish on the n lines defined by al(p) = 0, . . . , a,(p) = 0. By 
Lemma A.l, the functions Hx and Hy must therefore be divisible by n linear 
factors. Since they are polynomials of degree n - 1, the only way that they 
can have n linear factors is if they identically vanish. Thus, Hx(x, y) = 0 and 
Hy(x, y) = 0, implying that H(p) is identically the zero vector. 

The proof is completed by noting that if p E P then the second factor of eq. 
(A.l) is strictly positive, implying that A 0 L(p) - p is the zero vector for all p 
E P; thus, A 0 L(p) = p for all p E P. Since A 0 L is a rational polynomial map 
shown to be the identity on an open set, it must be the identity everywhere. q 
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