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Multiresolution analysis and wavelets provide useful and efficient tools for representing
functions at multiple levels of detail. Wavelet representations have been used in a broad range
of applications, including image compression, physical simulation, and numerical analysis. In
this article, we present a new class of wavelets, based on subdivision surfaces, that radically
extends the class of representable functions. Whereas previous two-dimensional methods were
restricted to functions defined on R2, the subdivision wavelets developed here may be applied
to functions defined on compact surfaces of arbitrary topological type. We envision many
applications of this work, including continuous level-of-detail control for graphics rendering,
compression of geometric models, and acceleration of global illumination algorithms. Level-of-
detail control for spherical domains is illustrated using two examples: shape approximation of
a polyhedral model, and color approximation of global terrain data.

Categories and Subject Descriptors: G.1.2 [Approximation]: Spline Approximation; I.3.5
[Computer Graphics]: Computational Geometry and Object Modeling—surfaces and object
representations; J.6 [Computer-Aided Engineering]: Computer-Aided Design (CAD)

General Terms: Algorithms, Design, Theory
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1. INTRODUCTION

Multiresolution analysis and wavelets have received considerable attention
in recent years, fueled largely by the diverse collection of problems that
benefit from their use. The basic idea behind multiresolution analysis is to
decompose a complicated function into a “simpler” low resolution part,
together with a collection of perturbations, called wavelet coefficients,
necessary to recover the original function. For many of the functions
encountered in practice, a large percentage of the wavelet coefficients are
small, meaning that good approximations can be obtained by using only a
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few of the largest coefficients. Impressive “lossy” compression rates for
images have been achieved using this type of approximation [DeVore et al.
1992].
There are many constructions of wavelets for functions parametrized

over the interval [Andersson et al. 1993; Chui and Quak 1992; Cohen et al.
1993; Meyer 1992]. These have found use in signal processing [Mallat
1989], B-spline modeling [Finkelstein and Salesin 1994], motion planning
[Liu et al. 1994], and many other applications involving functions parame-
trized in one dimension.
Two-dimensional wavelets are important for a variety of applications

including image compression. They are generally constructed by forming
tensor products of univariate wavelets [Daubechies 1992], in much the
same way that tensor product B-spline surfaces are formed by products of
univariate B-splines. Unfortunately, tensor-product constructions require
that the functions to be decomposed be defined on R2 or on a periodic
version of R2, that is, the cylinder or torus. There also exist nontensor-
product constructions for wavelets on R2 [Daubechies 1992; Jia and Micch-
elli 1991], but none of these methods are applicable to functions defined on
more general topological domains, such as spheres. Thus, existing methods
are not well suited for decomposing and compressing surfaces such as the
ones shown in Figures 10 and 12, since they are described by parametric
functions on the sphere.
In this article we show that by using techniques from subdivision

surfaces, multiresolution analysis can be extended to functions defined on
domains of arbitrary topological type (the topological type of a two-dimen-
sional surface or domain refers to its genus, presence of boundary curves,
etc.). This generalization, which we term “subdivision wavelets,” dramati-
cally extends the class of applications to which multiresolution analysis can
be applied, including:

—Polyhedral compression. Using wavelet-based techniques, most polyhe-
dral models may be compressed to yield a more compact approximation.
Compression saves both storage space and the time that is required to
process a surface model. This article develops efficient wavelet compres-
sion methods for surfaces similar to those that have proven effective for
images and one-dimensional functions. These techniques are capable of
L` and L2 approximation, and run more quickly than many other
compression methods. This application is explored in more detail in Eck
et al. [1995].

—Continuous level-of-detail control. When a complex shape is rendered in
an animation, a fully detailed representation of the shape contains much
more detail than is required for all but the closest view. Using a
compressed subdivision wavelet representation of complex objects, it is
possible to greatly reduce the number of polygons in a scene without
significantly impacting the visible detail (see Figure 10). Moreover, it is
possible to smoothly vary the detail, avoiding the discontinuous jumps
that occur when suddenly switching between distinct models. This appli-
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cation is discussed in more detail in Section 7.5. Nonwavelet treatments
of this problem may be found in Turk [1992], Schroeder et al. [1992], and
Hoppe et al. [1993].

—Compression of functions defined on surfaces. Consider the situation
shown in Figure 12 where a globe (a geometric sphere) is pseudo-colored
according to elevation. The pseudo-coloring can be thought of as a
function that maps each point on the sphere to an RGB triple. A
straightforward method for storing the function is to store its value at a
large number of regularly distributed points; in this case more than one
million points were used. The methods in this article can be used to
create compressed wavelet approximations of varying complexity. (The
mesh lines on the original surface are so dense that the image shown in
Figure 11(b) is nearly black.)

—Multiresolution editing of surfaces. Hierarchical B-splines, as introduced
by Forsey and Bartels [1988], provide a powerful mechanism for editing
shapes at various levels of detail. However, hierarchical B-splines can
only represent a restricted class of surface topologies. The methods
described here provide an alternative to hierarchical B-splines, and are
capable of representing smooth multiresolution surfaces of arbitrary
topological type. Editing at fractional levels of detail can also be achieved
using the methods developed by Finkelstein and Salesin [1994].

—Surface optimization. The multiple levels of approximation produced by
wavelet techniques offer a sort of multigrid technique for optimization.
Pentland [1992] uses wavelet methods to implement multigrid optimiza-
tion for surface interpolation over regular grids. Meyers [1994a; 1994b]
shows how wavelets can accelerate the reconstruction of surfaces from
contour data. This previous work suggests that subdivision wavelets may
find use in optimization over surfaces of arbitrary topological type.

—Numerical solution of integral and differential equations. Wavelet repre-
sentations of functions on surfaces of arbitrary topological type appear
well suited for adaptive numerical solution, along the lines of Beylkin et
al. [1991].

A carefully constructed special-purpose algorithm may produce superior
results for some of these applications. However, the above examples indi-
cate the versatility of subdivision wavelets, and show them to be a reusable
tool that naturally and efficiently solve or accelerate a wide range of
common problems in computer graphics and modeling. As an illustration of
this versatility, a complex object of arbitrary topological type may be
modeled at multiple levels of detail, stored in a compressed form, viewed in
an animation, and rendered using global illumination—all naturally imple-
mented using the same underlying surface wavelet representation.
This article presents a theoretical foundation for developing multiresolu-

tion analysis for surfaces of arbitrary topological type. (Additional details of
implementation and an expanded treatment of applications may be found
in Lounsbery [1994], Eck et al. [1995], and Certain et al. [1996].)
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The construction of subdivision wavelets described herein applies directly
to a variety of existing subdivision schemes. These include piecewise linear
subdivision (producing polyhedra); the schemes of Catmull and Clark
[1978], Halstead et al. [1993], Loop [1987] or Dyn et al. [1990] (producing
tangent-plane-smooth G1 subdivision surfaces); and the modifications by
Hoppe [1994] and Hoppe et al. [1994] (producing piecewise smooth surfaces
with selected discontinuities). More generally, the techniques presented
here may be used to construct wavelets for any local, stationary, continu-
ous, uniformly convergent subdivision scheme (these terms will be de-
scribed in Section 4).
The remainder of the article is structured as follows. In Section 2, we

present a high-level preview of how to convert a polyhedral object to
multiresolution form. In Section 3, we provide some background on mul-
tiresolution analysis. In Section 4, we provide a brief overview of subdivi-
sion surfaces, and we show that they can be used to define a collection of
scaling functions necessary for multiresolution analysis. In Section 5, we
show that inner products of these scaling functions can be computed
exactly. In Section 6, we use the inner products to construct wavelets, and
to construct locally supported approximations to them. In Section 7, we
apply the theory to polyhedral compression. In Section 8, we apply the
theory to the problem of compression and editing of the smooth surfaces
described by Dyn et al. [1990]. Finally, in Section 9, we summarize the
contributions of the article, and list several topics for future work.

2. A PREVIEW OF THE METHOD

Although the mathematical underpinnings of multiresolution analysis of
surfaces are somewhat involved, the resulting algorithms are quite simple.
Before diving into the details, we give here a brief description of how the
method can be applied to decompose the polyhedral object shown in Figure
1(a).
As mentioned in Section 1, a main idea behind multiresolution analysis is

the decomposition of a function (in this case a polyhedron expressed as a
parametric function on the sphere) into a low resolution part and a “detail”

Fig. 1. Decomposition of a polyhedral surface.
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part. The low resolution part of the polyhedron in Figure 1(a) is shown in
Figure 1(b). The vertices in Figure 1(b) are computed as certain weighted
averages of the vertices in Figure 1(a). These weighted averages essentially
implement a low pass filter denoted as A. The detail part consists of a
collection of fairly abstract coefficients, called wavelet coefficients, com-
puted as weighted differences of the vertices in Figure 1(a). These differ-
encing weights form a high-pass filter B. The decomposition process,
technically called analysis, can be used to further split Figure 1(b) into an
even lower resolution version and corresponding wavelet coefficients. This
cascade of analysis steps, referred to as a filter bank algorithm, culminates
with the coarsest-level representation in Figure 1(c), together with wavelet
coefficients at each level.
The analysis filters A and B are constructed so that the original polyhe-

dron can be recovered exactly from the low-resolution version and the
wavelet coefficients. Recovery, technically called synthesis, reconstructs
Figure 1(a) from Figure 1(b) and the finest-level wavelet coefficients.
Recovery refines each triangle of Figure 1(b) into four subtriangles by
introducing new vertices at edge midpoints, followed by perturbing the
resulting collection of vertices according to the wavelet coefficients. The
refining and perturbing steps are described by two other filters P (the
refining filter) and Q (the perturbing filter), collectively called synthesis
filters.
The trick is to develop the four analysis and synthesis filters so that: (1)

the low-resolution versions are good approximations of the original object
(in a least-squares sense); (2) the magnitude of a wavelet coefficient reflects
a coefficient’s importance by measuring the error introduced when the
coefficient is set to zero; and (3) analysis and synthesis filter banks should
have time complexity that is linear in the number of vertices.

3. BACKGROUND ON MULTIRESOLUTION ANALYSIS

Multiresolution analysis as formulated by Mallat [1989] and Meyer [1993]
provides a convenient framework for developing the analysis and synthesis
filters. There are two basic ingredients for a multiresolution analysis: an
infinite chain of nested linear function spaces V0 , V1 , V2 , . . . and an
inner product ^f, g& defined on any pair of functions f, g [ Vj, for some j ,
`. Intuitively, Vj contains functions of resolution j, with the detail increas-
ing as j increases.
The inner product is used to define the orthogonal complement spaces Wj

as

Wj :5 $ f [ Vj11u^f, g& 5 0 g [ Vj%.

Orthogonal complements are often written as Vj11 5 Vj Q Wj because any
function f j11 [ Vj11 can be written uniquely as an orthogonal decomposi-
tion

f j11 5 f j 1 hj,
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where f j [ Vj and hj [ Wj. Orthogonal decompositions are important for
approximation purposes: it is easy to show that f j is the best approximation
to f j11 in that it is the unique function in Vj that minimizes the least-
squares residual ^f j11 2 f j, f j11 2 f j&. Thus, given a high-resolution
function f j11, its low-resolution part is f j, and its detail part is hj.
The following terminology is now standard: scaling functions refer to

bases for the spaces Vj, and wavelets refer to bases for the orthogonal
complement spaces. As shown in Section 6.3, the analysis and synthesis
filters are determined by considering various ways of changing bases
between scaling functions and wavelets.
The strictest form of wavelets, such as those constructed by Daubechies

[1988] and Mallat [1989], are fully orthogonal, meaning that every wavelet
c i
j(x) is orthogonal to every other wavelet c i9

j9(x); that is, ^c i
j (x), c i9

j9(x)& 5 0
unless j 5 j9 and i 5 i9.
It has been shown to be impossible to construct wavelets that are

simultaneously locally supported, fully orthogonal, and symmetric. It is
therefore sometimes convenient to relax the fully orthogonal condition to
the semiorthogonal setting, and require only orthogonality between wave-
lets at different levels: ^c i

j(x), c i9
j9(x)& 5 0 unless j 5 j9. The locally

supported B-spline wavelets constructed by Chui [1992] are a good example
of a semiorthogonal construction.
Finally, the least restrictive form of wavelets are said to be biorthogonal,

a term coined by Cohen et al. [1992] to refer to the setting where
orthogonality is dropped entirely. It is not even necessary for the the
wavelet spaces Wj to be orthogonal complements—in general Wj is just
some complement of Vj in Vj11. Our construction, described in Section 6,
results in locally supported biorthogonal wavelets.

4. NESTED LINEAR SPACES THROUGH SUBDIVISION

A fundamental requirement for multiresolution analysis is a sequence of
nested linear spaces. In this section, we carry this property to surfaces of
arbitrary topological type, demonstrating the existence of scaling functions
on subdivision surfaces.
The nested sequence of linear spaces required by multiresolution analy-

sis are ordinarily obtained by defining a single scaling function f( x) that
satisfies a refinement equation of the form

f~ x! 5 O
i
pif~2x 2 i!

for some fixed constants pi. The refinement equation (sometimes called a
two-scale relation) guarantees that the spaces defined as

Vj : 5 Span$f~2 jx 2 i! ui 5 2`, . . . , `%

are nested. In other words, the nested spaces are generated by translations
and dilations of a single refinable function f( x).
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To generalize these ideas to domains of arbitrary topological type, one
could attempt to make definitions for what it means to dilate and translate
a function on an arbitrary topological domain. One could then try to find a
refinable scaling function and proceed as before to define orthogonal
complements, wavelets, and so on. We have instead chosen what appears to
be a simpler approach.
In this section, recursive subdivision is used to define a collection of

functions f i
j(x) that are refinable—in the sense that each function with

superscript j lies in the span of the functions with superscript j 1 1; the
argument x is a point that ranges over a domain 2-manifold of arbitrary
topological type. In one respect, this is a generalization of the approach
taken by Daubechies [1992], whose locally supported orthogonal scaling
functions are also defined through a recursive subdivision procedure.
Although in general the f j11(x) are not simple dilates of the f j(x), one can
nonetheless use them to define a sequence of nested spaces.
(We should note that the realization that translation and dilation are not

strictly necessary for the construction of wavelets has also been noted
independently by Sweldens [1994] and Carnicer et al. [1994].)

4.1 Subdivision Surfaces

Intuitively speaking, subdivision surfaces are defined by iteratively refin-
ing a control polyhedron M0 so that the sequence of increasingly faceted
polyhedra M1, M2, . . . converge to some limit surface M`. In each
subdivision step, the vertices of Mj11 are computed as affine combinations
of the vertices of Mj. Thus, if Vj is a matrix whose ith row consists of the x,
y, and z coordinates of vertex i of Mj, there exists a nonsquare matrix of
constants P j such that

V j11 5 P jV j. (1)

The matrix P j therefore characterizes the subdivision method. The beauty
of subdivision surface schemes is that the entries of P j depend only on the
connectivity of the vertices in Mj, not on the geometric positions of the
vertices. Subdivision schemes are typically local, meaning that each vertex
of Mj11 is computed as an affine combination of nearby vertices of Mj.
The simplest example of such a scheme is polyhedral subdivision. Given a

polyhedron M0 with triangular faces, a new polyhedron M1 is built by
splitting each triangular face of M0 into four subfaces as in Figure 2. The
matrix P0 characterizing the first subdivision step is also shown in Figure
2. Running this subdivision scheme for j steps on an initial triangular mesh
M0 produces a mesh Mj. Mj includes the vertices of M0 together with new
vertices introduced through subdivision. The valence (the number of edges
incident to a vertex) of the vertices of Mj corresponding to the original
vertices in M0 remains fixed. The new vertices introduced through subdivi-
sion however are always of valence six, corresponding to a regular triangu-
lar tiling of the surface. As the mesh is further subdivided, the so-called
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extraordinary points (any original vertex of valence other than six) become
increasingly isolated in an otherwise regular tiling of the surface.
Polyhedral subdivision converges to the original polyhedron covering M0,

that is, to a C0 surface. However, other schemes have been developed that
converge to tangent-plane smooth limit surfaces that either approximate or
interpolate the vertices of M0. Subdivision schemes can be further catego-
rized as being either primal or dual. A subdivision scheme is primal if the
faces of the mesh are split into subfaces by the refinement procedure.
Catmull and Clark subdivision [1978; Halstead et al. 1993] is a primal
scheme based on subdivision of quadrilateral faces. Polyhedral subdivision,
the “butterfly” scheme of Dyn et al. [1990] and Loop’s method [1987] are
primal schemes based on subdivision of triangular faces. A scheme is dual
if the structure of the refined mesh is obtained by doing a primal subdivi-
sion followed by taking the polyhedral dual of the result. Doo and Sabin

Fig. 2. Polyhedral subdivision of a tetrahedron. The matrices shown here represent various
filters associated with the scheme, and are explained in Section 6.
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[1978] and Doo [1978] subdivision is a dual scheme based on quadrilaterals.
Additionally, a stationary subdivision scheme is one in which there exists
an integer j such that the same subdivision rule is used for refinement
steps numbered larger than j.
Although one can certainly construct fractal-like subdivision schemes

that do not converge to well defined surfaces, in this article we shall
consider only local schemes that uniformly converge to a continuous surface
no matter where the control vertices are placed. In the remainder of this
article, subdivision schemes will be assumed to be local, stationary, contin-
uous, and uniformly convergent. For simplicity we shall restrict the discus-
sion to primal triangular subdivision schemes, although our results also
hold for primal quadrilateral schemes.

4.2 Refinable Scaling Functions Through Subdivision

We show here that subdivision can be used to define a collection of
refinable scaling functions. We do this by first showing that subdivision
surfaces can be parametrized by a function S(x), where x ranges over M0.
We then show that the parametrization can be used to define the scaling
functions. Parametrizing the scaling functions over a domain M0 of arbi-
trarily topological type differs sharply from the more usual method of
parametrizing surface basis functions over a piece of the plane.
In general terms, a surface parametrization is nothing more than a

correspondence between points in a two-dimensional domain and points on
the surface. The idea behind establishing a parametrization for a subdivi-
sion surface is to track a point x on M0 through the subdivision process (see
Figure 3). The point x being tracked will converge to a point on the limit
surface, thereby establishing a correspondence S between points on M0 and
points on the limit surface. We now make these ideas more precise.
For primal subdivision schemes, the refinement step that carries the

mesh Ms21 into Ms consists of two substeps: the splitting step and the
averaging step. In the splitting step, each face of Ms21 is split into four
subfaces by introducing vertices at midpoints of edges, creating auxiliary
mesh M̂s, as shown in Figure 3. The averaging step uses local weighted
averaging to compute the vertex positions of Ms from the vertex positions of
M̂s. All primal subdivision schemes share the splitting step—they differ
only in the weights used in the averaging step.

Fig. 3. The subdivision limiting process.
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The parametrization S(x) can now be established by using a limiting
process. The limiting process producing S(x) consists of three steps:

(1) S0(x) ;5 x, x [ M0.
(2) Suppose that Ss21(x) lies in triangle (v̂a

s , v̂b
s , v̂c

s) of M̂s with barycentric
coordinates (a, b, g). Then

Ss~x! :5 ava
s 1 bvb

s 1 gvc
s , (2)

where (va
s , vb

s , vc
s) is the triangle of Ms corresponding to (v̂a

s , v̂b
s , v̂c

s) of
M̂s.

(3) S(x) ;5 lims3` Ss(x).

Next, we show that the parametrization S(x) induces a collection of
refinable scaling functions.

LEMMA 4.2.1. For all j $ 0, all s $ j, and all i ranging over the vertices
of Mj, there exist functions f i

s4j : M0 3 R such that

Ss~x! 5 O
i

vi
jf i

s4j~x!.

PROOF. It is convenient to write the statement of the lemma in matrix
form as

Ss~x! 5 Fs4j~x!V j,

where Fs4j(x) is the row vector whose ith component is f i
j(x).

The linear combination of Equation 2 above can be rewritten in matrix
notation as

Ss~x! 5 bs~x!Vs,

where bs(x) is the barycentric coordinate vector of x with respect to Ms;
that is,

bs~x! 5 ~0 · · · 0a0 · · · 0b0 · · · 0g0 · · · 0!,

where a occurs at index a, b occurs at index b, g occurs at index c. At each
refinement step k 5 1, . . . , s, the vertices of Mk can be computed from
affine combinations of the vertices of Mk21. Therefore, there must exist a
chain of (non-square) matrices P0, . . . , Pk21 such that

Vk 5 Pk21Pk22 · · · P0V0.

Thus,

Ss~x! 5 bs~x!Ps21Ps22 · · · P jV j.
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The desired result follows immediately by making the definition

Fs4j~x!;5bs~x!Ps21Ps22 · · · P j. e

As a simple corollary to Lemma 1, we note that

Fs4j~x! 5 Fs4j11~x!P j. (3)

THEOREM 4.2.1. For any subdivision procedure, and for any j $ 0, there
exist scalar-valued functions f i

j(x), x [ M0, such that

S~x! 5 O
i

vi
jf i

j~x!. (4)

PROOF. Using Lemma 1 and the definition of S(x):

S~x! 5 lim
s3`

~Fs4jV j!.

Since the subdivision scheme is assumed to be local and uniformly conver-
gent for any choice of control points, S(x) must exist if we choose all entries
of Vj to be the origin, except for vi

j, the ith entry of Vj. This choice of control
points leads to a surface of the form

S lim
s3`

f i
s4j~x!vi

jD 5 vi
jS lim

s3`

f i
s4j~x!D .

Since the surface is well defined, the sequence on the right must converge
to v i

jf i
j(x), where

f i
j~x! :5 lim

s3`

f i
s4j~x!.

By linearity, the surface for an arbitrary set of control points can be written
as in Equation 4. e

We will find it convenient to rewrite Equation 4 in matrix form as

S~x! 5 F j~x!V j, (5)

where F j(x) denotes the row matrix of scaling functions f i
j(x), and where

Vj is as in Equation 1. Equation 5 shows an analogy with B-splines, where
the f i

j(x) are comparable to the B-spline basis functions, and the Vj are
akin to the control points.
As a corollary to Theorem 4.2.1, if the subdivision scheme generates

continuous surfaces, the scaling functions f i
j are continuous, hence they

are also integrable [Bartle 1964].
We may now establish the refinability of the scaling functions defined in

Theorem 4.2.1.

44 • M. Lounsbery et al.

ACM Transactions on Graphics, Vol. 16, No. 1, January 1997.



THEOREM 4.2.2. The scaling functions f i
j(x) are refinable.

PROOF. Starting with Equation 3 and taking limits as s tends toward
infinity, it follows from the existence of the f i

j(x) that

F j~x! 5 F j11~x!P j. (6)

This equation establishes refinability since it states that each of the
functions f i

j(x) can be written as a linear combination of the functions
f i
j11(x). e

For primal subdivision schemes, it is convenient to write Equation 6 in
block matrix form by writing F j11(x) as

F j11~x! 5 ~2 j11~x! 1 j11~x!!, (7)

where 2 j11(x) consists of all scaling functions f i
j11(x) associated with the

old vertices of Mj (the black vertices in Figure 2) and 1 j11(x) consists of
the remaining scaling functions associated with the new vertices added
when obtaining Mj11 from Mj (the white vertices in Figure 2). Equation 6
can now be expressed in block matrix form:

F j~x! 5 ~2 j11~x! 1 j11~x!!SO j

N jD , (8)

where O j and N j represent the portions of the subdivision matrix Pj which
weight the “old” and “new” vertices, respectively. The block matrix decom-
position of P0 for the example tetrahedron appears in Figure 2.

4.3 Nested Linear Spaces

Given these relations, a chain of nested linear spaces Vj(M0) associated
with a mesh M0 can now be defined as follows:

Vj~M0! : 5 Span~F j~x!!,

where the Vj(M0) are spaces of scalar-valued functions.
Equation 6 implies that these spaces are indeed nested; that is,

V0~M0! , V1~M0! , · · · .

The notation Vj(M0) is to emphasize that the linear spaces are adapted to
M0 in that they consist of functions having M0 as the domain.

5. INNER PRODUCTS

Given a chain of nested linear spaces, the other necessary ingredient for
the creation of a multiresolution analysis is the existence of an inner
product on these spaces. In this section, we define an inner product and
give a method for exactly computing the inner product of any pair of
functions defined through subdivision.
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Inner products between pairs of scaling functions are used in the con-
struction of wavelets, as described in Section 6. For an efficient implemen-
tation of subdivision wavelets, neither the inner products nor the wavelets
need to be computed at run time, if the base mesh M0 is known in advance.

5.1 Definition

Let two functions f, g [ Vj(M0), j , ` be linear combinations of
(scalar-valued) scaling functions defined through subdivision, as in Section
4. We define the inner product of f and g to be

^f, g&;5E
x[M0

f~x! g~x!dx, (9)

where the area form dx is taken to be the area for a triangulation
homeomorphic to M0 consisting of equilateral triangles with equal area.
Equivalently, the inner product can be expressed as

^f, g&;5 O
t[D~M0!

1

Area~t! E
x9[t

f~x9! g~x9!dx9,

where D(M0) denotes the set of triangular faces of M0, and where dx9 is the
usual Euclidean area form for the triangle t in R3.
Our definition of inner product implies that triangles of different geomet-

ric size and shape are weighted equally; that is, the inner product is
independent of the geometric positions of the vertices of M0. This inner
product has two important consequences.
First, in the process of constructing the least-squares best wavelet

approximation to a function, each approximated triangle is weighted
equally, independent of its geometric size. Although this simplification
ignores the fact that for most data sets all triangles are not really the same
size, we have obtained good results for many examples, including those
described in Section 7.5.
Second, because all triangles can be treated equally, the wavelet spaces

are invariant of the geometry of the mesh and filters only change at the
extraordinary points. Thus, a significant amount of precomputation of
inner products and wavelets can be performed, allowing the wavelet
algorithms to be implemented more efficiently.
An alternative is to define the inner product so as to weight the integral

by the areas of triangles in M0. Whether such a definition has enough
important practical benefit to offset its much increased computation may be
an interesting topic for future research. A step in this direction has already
been made by Schröder and Sweldens [1995].

5.2 Computation

For piecewise linear subdivision (leading to polyhedral surfaces), the scal-
ing functions f i

j(x) are simply the hat functions over M0. For the case when
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functions f and g are combinations of piecewise linear scaling functions, it
is therefore fairly simple to directly compute the integral of Equation 9.
In general, however, the lack of a closed form for the scaling functions

makes explicit integration quite difficult. In these cases, one could estimate
the inner product ^f, g& by subdividing the scaling functions some number
of times and directly integrating the resulting piecewise linear approxima-
tion. In this section, we will see that such estimation is unnecessary, and
that exact integration is still possible for the general case.
One way to compute inner products is to follow the approach in Halstead

et al. [1993]. Their approach for computing integrals over subdivision
surfaces was to observe that away from extraordinary points, integrals
could be computed exactly since Catmull-Clark subdivision converges to
uniform bicubic B-splines in regular regions (those regions removed from
extraordinary points). They also observed that the subdivision process
could then be used to compute an integral over the entire surface by
evaluating a geometric series. To generalize their method to other schemes,
one must first compute inner products in regular regions. This is relatively
easy for some schemes, such as Loop’s, that converge to polynomials in
regular regions, but it is harder for schemes such as the butterfly method
that are nowhere polynomial.
A general method for integration in regular regions was recently devel-

oped by Dahmen and Micchelli [1993]. It operates by reducing the problem
of computing inner products to one of computing eigenvectors of a matrix
defined by the refinement equations.
Although it is possible to combine the methods of Halstead et al. [1993]

and Dahmen and Micchelli [1993], we present here a method that is
somewhat simpler, in that it computes inner products directly as the
solution to a homogeneous system of linear equations.
Let f and g be functions given as expansions in f i

j:

f~x! 5 O
i

f i
jf i

j~x! g~x! 5 O
i

g i
jf i

j~x!.

Bilinearity of the inner product allows ^f, g& to be written in matrix form as

^f, g& 5 gTI jf,

where f and g are column matrices consisting of the coefficients of f and g,
respectively, and where I j is the square matrix whose i, i9-th entry is (I j)i,i9 5
^f i

j, f i9
j &.

The ith row of I j contains the inner product of f i
j with each of the other

scaling functions f i9
j . It is convenient to view these entries geometrically by

constructing an inner product mask around each vertex. The inner product
mask for the ith vertex of Mj assigns to each vertex i9 of Mj a multiple of
the scalar ^f i

j, f i9
j &.

In the case of polyhedral subdivision, explicit calculation leads to the
inner product mask around a vertex of valence n shown in Figure 4, where
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the central weight is simply the valence of the central vertex. As an
example, the complete inner product matrix I0 for the tetrahedron appears
in Figure 2. Note that in this case the mask entries must be divided by 3 to
obtain the matrix entries.
For more general subdivision procedures, such as the butterfly scheme,

the limit surface has no closed form, precluding a brute-force explicit
integration. However, as we now show, it is possible to exactly determine
the entries of I j by solving a linear system, without resorting to numerical
integration. We will first present the general integration procedure, and
then illustrate it using a simple one-dimensional example.
The key to the linear system is to observe that when all triangles at

subdivision level j are weighted equally, as was done in the inner product
formulation in Section 5.1, a recurrence relation exists between I j and I j11.
Specifically, I j can be written as

I j 5 E
x[M0

~F j~x!!TF j~x!dx, (10)

where the integrand represents a matrix outer product, and where the
integral of a matrix of functions is defined to be the matrix of integrals. The
refinement property of Equation 6 can now be used to establish the
recurrence

I j 5 E
x[M0

~P j!T~F j11~x!!TF j11~x!P jdx

5 ~P j!TI j11P j.

Since the subdivision rules are local, the corresponding scaling functions
are locally supported, and the support of a scaling function f i

j(x) shrinks as
j increases. Thus, beyond some level j9 the support of each of the scaling
functions f i

j9 will contain at most one extraordinary point. Furthermore,
the local neighborhood at level j9 1 1 will be a shrunken version of the
local neighborhood at level j9. Hence, the scaling functions in F j9(x) and
F j911(x) are closely related.

Fig. 4. The polyhedral inner product mask around a vertex of degree n.
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More precisely, for each scaling function f i
j9 there is at least one i9 such

that

f i
j9~x! 5 f i9

j911~s i~x!!,

where s i : M
0 3 M0 is a piecewise linear function that maps triangles in

the support of f i
j9 into the corresponding triangles of f i9

j911, as depicted in
Figure 5. As a consequence of the parametric construction in Section 4.2,
triangle areas of M0 shrink by a factor of 4 under subdivision, and hence
the Jacobian of s i is 1⁄4. Each of the entries (I j9)hi in I j9 therefore has one or
more corresponding entries (I j911)h9i9 in I j9, up to a factor of 1⁄4; that is, 1⁄4
(I j9)hi 5 (I j911)h9i9.
The resulting m 3 m matrix equation

I j9 5 ~P j9!TI j911P j9 (11)

represents a homogeneous system of m2 equations in the m2 unknown entries
of I j9. Due to the symmetry of I j9, the system reduces to m(m 1 1)/2
homogeneous equations in as many unknowns. A square inhomogeneous
system is produced once an absolute scale is chosen for the homogeneous
system. We typically set the scale by requiring that the sum of the entries of I j

is 1—this is equivalent to selecting an area form that assigns unit area to M0.
Although we have been unable to prove that the system is uniquely solvable
(equivalently, that the system matrix is of full rank), this has been true in
hundreds of cases we have tried, including all those used to generate the
figures in this article. We therefore conjecture that under mild conditions on
the subdivision scheme the system is uniquely solvable.

Fig. 5. The diagram on the left depicts the triangulation of M0 produced after j9 subdivision
steps, that is, after j9 recursive midpoint splits; the diagram on the right corresponds to j9 1 1
subdivision steps. fi

j9 denotes the scaling function for the i-th vertex of Mj9, and f i9
j911 denotes

the scaling function for the corresponding i9-th vertex of Mj911. The map si is such that the
barycentric coordinates of x and s i(x) within their respective surrounding triangles are equal.
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Once the entries of I j9 have been determined, the remaining inner
product matrices I j921, I j922, . . . , I0 can be successively determined via
Equation 11.
As a simple example of the integration process, consider the one-dimen-

sional case where the scaling functions f i
j( x) are piecewise linear “hat”

functions parametrized over the infinite real line, as illustrated in Figure 6.
For this case, a scaling function f i

j with knots on the even integers can be
refined according to:

f i
j~ x! 5

1

2
f 2i21

j11 ~ x! 1 f 2i
j11~ x! 1

1

2
f 2i11

j11 ~ x! (12)

where scaling functions at level j 1 1 are hat functions with knots on the
integers.
For any level j, these functions lead to only two nonzero cases of inner

products:

(1) ^f i
j( x), f i

j( x)&—the inner product of a scaling function with itself.
(2) ^f i

j( x), f i11
j ( x)&—the inner product of a scaling function with its

immediate neighbor.

All other possible inner products are either equivalent to one of these, or
zero, due to the local support of f i

j( x).

Fig. 6. Computing the inner product ^f i
j( x), f i11

j ( x)& for piecewise linear scaling functions.
(a) the graph of f i

j( x) is drawn using solid lines, and the graph of f i11
j ( x) is drawn using

dashed lines; (b) f i
j( x) and f i11

j ( x) after refinement. The original problem reduces to that of
computing the nine inner products between a solid function and a dashed function.
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Choosing our scale such that case 1 evaluates to 1, explicit integration of
the piecewise linear functions shows that the inner product for case 2 is 1⁄4.
We now determine these same integrals using the general integration
technique.
We define the unknown inner product values for case 1 and case 2 to be

x1 : 5 ^f i
j~ x!, f i

j~ x!&

(13)
x2 : 5 ^f i

j~ x!, f i11
j ~ x!&.

Figure 6(a) illustrates case 2—the inner product of two neighboring piece-
wise linear scaling functions at level j with knots on the even integers.
The next step is to refine with Equation 12:

x2 5 K1
2

f 2i21
j11 ~ x! 1 f 2i

j11~ x! 1
1

2
f 2i11

j11 ~ x!,

1

2
f 2i11

j11 ~ x! 1 f 2i12
j11 ~ x! 1

1

2
f 2i13

j11 ~ x!L .
Bilinearity of inner products allows this to be expanded to:

x2 5
1

4
^f 2i21

j11 ~ x!, f 2i11
j11 ~ x!& 1

1

2
^f 2i21

j11 ~ x!, f 2i12
j11 ~ x!&

1
1

4
^f 2i21

j11 ~ x!, f 2i13
j11 ~ x!&

1
1

2
^f 2i

j11~ x!, f 2i11
j11 ~ x!& 1 ^f 2i

j11~ x!, f 2i12
j11 ~ x!& 1

1

2
^f 2i

j11~ x!, f 2i13
j11 ~ x!&

1
1

4
^f 2i11

j11 ~ x!, f 2i11
j11 ~ x!& 1

1

2
^f 2i11

j11 ~ x!, f 2i12
j11 ~ x!&

1
1

4
^f 2i11

j11 ~ x!, f 2i13
j11 ~ x!&.

The result after refinement is shown in Figure 6(b). Through refinability,
Equation 13 has been expressed in terms of the nine possible inner
products involving a solid function and a dashed-line function. Most of
these terms drop out because the supports of their respective functions do
not overlap:

x2 5
1

2
^f i

j11~ x!, f i11
j11~ x!& 1

1

4
^f i11

j11~ x!, f i11
j11~ x!& 1

1

2
^f i11

j11~ x!, f i12
j11~ x!&.

(14)
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The inner products in the first and last terms of Equation 14 are
equivalent to case 2. However, they are parametrized over a narrower
domain, and are therefore reduced by a scale of 1⁄2 (recall that the
appropriate scale for surfaces is 1⁄4). Likewise, the inner product of the
middle term is similar to case 1. We can therefore rewrite Equation 14 in
terms of the unknowns x1 and x2:

x2 5
1

8
x1 1

1

2
x2 .

Similar analysis of case 1 yields:

x1 5
3

4
x1 1 x2 .

After subtracting out the unknowns on the left, these equations can be
written as a homogeneous linear system of the form

1
1

8
2
1

2

2
1

4
1 2 .

Arbitrarily setting x1 ;5 1 again yields the inner product for case 2:
x2 5 1⁄4. This agrees with the result obtained earlier through explicit
integration.

6. MULTIRESOLUTION ANALYSIS BASED ON SUBDIVISION

In previous sections we have established nested linear spaces and an inner
product relative to a subdivision rule. We are now in a position to construct
wavelets, that is, a set of functions C j(x) 5 (c 1

j (x), c 2
j (x), . . .) that span

wavelet spaces Wj(M0).
It is of significant practical importance that the analysis and synthesis

filters associated with these wavelets are constructed and applied in linear
time. This practical concern drives much of the development in this section,
the remainder of which is structured as follows. In Section 6.1 we first
describe a simple construction leading to semiorthogonal wavelets. Al-
though these wavelets do not satisfy the linear time requirements, a
variant of the construction is used in Section 6.2 to produce biorthogonal
wavelets. In Section 6.3 it is shown that for interpolating subdivision
schemes the biorthogonal wavelets possess linear time analysis and synthe-
sis procedures.

6.1 The Semiorthogonal Construction

Our construction of semiorthogonal wavelets consists of two steps. First, we
build a basis for Vj11(M0) using the scaling functions F j(x) together with
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the new scaling functions 1 j11(x) in Vj11(M0). It is straightforward to
show that F j(x) and 1 j11(x) together span Vj11(M0) if and only if the
matrix O j (encoding the subdivision rule around the old vertices) is
invertible. Most primal subdivision methods, such as polyhedral subdivi-
sion and the butterfly scheme, have this property.1

Given a function Sj11(x) in Vj11(M0) expressed as an expansion in the
basis (F j(x) 1 j11(x)), an approximation in Vj(M0) can be obtained by
restriction to F j(x), that is, by setting to zero the coefficients corresponding
to 1 j11(x). However, this generally does not produce the best least-squares
approximation. To ensure the best least-squares approximation after re-
striction to F j(x), we may orthogonalize the new basis functions 1 j11(x) by
subtracting out their least-squares projection into Vj(M0). Expressed in
matrix form:

C j~x! 5 1 j11~x)2F j~x!a j. (15)

The coefficients a j are the solution to the linear system formed by taking
the inner product of each side of Equation 15 with F j(x), and using the fact
that ^F j(x), C j(x)& 5 0:

^F j~x!, F j~x!&a j 5 ^F j~x!, 1 j11~x!&,

5 ~P j!T^F j11~x!, 1 j11~x!& (16)

where ^F, G& stands for the matrix whose i, i9th entry is ^(F)i, (G)i9&. The
matrix ^F j(x), F j(x)& is therefore simply I j, and the matrix ^F j11(x),
1 j11(x)& is a submatrix of I j11 consisting of those columns corresponding
to members of 1 j11(x). The system of equations may be solved for the
coefficients a j. As an example, Figure 2 shows the matrix a0 for the
tetrahedron.
Although this construction produces semiorthogonal wavelets—that is,

the wavelets C j(x) are orthogonal to the scaling functions in Vj(M0)—they
are not practically useful because analysis and synthesis both require
quadratic time. To see why, note that the inner product matrix I j in
Equation 16 must be inverted. Although I j is sparse, its inverse is dense,
implying that the wavelets are globally supported on M0. The synthesis
matrices Q j mentioned in Section 2 and more fully described in Section 6.3
are therefore dense, leading to quadratic time synthesis. The methods used
in Section 6.3 can be used to show that the analysis matrices A j are also
dense, making analysis a quadratic time process as well.
As we show in the next two sections, linear time analysis and synthesis

can be achieved, at least for interpolating subdivision schemes, by modify-
ing the above construction to produce biorthogonal wavelets.

1One notable exception is Catmull-Clark subdivision for vertices of valence three. However,
the subdivision rule for such vertices can be easily modified to produce an invertible matrix.
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6.2 The Biorthogonal Construction

Linear time synthesis can be achieved by using locally supported wavelets,
the construction of which is a common problem in the wavelet literature,
and has been handled in various ways. For instance, Daubechies [1988]
uses Fourier techniques to develop locally supported fully orthogonal
wavelets, and Chui [1992] relies on the rich theory of B-splines to develop
minimally supported semiorthogonal spline wavelets. However, neither of
these approaches is appropriate for our use: Fourier techniques rely on
translation and dilation, and B-splines rely on planar topologies.
We currently do not know of an orthogonal or semiorthogonal construc-

tion possessing linear time analysis and synthesis for arbitrary topological
domains. Our approach is to relax semiorthogonality and construct instead
biorthogonal wavelets. That is, we no longer require the wavelets C j(x) to
be orthogonal to Vj(M0), but to preserve good approximation properties, we
require the wavelets to be “as orthogonal as possible” subject to the linear
time requirement. (We should note that a similar approach has been taken
in independent work by Dahmen et al. [1993].)
Our biorthogonal construction proceeds by selecting the supports of the

wavelets a priori. The idea is to “partially orthogonalize” each new scaling
function f i

j11(x) in 1 j11(x) by subtracting off a locally supported least-
squares best projection of it into V j(M0). Stated another way, we allow
each column of the matrix a j in Equation 15 to have only a constant
number of nonzero entries. We then determine the nonzero entries of a j by
minimizing the L2 norm of the projection of F j(x) into V j(M0).
More concretely, let f i

j11(x) denote a new scaling function, and let ( i
j

denote any subset of the indices of the scaling functions in V j(M0);
typically ( i

j consists of the indices of scaling functions in V j(M0) supported
in some neighborhood of f i

j11(x). We then take the wavelet c i
j(x) to be

c i
j~x! 5 f i

j11~x! 1 O
i9[( i

j
a i9,i

j f i9
j~x! (17)

where the coefficients a i9,i
j are such that the L2 norm of the projection of

c i
j(x) into V j(M0) is minimized. These coefficients are therefore deter-

mined by solving the following local linear system:

O
i9[( i

j

a i9,i
j ^f i9

j~x!, f k
j ~x!& 5 ^f i

j11~x!, f k
j ~x!&, (18)

for all k in (i
j.

One way to control the support of the wavelets in a symmetric fashion is
to select the index set ( i

j as follows. The new vertex v i
j11 of M j11 is

associated with an edge u 2 v of M j. For instance, the vertex numbered 7
of M1 in Figure 2 is associated with the edge 2 2 3 of M0. We take ( i

j to be
the vertex indices of M j in the k-discs of u and v. (The k-disc around a
vertex v of a triangulation is defined to be the set of all vertices reachable
from v by following k or fewer edges of the triangulation.) Except for Tables
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II and III, all examples in this article were computed using 2-discs. Figure
7 is a plot of a polyhedral wavelet computed using 2-discs.
As the size of the discs increases, the wavelet supports grow, and the

wavelets have empirically been observed to rapidly approach semi-orthogo-
nality.

6.3 A Filter Bank Algorithm

Multiresolution analysis on the infinite real line is based on an assumption
of spatial invariance—intuitively, every place looks like every other place.
This means that the analysis and synthesis filters can be represented by a
convolution kernel, that is, by a sequence of real numbers. This is not the
case for multiresolution analysis on arbitrary topological domains. The
filter coefficients in general must vary over the mesh, so the filters are
represented by (hopefully sparse) matrices.
The analysis and synthesis filters can be conveniently expressed using

block matrix equations. For any multiresolution analysis the synthesis
filters are defined by the relation

~F j~x!C j~x!! 5 F j11~x!~P j Q j!, (19)

and the analysis filters are obtained from the inverse relation

SA j

B jD 5 ~P j Q j!21. (20)

The analysis filters can be used to decompose a surface S j11(x) in

Fig. 7. A polyhedral wavelet centered on a vertex of valence 6.
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V j11(M0) given by

Sj11~x! 5 O
i

v i
j11f i

j11~x! (21)

into a lower resolution part in V j(M0) plus a detail part in W j(M0)

Sj11~x! 5 O
i

v i
jf i

j~x! 1 O
i
w i

jc i
j~x!

as follows. Let V j be as in Equation 5, and let W j denote the corresponding
matrix of wavelet coefficients w i

j. We can rewrite Equation 21 in matrix
form and substitute the definition of the analysis filters. Thus:

S j11~x! 5 F j11~x!V j11

5 ~F j~x!C j~x!!SA j

B jDV j11

5 F j~x!A jV j11 1 C j~x!B jV j11

therefore,

V j 5 A jV j11 (22)

W j 5 B jV j11. (23)

Of course, the analysis filters A j21 and B j21 can now be applied to V j to
yield V j21, W j21, etc. A similar argument shows that V j11 can be recov-
ered from V j and W j using the synthesis filters:

V j11 5 P jV j 1 Q jW j. (24)

We shall now develop more explicit expressions for the analysis and
synthesis filters. It is again convenient to write F j11( x) in block form as

~2 j11~x!1 j11~x!!.

It then follows from Equation 15 that the synthesis filters can be written in
block form as

~P j Q j! 5 SO j

N j

2O ja j

1 2 N ja jD , (25)

where 1 denotes the identity matrix.
The analysis filters are obtained from Equation 20. (Examples of analysis

and synthesis matrices for the tetrahedron are shown in Figure 2.) To
achieve linear time analysis and synthesis, the analysis and synthesis
matrices must be sparse, having only a constant number of nonzero entries
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in each row. If P j and a j are sparse, then from Equation 25 Q j is also
sparse. Unfortunately, the analysis filters derived from Equation 20 need
not be sparse. For interpolating subdivision schemes such as polyhedral
subdivision and the butterfly scheme, the situation is much improved. Such
interpolating schemes have the property that O j is the identity matrix. In
this case the resulting filters are

~P j Q j! 5 S 1
N j

2a j

1 2 N ja jD SA j

B jD 5 S1 2 a jN j

2N j

a j

1 D .
If P j and a j are sparse, then all four filters are also sparse, leading to
linear time analysis and synthesis. The situation is less desirable for
methods related to B-splines, such as Loop’s scheme and Catmull-Clark
surfaces. For these subdivision schemes, the synthesis filters are sparse,
but the analysis filters are dense. This implies that synthesis is still
possible in O(n) time, but that the speed of analysis depends on the time to
invert the sparse analysis matrix of Equation 20, or to solve the related
sparse linear system. Whether these methods can be made efficient for
multiresolution analysis is a topic for future investigation. Table I shows
what we currently know about the time required to develop analysis filters
for various subdivision methods.
The filter bank process specialized to the case of piecewise linear func-

tions is presented in Section 7.1.

6.4 Stability

One important question concerns the stability of the synthesis and analysis
filters. One measure of the stability of a transformation is its L` norm. The
L` norm for any matrix T, denoted by iTi`, is the maximum sum of the
absolute values of the elements in any row of T, and indicates the
maximum scaling effect of T on any vector that it transforms.
For fully orthogonal wavelet bases over regular grids, the L` norm is

bounded by a constant, independent of the number of filtering steps. In this
section, we briefly analyze the L` norms of the analysis and synthesis
filters our locally supported biorthogonal wavelets.
We first consider repeated application of the synthesis filters. This

transformation maps the coarse-level scaling coefficients V0 and the wave-
let coefficients W0, . . . , Wn21 into the fine-level scaling coefficients Vn.

Table I. Time to construct analysis filters for various subdivision methods.
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Expanding equation 24 repeatedly yields

Vn 5 1 P
j50

n21

P j2V0 1 O
j950

n211 P
j5j9

n21

P j2Q j9W j9.

The L` norm of this transformation depends on the L` norm of the product
) j50
n21P j. We claim that this norm is bounded independent of n. By defini-

tion, convergence of the subdivision scheme defined by the P j implies that
the entries of ) j50

n21 P j are also bounded independent of n. Since the
number of entries per row of ) j50

n21 P j is independent of n, the L` norm of
) j50
n21 P j is bounded independent of n. To conclude, we note that Vn is the

sum of n 1 1 transformations with bounded L` norms. Therefore, the norm
for the entire transformation is at most O(n). As a common special case,
when the subdivision rule encoded by P j is a convex combination (such as
with piecewise linear subdivision or with the Catmull-Clark scheme), the
L` norm of any P j is exactly 1, implying that the L` norm of their product
is also 1.
We next consider repeated application of the analysis filter. This trans-

formation maps the fine scaling coefficients Vn into the coarse scaling
coefficients V0 and the wavelet coefficients W0, . . . , Wn21. Expanding
equations 22 and 23 yields

V0 5 P
j50

n21

A jVn.

W j 5 B j P
j95j11

n21

A j9Vn.

The stability of these transformations depends on the L` norm of ) j50
n21 A j.

Note that the product of these matrices is the projection operator that maps
Vn into V0. We conjecture that the norm for this transformation is also
bounded independent of n.
In practice, the norms for these filters appear to be very small, implying

good stability. Table II gives the L` norms for the analysis filter A j over a
varying number of levels using a varying size support. These A j are built
using the wavelet approximations described above, for the case of piecewise
linear subdivision over the octahedron. In the table, size gives the disc size
chosen for the support of the wavelet approximations. (The k-disc around a
vertex v of a triangulation is defined to be the set of all triangles whose
vertices are reachable from v by following k or fewer edges of the triangu-
lation.) All examples in this article were generated using wavelet approxi-
mations supported on 2-discs.
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Table III gives the cumulative effect of the analysis filters. It gives the
L` norms for each stage of the composition of the A j, beginning with A4,
down to A0.
The L` norm for the synthesis filters P j arising from piecewise linear

subdivision is simply 1 for every level, and is therefore not shown in a
table.
Note that these results on stability are only numerical. Necessary and

sufficient conditions guaranteeing stability in the irregular case are very
difficult to establish. Schröder and Sweldens [1995] suggest constraining
the resulting wavelets to have a zero order moment (i.e., the integral of the
wavelet is zero). In the regular univariate case, this condition is known to
be necessary for stability [Daubechies 1992]. However, it is unknown
whether this is a necessary condition for stability in the irregular case.
If a zero order moment is necessary for stability, enforcing such a

constraint is easy: During the partial orthogonalization process, one simply
adds a linear constraint on the unknown coefficients a i,i9

j of the wavelet
that forces the wavelet to have a vanishing integral. For more information,
Dahmen [1994] gives a much deeper treatment of the stability of multireso-
lution schemes over irregular grids, and derives some fundamental approx-
imation-theoretic results.

7. WAVELET COMPRESSION OF SURFACES

Multiresolution analysis is widely used for data compression applications.
Mallat [1989] and DeVore et al. [1992], among others, use wavelet tech-
niques for efficient image compression. Finkelstein and Salesin [1994]
develop a wavelet-based method for approximating B-spline curves within
an L` tolerance. Other examples of wavelet-based compression techniques
abound [Berman et al. 1994; Chui and Shi 1992; Lucier 1992; Mallat and
Hwang 1992].
Using wavelet techniques, lossy compression of a function is typically

implemented with a three-stage algorithm:

(1) Filter bank decomposition. The original function, represented by the
sequence v j, is decomposed into a coarse-level approximation v0 to-
gether with wavelet coefficients w0, . . . , w j21 at the levels from 0 to
j 2 1.

Table II. L` Norms for the Analysis Filters A j that Arise from Piecewise Linear
Subdivision on the Octahedron.
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(2) Selection. A subset d of the detail is chosen from each sequence
w0, . . . , w j21, according to some measure of its importance.

(3) Reconstruction. The selected detail d, in the form of scaled wavelets at
various levels, is added back to the coarse-level approximation.

Throughout the rest of this section, we will discuss the application of
subdivision wavelets to the compression of complex surface data. The
common special case of polyhedral decomposition is treated in Section 7.1.
Next, Section 7.2 discusses various rules for selecting wavelet coefficients.
Section 7.4 discusses the preprocessing step sometimes necessary for
converting general input into a form appropriate for compression. Finally,
Section 7.5 illustrates the results of compression for two complex polyhe-
dral data sets.
In this section, we exclusively consider the approximation of functions

defined over triangular meshes. Quadrilateral methods require separate
algorithms which are nevertheless similar in flavor.

7.1 Polyhedral Implementation

Many applications of subdivision wavelets involve the special case of
piecewise linear subdivision—an example is polyhedral compression. The
techniques outlined in Section 4 apply to polyhedra, but it is possible to
exploit the simplicity of piecewise linear subdivision to derive an even more
efficient implementation. Moreover, decomposition and reconstruction may
be achieved in linear time for polyhedral surfaces without the need for a
sparse matrix representation. (However, it is still necessary to solve a
small linear system for the local neighborhood of wavelet coefficients.)
The chief property of piecewise linear subdivision that leads to simpler

algorithms is tight locality. Unlike more complex subdivision rules, the
support of a hat function built around a vertex v does not extend beyond v’s
neighboring vertices. In this section, we show that this leads to a simpler
technique for generating the filters A and B.
As is discussed in Section 6.3, the wavelet coefficients W j may be found

through the matrix product B jV j11. Construction of B j is greatly simpli-
fied for polyhedral subdivision, where the wavelet coefficient w associated
with a vertex v (where v is fine-level vertex added on the edge pq) may be

Table III. L` Norms for Successive Products of the A j, Beginning at A4
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derived by the simple rule:

w 5 v 2
1

2
~ p 1 q!. (26)

This equation is shown geometrically in Figure 8. It leads to a very simple
algorithm for computing the wavelet coefficients—without the need for
implementing sparse matrix multiplication.
Determining all level j 2 1 wavelet coefficients w j21 using Equation 26

is the first half of the level j to level j 2 1 decomposition process. It is still
necessary to derive the filter A j21 that gives the scaling functions for the
approximation at level j 2 1. This is not as easy, but one may still take
advantage of the simplicity of the piecewise linear representation in order
to achieve a procedure that is more efficient than the general case.
Once the wavelet coefficients w i

j21 are derived, the coarser-level approx-
imation at level j 2 1 may be determined by subtracting from the level j
function the effect of every scaled wavelet term w i

j21 c i
j21. The problem

then reduces to determining the wavelets c i
j21.

The c i
j21 may be computed using the techniques of Section 4, but

specifically adapted for linear subdivision. In particular, the inner product
mask for the linear case is shown in Figure 4. This mask is especially easy
to determine for polyhedra, because the central value is simply the valence
of the vertex.

7.2 Coefficient Selection

Once the surface has been decomposed via the filter bank, the next step in
surface compression is to select appropriate coefficients to add back to the
base mesh.
Before examining the wavelet coefficients for selection, it is useful to first

normalize them. Normalization allows coefficients at differing subdivision

Fig. 8. Determining the wavelet coefficient w around vertex v, with parents p and q. The
midpoint between p and q is m, and the resulting wavelet coefficient is the difference w
between m and v.
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levels to be equitably compared, despite the different domain sizes over
which they are defined.
Least-squares (L2) normalization of the wavelet coefficients assigns a

weight to a wavelet coefficient that indicates how much least-squares error
occurs when the coefficient is left out of the reconstruction. A wavelet c i

j can
be normalized to a “unit length” wavelet ci

ĵ with the following equation:

c i
ĵ:5

c i
j

Î^c i
j, c i

j&
.

When the wavelet c i
j has an associated wavelet coefficient w i

j, the L2

normalized coefficient wi
ĵ is therefore assigned the value

w i
ĵ;5w i

jÎ^c i
j, c i

j&.

All examples presented in this article use selection based upon this L2

normalization of the wavelet coefficients.
There are several possible techniques for selecting coefficients. These

include:

—Threshold testing. Perhaps the simplest selection technique is to simply
choose all wavelet coefficients whose magnitude is greater than some
coefficient e [Donoho 1994]. Although thresholding is quite simple, the
results are of remarkable quality, as we will see in Section 7.5. In the
reconstruction, areas of high curvature are sampled more densely than
relatively flat regions.

—L2 progressive refinement. In certain applications, it is useful to ensure
that the most important information is reconstructed first. When the L2

normalization described above is used, it can be shown that simply
supplying the c largest coefficients in decreasing order is sufficient to
produce a sequence of approximations, each of which is the best possible
least-squares approximation using only c coefficients [Donoho 1994]. The
wavelet coefficients must first be sorted by their magnitude, which
implies an O(n log n) run time in the input size.

—Maximum error: L` reconstruction. An approximation constructed ac-
cording to the L2 norm may still contain an arbitrarily large error in a
sufficiently small region. An alternative approach uses the L` norm to
guarantee that no part of the reconstruction is farther than a user-
defined tolerance from its corresponding point on the original input.
L` reconstruction begins with the complete, unreduced reconstruction,

and attempts to remove successive wavelet coefficients until no more are
possible. L` wavelet compression of complex polyhedral surfaces is
further studied in Eck et al. [1995].

—Location. In some applications, it may be useful to compress only a
portion of a model while the rest of it is outside the user’s view. For
example, a user may be interested in viewing a specific location on a map
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of the Earth, but uninterested in viewing geography elsewhere. In this
case, the location information associated with a wavelet makes it possible
to apply wavelet compression to the region of interest, but to avoid
processing irrelevant regions of the model.
Selection by location is usually applied in conjunction with another

selection method. Only those coefficients in the relevant region are
candidates for the secondary selection technique.

7.3 Reconstruction Algorithms

To review, the result of decomposition is the base mesh and the coefficients
of the wavelets at various levels of subdivision. The information at the
vertices of the base mesh stores values of a very few scaling functions,
providing a very coarse least-squares approximation of the input function.
The wavelets are functions that represent the missing detail at each
finer-level vertex. In order to build a wavelet approximation of the original
input, we can add back to the base mesh a selected subset of these
finer-level functions.
Reconstruction of the approximation is done by adding back to the base

surface the scaled wavelet associated with each selected coefficient. Details
of the reconstruction phase are given explicitly in Lounsbery [1994].
The effect of reconstruction is to produce vertices on the approximation

surface that represent the addition of the selected wavelets to the base
surface. However, this form is not appropriate for many applications that
require an actual surface representation. If the approximation is to be
rendered as a polyhedral surface, it is necessary to generate polygons over
the approximated surface. A separate top-down recursive triangulation
algorithm is required in order to connect the points on the reconstruction
into polygonal form.
When c is the number of selected coefficients and j is the subdivision

depth of the input function, the asymptotic time for reconstruction and
triangulation is at worst O( j c), but in practice usually much closer to
O(c). These values are borne out by the empirical evidence of run times for
reconstruction.

7.4 Subdivision Connectivity

The compression techniques detailed in this section are useful for applica-
tions requiring decomposition of a function in V j(M0), where M0 may be a
mesh of any topological type. An implicit assumption is that the connectiv-
ity of the input mesh must have the form of a mesh M j that results from
subdividing a simple mesh M0 j times. We call this property subdivision
connectivity.
For many applications, such as global illumination or surface editing,

producing input with subdivision connectivity is a simpler matter. For
other purposes, including multiresolution compression of an arbitrary
mesh, an initial preprocessing step is required to convert the input into an
approximation with the necessary connectivity. Such a conversion algo-
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rithm is presented in Eck et al. [1995] for the general case. The examples
presented in this article were converted with an algorithm written for the
special case of converting input taken in cylindrical sections into points on
a subdivided octahedron.

7.5 Polyhedral Examples

In this section, subdivision wavelets are applied to two compression prob-
lems: the compression of a polyhedral model consisting of over 32,000
triangles, and compression of a piecewise linear representation of a color
function defined on over one million points on the globe. The data for these
examples were resampled from cylindrical sections onto a subdivided
octahedron.

7.5.1 Geometric Data. The input for the first example (shown in Figure
9(a)) is a polyhedral mesh consisting of 32,768 triangles whose vertices
were resampled from laser range data originally provided through the
courtesy of Cyberware, Inc. The triangulation was created by recursively
subdividing an octahedron six times. The octahedron therefore serves as
the domain mesh M0, with the input triangulation considered as a para-
metric function S(x), x [ M0 lying in V6(M0). More precisely, if v i

6 denotes
the vertices of the input mesh, S(x) can be written as

S~x! 5 F6~x!V6 x [ M0

where the scaling functions F6(x) are the (piecewise linear) functions
defined through polyhedral subdivision.
The locally supported wavelet approximations c i

j(x) for this example are
chosen to be supported on 2-discs. The filter bank process outlined in
Section 6.3 can be applied in linear time to rewrite S(x) in the form

S~x! 5 F0~x!V0 1 O
j50

5

C j~x!W j.

The first term describes a base shape as the projection of S(x) into V0(M0),
which in this case is an approximating octahedron with vertex positions
given by the six rows of V0. For this data, the decomposition stage of the
filter bank runs in about 14 seconds on an SGI Indigo2 Extreme.
Approximations to the original mesh S(x) can be easily obtained from the

wavelet expansion using coefficients selected according to the threshold
rule (see Section 7.2). The models in Figure 10(b), (d), and (f) are com-
pressed to 1%, 13%, and 32%, respectively. Notice that thresholding causes
the mesh to refine in areas of high detail, while leaving large triangles in
areas of relatively low detail. An implementation of the entire decomposi-
tion and reconstruction process that produces Figure 10(d) runs in about 53
seconds from input to output.
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Fig. 9. The full-resolution Spock polyhedron. Left: the full mesh (16,386 points, 32,768
triangles). Right: Gouraud-shaded views of the full mesh at various distances.
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Fig. 10. Wavelet approximations of the Spock polyhedron. Left: Gouraud-shaded wavelet
approximations. Right: Flat-shaded close-ups showing structure of approximations.
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Figure 10 also illustrates the use of wavelet approximations for auto-
matic level-of-detail control in rendering. The original Spock polyhedron is
shown in full resolution in Figure 9(a). Views of the full-resolution model
from various distances are shown in the rest of Figure 9. When viewing the
input polyhedron at these distances, it is inefficient and unnecessary to
render all 32,000 triangles. The approximations shown in the left column of
Figure 10 may instead be used without significantly degrading image
quality.
Suddenly switching between models of different detail in an animation

often produces a noticeable jump. This problem is easily mended by using a
wavelet expansion where the wavelet coefficients are treated as continuous
functions of the viewing distance. This simple technique allows the object
geometry to smoothly change its appearance as the viewing distance
changes. This method has proved successful shown in a frame-by-frame
animation we have produced.

7.5.2 Color Data. Subdivision wavelets may be applied to more general
functions over surfaces than geometric data. Figure 12 demonstrates
another application—that of compressing a function on the sphere. In this
example, elevation and bathymetry data obtained from the U.S. National
Geophysical Data Center was used to create a piecewise linear pseudocol-
oring of the sphere. The resulting color function was represented by
2,097,152 triangles and 1,048,578 vertices. The full-resolution pseudocolor-
ing was too large to be rendered on an SGI Indigo2 Extreme with 128 MB,
and is therefore not shown in its entirety in Figure 12. Instead, Figure 11
shows a close-up of a region that is compressed in Figure 12. An apprecia-
tion for the density of the data can be obtained from Figure 11(b), where
even at close range the mesh lines of the original uncompressed data are so
dense that the image appears almost completely black.
The approximations shown in Figure 12(a)–(f) were produced using

subdivision wavelet compression. Figure 12(a) shows a distant view of the

Fig. 11. Close-up of Earth data before compression.
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Fig. 12. Approximating color as a function over the sphere.
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Earth using an approximation of only 0.1% (the mesh is shown in Figure
12(b)). Likewise, Figures 12(c) and (d) show the result of compression to 2%
for a medium-range view. At close range the compression to 16% in (e) is
nearly indistinguishable from the full-resolution model in Figure 11(a). A
comparison of the meshes shown in Figure 11(b) and Figure 12(f) reveals
the striking degree of compression achieved in this case.

8. SMOOTH SURFACE MODELING

This section describes how subdivision wavelets can be used to compress
and edit smooth subdivision surfaces. Although our examples concentrate
on the modeling of smooth surfaces based on the Dyn et al. [1990] butterfly
scheme, the techniques described in this section may be applied to general
subdivision surfaces, at the cost of potentially quadratic processing time in
the case of Loop’s method.

Fig. 13. Compression and multiresolution editing of a smooth surface.
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In Section 7, we saw examples of polyhedral compression using wavelets.
In this section, we examine compression of surfaces defined by smooth
subdivision rules.

8.1 Smooth Surface Compression

The result of smooth surface compression is shown in Figure 13. The
surface in Figure 13(a) shows the level 6 Spock data set from Section 7.5
after it has been subdivided using the tangent-plane smooth butterfly
subdivision rule. Figure 13(b) shows the result of compression using
wavelets that were developed from the butterfly scheme. The surface of
Figure 13(a) has been compressed to a representation (depicted in Figure
13(b)) that may be stored using only 16% of the original coefficients.

8.2 Multiresolution Editing

Subdivision wavelets may also be used for editing shapes at multiple
resolutions. Although we have not fully implemented multiresolution edit-
ing, Figures 13(c)–(d) show an example of editing the smooth shape seen in
Figure 13(a).
Figure 13(c) shows the effect of changing a single scaling function

coefficient on the level 0 base octahedron. Because finer-level vertices in
the same region are defined relative to the coarser shape, they move along
with the modification. However, the geometry in areas away from the front
of the bust is not affected.
It is also possible to locally modify the shape at a finer level by changing

the value of a wavelet coefficient at that level. The result of modifying a
single level 3 wavelet coefficient is shown in Figure 13(d).
The changes shown in Figure 13(c)–(d) were created by simply modifying

a single value in the wavelet representation. It is preferable to make these
changes under a more powerful user interface. Finkelstein and Salesin
[1994] discuss interfaces that are more appropriate for wavelet editing of
curves and surfaces.

9. SUMMARY AND FUTURE WORK

In this article, we have established a theoretical basis for applying mul-
tiresolution analysis to surfaces of arbitrary topological type. These results
hold for any local, uniformly convergent, continuous, primal subdivision
scheme, including polyhedral subdivision, the butterfly scheme [Dyn et al.
1990], Loop’s scheme [1987], and Catmull-Clark surfaces [1978]. The
results also hold for piecewise smooth subdivision as described in Hoppe
[1994] and Hoppe et al. [1994], and for open surfaces possessing bound-
aries.
There are numerous areas for future work:

—Linear time sparse matrix inversion. As explained in Section 6.3, linear-
time reconstruction for general subdivision rules depends upon linear-
time solution of general sparse linear systems. Hence, finding an O(n)
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sparse linear system solver is of value for efficiently implementing
subdivision wavelets for more general subdivision schemes, such as the
G1 methods of Loop and Catmull-Clark.

—Semiorthogonal wavelets. The wavelets developed in Section 6 are
biorthogonal and linear-time for interpolating subdivision. It would be
interesting to determine if linear-time semiorthogonal wavelets also
exist.

—Simplifying the topological type. The surface decomposition developed
herein retains the topological type of the input surface. When the input is
a relatively simple object with many small holes, it is more often
desirable to decompose the input into a “topologically simpler” surface;
that is, one with lower genus or fewer boundary curves.
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