
Pol Jeremias-Vila

Hydra

©Disney/Pixar

Today

• High Level

• Architecture

• A Trip Through Hydra

• Integration Strategies

Hi! My name is Pol and I will be talking about Hydra today.

• We will start discussing the high level of Hydra, this will be short section.

• Then we will be talking about the details of the Architecture.

• After we will walk through a simple scene graph and renderer to showcase how Hydra works.

• Finally we will talk about how to integrate Hydra in your application.

 
High Level

Let’s begin with the High Level.

An open source framework to transport live  
scene graph data to renderers

You might be thinking… what is Hydra? Well… Hydra is a project that started years ago as a high performance rendering engine that used OpenGL to image USD
stages as fast a possible.

Over the years though, we have abstracted away both! OpenGL and USD.

(next) ——

Today, Hydra is an open source framework to transport live scene graph data to renderers. But, you may be thinking… this is very abstract, what does this even mean?

Scene
Graph Renderer

A Hydra-Enabled Application

Let’s look at an example.

Imagine you have this application which has a viewport. If you integrate Hydra into this viewport, you have suddenly separate the concepts of scene graphs and
renderers.

And you have done that in such a way that you just created plugin points in your application to connect a scene graph and a renderer.

Our goal is to  
support both viewport and  

final frame rendering

We have just looked at an example where Hydra is connected to the viewport, but that does not need to be the case.

Our goal is to support both, viewport and final frame. Now, let’s talk about rendering for a second.

This is a scene description. It has many nodes and of course, if this was a real movie scene, it is most likely huge, as in gigabytes of data.

Each of these nodes can describe different characteristics of the scene.

There are many things you can put on those nodes, for instance …

Scene Description
Geometry

Instancing

Material Networks

Lights

Cameras

Volumes

Coordinate Systems

Geometry, instancing, material networks, lights, cameras, volumes, coordinate systems, shading nodes, and many many more.

Scene Description

Geometry

Instancing

Material Networks

Lights

Cameras

Volumes

Coordinate Systems

Hydra  
Primitives

In Hydra, we convert these descriptions of the scene to Hydra Primitives.

This is how we deal with transporting primitives through Hydra, but how does Hydra work? For that, let’s look at the architecture from a high level.

Architecture

• The RenderIndex is flat
representation that manages
correspondence between scene
description and rendering resources

• Delegates scene data access to the
SceneDelegate

• Delegates rendering to the
RenderDelegate

Three Hydra blocks are necessary to convert generic scene description into generic rendering resources:

- The central piece is the RenderIndex, a flat representation that manages correspondence between scene description and rendering resources.

- The RenderIndex will delegate scene data access to the Scene Delegate. This way, we can abstract the concept of scene graphs from the core.

- Similarly, the RenderIndex will delegate rendering to the Render Delegate just we can abstract the concept of rendering.

This might sound like a lot of machinery but we will talk about performance in just a second. First, let’s look at the possibilities that this brings to the table.

Scene
Delegate

RenderIndex

Scene
Delegate

Render
Delegate

USD
Scenegraph

Presto
Scenegraph

Multiple Scene Graphs

Since we have abstracted the concept of scene graphs from the core of Hydra, we can actually have multiple scene graphs feeding Hydra, for instance a USD scene
graph and a Presto scene graph.

Presto is our animation tool.

And this is not limited to two scene graphs, you can have as many as you want or need.

This data is all indexed in Hydra and made available to the renderer connected.

Scene
Delegate

USD
Scenegraph

RenderIndex

Scene
Delegate

Presto
Scenegraph

Render
Delegate

Render
Delegate

Rasterizer

Path Tracer

Multiple Renderers

Of course, since we have also abstracted the renderer… you can have multiple renderers connected to Hydra.

For instance, a rasterizer and a path tracer.

Scene
Graph Renderer

A Hydra-Enabled Application

So, going back to our initial drawing!

Once you have integrated Hydra in your application, you can now connect a scene graph and a renderer.

But it does not need to be one.

A Hydra-Enabled Application

Scene
Delegate

USD
Scenegraph

RenderIndex

Scene
Delegate

Presto
Scenegraph

Render
Delegate

Render
Delegate

Rasterizer

Path Tracer

You can actually have multiple sources of data feeding Hydra.

And on top of that, you gain the possibility to connect a different renderer to your application.

An open source framework to transport live  
scene graph data to renderers

So, now going all the way back to the beginning of the presentation.

Using our open source framework you can transports live scene graph data to renderers.

So far, in this presentation, we have talked about the scene graph data and the renderer… But we have not talk about open source! Let’s talk about that.

Hydra Source Code
• Hydra Core

• Scene Delegates 
 
UsdImaging

• Render Delegates 
 
HdStorm  
 
HdPrman (uses RenderMan) 
 
HdEmbree sample code

In the open source, you will find the Hydra core with the RenderIndex and many other components that we will discuss throughout the presentation today.

You will find the USD Scene Delegate, which we call UsdImaging.

Finally, you will find three render delegates:

- HdStorm, which is our real time rasterizer for preview, it used to called Stream.

- HdPrman, which gives you great path tracing. This is just the render delegate, you will still need to get RenderMan for it to work.

- HdEmbree, which is sample code that is useful when you want to build your own.

HdStorm Render Delegate
Efficient mesh batching

Multi-level instanced drawing

OpenSubdiv integration

Highlighting for faces, points, edges

GLSL materials

Compute kernels

Support Udims, UV, Ptex textures

UsdPreviewSurface support

Order Independent Transparency

Support for Windows / Mac / Linux

And more!

HdPrman Render Delegate
Meshes, curves or points

Instancing

Non-trivial material networks

Volumes

Coordinate systems

Basic support for UsdPreviewSurface

Computations

Support for picking and highlighting

And more!

Kitchen_set

With all this different building blocks that we open source. You could integrate Hydra in your application, download our kitchen set and…. Render with HdStorm, or
maybe HdEmbree, or maybe using the HdPrman plugin to Renderman

You will get consistent data transport across renderers.

Today
• We will discuss:

• Hydra ecosystem

• Hydra design and architecture

• Customize scene delegates

• Implement render delegates

• Integrate Hydra in your applications

• We won’t discuss:

• How to build Hydra…

• Implementation of UsdImaging

• Low level details of HdStorm

• Low level details of HdPrman

Finally, I wanted to clarify about we will be discussing today and what we will not be talking about, because Hydra is a big ecosystem.

We will be discussing :

We will not be discussing :

Having said that… Please, please, come find us after if you have questions about any of the topics covered or not covered today!

 
Architecture

Now let’s talk about Hydra’s Architecture.

 
Hydra Core

And we will start with the Core.

Scene Description

Geometry

Instancing

Material Networks

Lights

Cameras

Volumes

Coordinate Systems

Hydra  
Primitives

I showed this slide before, and it was an over simplification, so let’s go deeper.

I said that all this scene description becomes Hydra primitives, but… What are these Hydra primitives?

Hydra Primitives

Rprims

Sprims

Bprims

There are three types of primitives :

(next slide) ——

- Rprims are useful to represent renderable primitives - R from render - Things like meshes, curves, points…

- Sprims are useful to represent state - S from state - Things like cameras

- Bprims are useful to represent buffers - B from buffer - Things like textures

Hydra Primitives

Sprims  

Camera
Light

Material
Computation

Coordinate System

Bprims 

Texture
Buffer
Field 
 

Rprims 

Mesh
Basis Curves 

Points
Volume  

Scene
Delegate RenderIndex Render

Delegate

Scene
Delegate RenderIndex Render

Delegate

Rprims

Sprims

Bprims

Hydra is a pull system, but not just that, it only pulls data when it is needed.

As we said before, the render index is like a list of prims that you can do queries against.

Scene
Delegate RenderIndex Render

Delegate

ChangeTracker

Rprims

Sprims

Bprims

Change tracker allows us to notify the render delegate when its information is not up to date anymore.

Scene
Delegate RenderIndex Render

Delegate

ChangeTracker

Engine

Application

Rprims

Sprims

Bprims

Engine is the Hydra ecosystem access point for an application.

Scene
Delegate RenderIndex Render

Delegate

ChangeTracker

Engine

Application

Tasks

Rprims

Sprims

Bprims

Tasks tell the Hydra engine what to do, for instance rendering, calling to OCIO for color correction, compositing
selection highlighting…

 
Hydra Execute

Hydra Execute

• Hydra Engine Execute is the main entry point for Hydra

• Requires a list of tasks for Hydra to execute

Sample Task List

1. Render Task

2. Colorize Selection Task

3. Color Correction Task

A classic example of a task is Render but we can do much more!

Let’s take a look at this simple example :

(read slide)

This is pretty much what we execute with Hydra when you are in Usdview.

Phases

1. Sync RenderIndex

2. Prepare all tasks

3. Commit resources

4. Execute all tasks

Hydra Engine Execute

Sync - Pulls data from the scene graph

Prepare - Opportunity to resolve prim dependencies since sync has run for all prims

Commit - Opportunity to submit to the GPU for instance

Execute - Rendering

Performance Remarks

Hydra can pull data from scene delegates
multithreaded during sync

The scene delegate should allow for data to be pulled data in a multithreaded way.

UsdImaging

UsdImaging, our USD scene delegate, allows for data to be pulled data in a multithreaded way.

Storm

Speaking of multithreading…

Our real-time rasterizer runs on the same thread as the scene delegate, having said that, we heavily use gpu compute prepare buffers in the gpu for graphics
consumption.

Our embree sample code uses a new component (which is optional), the render thread.

A render delegate can optionally use  
the Hydra RenderThread API

https://github.com/PixarAnimationStudios/USD/blob/master/pxr/imaging/lib/hd/renderThread.h

The render threads allows for separating rendering from the render delegate.

This is specially useful for progressive rendering.

During render delegate initialization, you can initialize the renderThread and pass a callback, you will get call when rendering is needed. The renderThread has a state
machine inside.

Embree sample code - It uses a new component (which is optional) that we introduced in 2018, the render thread.

RenderThread Example
class MyRenderDelegate : HdRenderDelegate
{
public:
 MyRenderDelegate() {
 _renderThread.SetRenderCallback(std::bind(&MyRenderDelegate::_RenderCallback, this));
 _renderThread.StartThread();
 }

 ~MyRenderDelegate() {
 _renderThread.StopThread();
 }

private:
 void _RenderCallback() {
 // generate pixels.
 }

 HdRenderThread _renderThread;
};

Here is an example of render delegate that uses the RenderThread API to separate the actual execution of the renderer from the thread where Hydra and the Render
Delegate runs.

As you can see the code is very simple. Create the object, and provide a call to generate pixels. The RenderThread components takes care of state management.

Zero-copy behaviors

Another important question is… what about memory.

Similar to USD, anywhere Hydra uses a VtArray, we have zero copy behaviors, and you can adapt your data via “foreign data source” if needed.

You do need to remember that if you try to mutate it, you will need to do a copy on write.

A Trip Through  
Hydra

Introducing

tiny

Tiny Sample Code

• A tiny application

• Tiny scene delegate

• Tiny render delegate

Tiny Sample Code

• Scene Graph

• One cube with no time samples

• One cube with time sampled transforms

• Renderer

• Output to console when events happen

Scene
Delegate RenderIndex Render

Delegate

ChangeTracker

Engine

Application

Tasks

Tiny
Scene

Delegate
RenderIndex

Tiny
Render

Delegate

ChangeTracker

Engine

Tiny Sample

Tasks

A Tiny Sample
int main()
{
 // Hydra initialization
 HdEngine engine;
 TinyRenderDelegate renderDelegate;
 HdRenderIndex *renderIndex = HdRenderIndex::New(&renderDelegate);
 TinySceneDelegate sceneDelegate(renderIndex, SdfPath::AbsoluteRootPath());

 // Create your task graph
 HdRprimCollection collection(…);
 HdRenderPassSharedPtr renderPass(renderDelegate.CreateRenderPass(renderIndex, collection));
 HdRenderPassStateSharedPtr renderPassState(renderDelegate.CreateRenderPassState());
 HdTaskSharedPtr taskRender(new RenderTask(renderPass, renderPassState));
 HdTaskSharedPtr taskColorCorrection(new ColorCorrectionTask());
 HdTaskSharedPtrVector tasks = { taskRender, taskColorCorrection };

 // Populate scene graph and generate image
 sceneDelegate->Populate();
 engine.Execute(renderIndex, &tasks);

 // Change time causes invalidations, and generate image
 sceneDelegate->SetTime(1);
 engine.Execute(renderIndex, &tasks);

 return EXIT_SUCCESS;
}

A Tiny Sample
int main()
{
 // Hydra initialization
 HdEngine engine;
 TinyRenderDelegate renderDelegate;
 HdRenderIndex *renderIndex = HdRenderIndex::New(&renderDelegate);
 TinySceneDelegate sceneDelegate(renderIndex, SdfPath::AbsoluteRootPath());

 // Create your task graph
 HdRprimCollection collection(…);
 HdRenderPassSharedPtr renderPass(renderDelegate.CreateRenderPass(renderIndex, collection));
 HdRenderPassStateSharedPtr renderPassState(renderDelegate.CreateRenderPassState());
 HdTaskSharedPtr taskRender(new RenderTask(renderPass, renderPassState));
 HdTaskSharedPtr taskColorCorrection(new ColorCorrectionTask());
 HdTaskSharedPtrVector tasks = { taskRender, taskColorCorrection };

 // Populate scene graph and generate image
 sceneDelegate->Populate();
 engine.Execute(renderIndex, &tasks);

 // Change time causes invalidations, and generate image
 sceneDelegate->SetTime(1);
 engine.Execute(renderIndex, &tasks);

 return EXIT_SUCCESS;
}

A Tiny Sample
int main()
{
 // Hydra initialization
 HdEngine engine;
 TinyRenderDelegate renderDelegate;
 HdRenderIndex *renderIndex = HdRenderIndex::New(&renderDelegate);
 TinySceneDelegate sceneDelegate(renderIndex, SdfPath::AbsoluteRootPath());

 // Create your task graph
 HdRprimCollection collection(…);
 HdRenderPassSharedPtr renderPass(renderDelegate.CreateRenderPass(renderIndex, collection));
 HdRenderPassStateSharedPtr renderPassState(renderDelegate.CreateRenderPassState());
 HdTaskSharedPtr taskRender(new RenderTask(renderPass, renderPassState));
 HdTaskSharedPtr taskColorCorrection(new ColorCorrectionTask());
 HdTaskSharedPtrVector tasks = { taskRender, taskColorCorrection };

 // Populate scene graph and generate image
 sceneDelegate->Populate();
 engine.Execute(renderIndex, &tasks);

 // Change time causes invalidations, and generate image
 sceneDelegate->SetTime(1);
 engine.Execute(renderIndex, &tasks);

 return EXIT_SUCCESS;
}

A Tiny Sample
int main()
{
 // Hydra initialization
 HdEngine engine;
 TinyRenderDelegate renderDelegate;
 HdRenderIndex *renderIndex = HdRenderIndex::New(&renderDelegate);
 TinySceneDelegate sceneDelegate(renderIndex, SdfPath::AbsoluteRootPath());

 // Create your task graph
 HdRprimCollection collection(…);
 HdRenderPassSharedPtr renderPass(renderDelegate.CreateRenderPass(renderIndex, collection));
 HdRenderPassStateSharedPtr renderPassState(renderDelegate.CreateRenderPassState());
 HdTaskSharedPtr taskRender(new RenderTask(renderPass, renderPassState));
 HdTaskSharedPtr taskColorCorrection(new ColorCorrectionTask());
 HdTaskSharedPtrVector tasks = { taskRender, taskColorCorrection };

 // Populate scene graph and generate image
 sceneDelegate->Populate();
 engine.Execute(renderIndex, &tasks);

 // Change time causes invalidations, and generate image
 sceneDelegate->SetTime(1);
 engine.Execute(renderIndex, &tasks);

 return EXIT_SUCCESS;
}

You can think of collections as a way to determine what you want to render from the render index. It acts almost as a google search query.

The renderpass is the actual call to the renderer to do a render.

The renderpass state sets up the necessary information for a render to happen.

RenderTask is just a user define task that combines this concepts, basically it first sets up the state required for rendering and then, it renders.

A Tiny Sample
int main()
{
 // Hydra initialization
 HdEngine engine;
 TinyRenderDelegate renderDelegate;
 HdRenderIndex *renderIndex = HdRenderIndex::New(&renderDelegate);
 TinySceneDelegate sceneDelegate(renderIndex, SdfPath::AbsoluteRootPath());

 // Create your task graph
 HdRprimCollection collection(…);
 HdRenderPassSharedPtr renderPass(renderDelegate.CreateRenderPass(renderIndex, collection));
 HdRenderPassStateSharedPtr renderPassState(renderDelegate.CreateRenderPassState());
 HdTaskSharedPtr taskRender(new RenderTask(renderPass, renderPassState));
 HdTaskSharedPtr taskColorCorrection(new ColorCorrectionTask());
 HdTaskSharedPtrVector tasks = { taskRender, taskColorCorrection };

 // Populate scene graph and generate image
 sceneDelegate->Populate();
 engine.Execute(renderIndex, &tasks);

 // Change time causes invalidations, and generate image
 sceneDelegate->SetTime(1);
 engine.Execute(renderIndex, &tasks);

 return EXIT_SUCCESS;
}

A Tiny Sample
int main()
{
 // Hydra initialization
 HdEngine engine;
 TinyRenderDelegate renderDelegate;
 HdRenderIndex *renderIndex = HdRenderIndex::New(&renderDelegate);
 TinySceneDelegate sceneDelegate(renderIndex, SdfPath::AbsoluteRootPath());

 // Create your task graph
 HdRprimCollection collection(…);
 HdRenderPassSharedPtr renderPass(renderDelegate.CreateRenderPass(renderIndex, collection));
 HdRenderPassStateSharedPtr renderPassState(renderDelegate.CreateRenderPassState());
 HdTaskSharedPtr taskRender(new RenderTask(renderPass, renderPassState));
 HdTaskSharedPtr taskColorCorrection(new ColorCorrectionTask());
 HdTaskSharedPtrVector tasks = { taskRender, taskColorCorrection };

 // Populate scene graph and generate image
 sceneDelegate->Populate();
 engine.Execute(renderIndex, &tasks);

 // Change time causes invalidations, and generate image
 sceneDelegate->SetTime(1);
 engine.Execute(renderIndex, &tasks);

 return EXIT_SUCCESS;
}

A Tiny Sample
int main()
{
 // Hydra initialization
 HdEngine engine;
 TinyRenderDelegate renderDelegate;
 HdRenderIndex *renderIndex = HdRenderIndex::New(&renderDelegate);
 TinySceneDelegate sceneDelegate(renderIndex, SdfPath::AbsoluteRootPath());

 // Create your task graph
 HdRprimCollection collection(…);
 HdRenderPassSharedPtr renderPass(renderDelegate.CreateRenderPass(renderIndex, collection));
 HdRenderPassStateSharedPtr renderPassState(renderDelegate.CreateRenderPassState());
 HdTaskSharedPtr taskRender(new RenderTask(renderPass, renderPassState));
 HdTaskSharedPtr taskColorCorrection(new ColorCorrectionTask());
 HdTaskSharedPtrVector tasks = { taskRender, taskColorCorrection };

 // Populate scene graph and generate image
 sceneDelegate->Populate();
 engine.Execute(renderIndex, &tasks);

 // Change time causes invalidations, and generate image
 sceneDelegate->SetTime(1);
 engine.Execute(renderIndex, &tasks);

 return EXIT_SUCCESS;
}

int main()
{
 // Hydra initialization
 HdEngine engine;
 TinyRenderDelegate renderDelegate;
 HdRenderIndex *renderIndex = HdRenderIndex::New(&renderDelegate);
 TinySceneDelegate sceneDelegate(renderIndex, SdfPath::AbsoluteRootPath());

 // Create your task graph
 HdRprimCollection collection(…);
 HdRenderPassSharedPtr renderPass(renderDelegate.CreateRenderPass(renderIndex, collection));
 HdRenderPassStateSharedPtr renderPassState(renderDelegate.CreateRenderPassState());
 HdTaskSharedPtr taskRender(new RenderTask(renderPass, renderPassState));
 HdTaskSharedPtr taskColorCorrection(new ColorCorrectionTask());
 HdTaskSharedPtrVector tasks = { taskRender, taskColorCorrection };

 // Populate scene graph and generate image
 sceneDelegate->Populate();
 engine.Execute(renderIndex, &tasks);

 // Change time causes invalidations, and generate image
 sceneDelegate->SetTime(1);
 engine.Execute(renderIndex, &tasks);

 return EXIT_SUCCESS;
}

A Tiny Sample

void TinySceneDelegate::Populate()
{
 SdfPath id1(“/Cube1");
 _AddCube(id1);
 GetRenderIndex().InsertRprim(HdPrimTypeTokens->mesh, this, id1);

 SdfPath id2(“/Cube2”);
 _AddCube(id2);
 GetRenderIndex().InsertRprim(HdPrimTypeTokens->mesh, this, id2);

 …
}

SdfPath : In Hydra we use SdfPath to identify prims.

int main()
{
 // Hydra initialization
 HdEngine engine;
 TinyRenderDelegate renderDelegate;
 HdRenderIndex *renderIndex = HdRenderIndex::New(&renderDelegate);
 TinySceneDelegate sceneDelegate(renderIndex, SdfPath::AbsoluteRootPath());

 // Create your task graph
 HdRprimCollection collection(…);
 HdRenderPassSharedPtr renderPass(renderDelegate.CreateRenderPass(renderIndex, collection));
 HdRenderPassStateSharedPtr renderPassState(renderDelegate.CreateRenderPassState());
 HdTaskSharedPtr taskRender(new RenderTask(renderPass, renderPassState));
 HdTaskSharedPtr taskColorCorrection(new ColorCorrectionTask());
 HdTaskSharedPtrVector tasks = { taskRender, taskColorCorrection };

 // Populate scene graph and generate image
 sceneDelegate->Populate();
 engine.Execute(renderIndex, &tasks);

 // Change time causes invalidations, and generate image
 sceneDelegate->SetTime(1);
 engine.Execute(renderIndex, &tasks);

 return EXIT_SUCCESS;
}

A Tiny Sample

void TinySceneDelegate::SetTime(unsigned int time)
{
 SdfPath id("/Cube1");
 GetRenderIndex().GetChangeTracker().MarkRprimDirty(id, HdChangeTracker::DirtyTransform);
 …
}

A Tiny Scene Delegate

class TinySceneDelegate final: public HdSceneDelegate
{
public:
 // Scene delegate implementation
 HdMeshTopology GetMeshTopology(SdfPath const& id) override;
 GfMatrix4d GetTransform(SdfPath const& id) override;
 VtValue Get(SdfPath const& id, TfToken const& key) override;
 HdPrimvarDescriptorVector GetPrimvarDescriptors(SdfPath const& id,…) override;

 // Scene graph population
 void Populate();

 …
};

A Tiny Scene Delegate

class TinySceneDelegate final: public HdSceneDelegate
{
public:
 // Scene delegate implementation
 HdMeshTopology GetMeshTopology(SdfPath const& id) override;
 GfMatrix4d GetTransform(SdfPath const& id) override;
 VtValue Get(SdfPath const& id, TfToken const& key) override;
 HdPrimvarDescriptorVector GetPrimvarDescriptors(SdfPath const& id,…) override;

 // Scene graph population
 void Populate();

 …
};

A Tiny Scene Delegate

class TinySceneDelegate final: public HdSceneDelegate
{
public:
 // Scene delegate implementation
 HdMeshTopology GetMeshTopology(SdfPath const& id) override;
 GfMatrix4d GetTransform(SdfPath const& id) override;
 VtValue Get(SdfPath const& id, TfToken const& key) override;
 HdPrimvarDescriptorVector GetPrimvarDescriptors(SdfPath const& id,…) override;

 // Scene graph population
 void Populate();

 …
};

These methods can be called from multithreading code.

What is a Primvar?

Geometric primitive data that is not topology

position, color, uv …

Primvars are simply all of the geometric primitive data that is not topology,

For example: position, color, uv, specular, etc.

Primvar Interpolation

Organized by topological dimension

per-primitive, per-face, per-vertex …

Constant Uniform Vertex +
Varying

Face-varying

Primvar data is organized by its topological dimension,

That is: per-prrimitive, per-face, per-vertex, etc.

RenderMan introduced a specific set of names to describe these aspects and we have adopted them throughout our tools.

Constant - per-mesh or per-curve set

Uniform - per-face or per-curve

Vertex and Varying - per-vertex with basis or linear reconstruction

Face-Varying - for data that might have a different value per face along a shared edge like the seam resulting from a UV unwrap

A Tiny Scene Delegate

class TinySceneDelegate final: public HdSceneDelegate
{
public:
 // Scene delegate implementation
 HdMeshTopology GetMeshTopology(SdfPath const& id) override;
 GfMatrix4d GetTransform(SdfPath const& id) override;
 VtValue Get(SdfPath const& id, TfToken const& key) override;
 HdPrimvarDescriptorVector GetPrimvarDescriptors(SdfPath const& id,…) override;

 // Scene graph population
 void Populate();

 …
};

A Tiny Render Delegate

class TinyRenderDelegate final: public HdRenderDelegate
{
public:
 // Create/Destroy supported types of Hydra primitives (Rprim, Sprim, Bprim)
 HdRprim *CreateRprim(TfToken const& typeId,
 SdfPath const& rprimId, SdfPath const& instancerId) override
 {
 return new TinyRenderDelegate_Mesh(typeId, rprimId, instancerId);
 }

 void DestroyRprim(HdRprim *rPrim) override
 {
 delete rPrim;
 }

 …
};

A Tiny Render Delegate

class TinyRenderDelegate final: public HdRenderDelegate
{
public:
 // Create/Destroy supported types of Hydra primitives (Rprim, Sprim, Bprim)
 HdRprim *CreateRprim(TfToken const& typeId,
 SdfPath const& rprimId, SdfPath const& instancerId) override
 {
 return new TinyRenderDelegate_Mesh(typeId, rprimId, instancerId);
 }

 void DestroyRprim(HdRprim *rPrim) override
 {
 delete rPrim;
 }

 …
};

A Tiny Render Delegate

class TinyRenderDelegate final: public HdRenderDelegate
{
public:
 // Create/Destroy supported types of Hydra primitives (Rprim, Sprim, Bprim)
 HdRprim *CreateRprim(TfToken const& typeId,
 SdfPath const& rprimId, SdfPath const& instancerId) override
 {
 return new TinyRenderDelegate_Mesh(typeId, rprimId, instancerId);
 }

 void DestroyRprim(HdRprim *rPrim) override
 {
 delete rPrim;
 }

 …
};

A Tiny Render Delegate
class TinyRenderDelegate_Mesh final: public HdMesh
{
public:
 void Sync(HdSceneDelegate *delegate, HdDirtyBits *dirtyBits …) override
 {
 SdfPath const& id = GetId();

 if (HdChangeTracker::IsTransformDirty(*dirtyBits, id)) {
 delegate->GetTransform(id);
 cout << "Pulling new transform -> " << id << endl;
 }

 *dirtyBits &= ~HdChangeTracker::AllSceneDirtyBits;
 }

 HdDirtyBits GetInitialDirtyBitsMask() const override
 {
 return HdChangeTracker::AllDirty;
 }

 …
};

Sync happens multithreaded for this prim, so these are the calls to the scene delegate that happen multithreaded.

class TinyRenderDelegate_Mesh final: public HdMesh
{
public:
 void Sync(HdSceneDelegate *delegate, HdDirtyBits *dirtyBits …) override
 {
 SdfPath const& id = GetId();

 if (HdChangeTracker::IsTransformDirty(*dirtyBits, id)) {
 delegate->GetTransform(id);
 cout << "Pulling new transform -> " << id << endl;
 }

 *dirtyBits &= ~HdChangeTracker::AllSceneDirtyBits;
 }

 HdDirtyBits GetInitialDirtyBitsMask() const override
 {
 return HdChangeTracker::AllDirty;
 }

 …
};

A Tiny Render Delegate

Pull data from
scene graph

only when it is
needed.

A Tiny Task

class ColorCorrectionTask final : public HdTask
{
public:
 void Execute(HdTaskContext* ctx) override
 {
 std::cout << “(2) Color correcting image" << std::endl;
 }

 …
};

As we said before, in order to render, you need tasks!

So, we will create a simple task, in this case it is the Color correction task which just prints to console, but it could be more advance.

Task can be generic and work cross renderer, like most of the ones we use in TaskController, but they can even do special behaviors if you are ok to have those tasks
only work with one renderer.

A Tiny Task

class ColorCorrectionTask final : public HdTask
{
public:
 void Execute(HdTaskContext* ctx) override
 {
 std::cout << “(2) Color correcting image" << std::endl;
 }

 …
};

A Tiny Task

class ColorCorrectionTask final : public HdTask
{
public:
 void Execute(HdTaskContext* ctx) override
 {
 std::cout << “(2) Color correcting image" << std::endl;
 }

 …
};

A Tiny Sample
int main()
{
 // Hydra initialization
 HdEngine engine;
 TinyRenderDelegate renderDelegate;
 HdRenderIndex *renderIndex = HdRenderIndex::New(&renderDelegate);
 TinySceneDelegate sceneDelegate(renderIndex, SdfPath::AbsoluteRootPath());

 // Create your task graph
 HdRprimCollection collection(…);
 HdRenderPassSharedPtr renderPass(renderDelegate.CreateRenderPass(renderIndex, collection));
 HdRenderPassStateSharedPtr renderPassState(renderDelegate.CreateRenderPassState());
 HdTaskSharedPtr taskRender(new RenderTask(renderPass, renderPassState));
 HdTaskSharedPtr taskColorCorrection(new ColorCorrectionTask());
 HdTaskSharedPtrVector tasks = { taskRender, taskColorCorrection };

 // Populate scene graph and generate image
 sceneDelegate->Populate();
 engine.Execute(renderIndex, &tasks);

 // Change time causes invalidations, and generate image
 sceneDelegate->SetTime(1);
 engine.Execute(renderIndex, &tasks);

 return EXIT_SUCCESS;
}

> tinySample

 Hydra engine execute
 Sync multithreaded
 Pulling new transform -> /Cube1
 Pulling new transform -> /Cube2

 Executing tasks
 (1) Generating image
 (2) Color correcting image

 Hydra engine execute
 Sync multithreaded
 Pulling new transform -> /Cube1

 Executing tasks
 (1) Generating image
 (2) Color correcting image

Integration Strategies

Customization & Integration

• Adding your Scene Delegate

• Adding your Render Delegate

• Extending the USD Scene Delegate

• Integrating Hydra into your Application

Extending the 
USD Scene Delegate

UsdImaging

https://github.com/PixarAnimationStudios/USD/blob/master/pxr/usdImaging/lib/usdImaging/delegate.h

Even though we mentioned we wouldn’t go too much into detail on how our USD scene delegate works in detail, we do need to discuss a bit of the high level in order to
understand when we need to extend it.

Why extending UsdImaging?

Imagine a situation in which your studio requires a very specific prim type that is not currently covered by UsdImaging.

For instance, a very special type curves you have just invented that does not exist in UsdImaging, but that it can be transformed into a Hydra Prim to carry it to the
renderer.

Internally, we have use this mechanism for TetMeshes for instance, they are translated to regular Hydra meshes.

def Sphere “sphere”
{
…
}

GetRenderIndex().InsertRprim(
 HdPrimTypeTokens->mesh,
 this,
 id); 

Prim Adapters

def WindGrass “customWindGrass”
{
…
}

GetRenderIndex().InsertRprim(
 HdPrimTypeTokens->mesh,
 this,
 id_1); 

GetRenderIndex().InsertSprim(
 HdPrimTypeTokens->extComputation,
 this,
 id_2); 

Prim Adapters

You are adding additional transformations from USD Scene Description to Hydra prims.

Prim Adapters is a plugin point to extend
UsdImaging.

https://github.com/PixarAnimationStudios/USD/blob/master/pxr/usdImaging/lib/usdImaging/primAdapter.h

Prim adapters allow for associating a type to code that can populate data for Hydra to interpret.

UsdImaging Population

One simple way to do this would be to just walk the hierarchy in Populate() and then have a big statement that Inserts the Rprims/Sprims into Hydra.

This idea is quite limiting and instead we went a different route in which we delegate the Hydra prim population to prim adapters, which provide a lot of flexibility.

Prim Adapter
class UsdImagingWindGrass : public UsdImagingPrimAdapter
{
public:
 void TrackVariability(UsdPrim const& prim,
 SdfPath const& cachePath,
 HdDirtyBits* timeVaryingBits,
 UsdImagingInstancerContext const* instancerContext = nullptr) const override;

 void UpdateForTime(UsdPrim const& prim,
 SdfPath const& cachePath,
 UsdTimeCode time,
 HdDirtyBits requestedBits,
 UsdImagingInstancerContext const* instancerContext = nullptr) const override;

 HdDirtyBits ProcessPropertyChange(UsdPrim const& prim,
 SdfPath const& cachePath,
 TfToken const& propertyName) override;

 void MarkDirty(UsdPrim const& prim,
 SdfPath const& cachePath,
 HdDirtyBits dirty,
 UsdImagingIndexProxy* index) override;
…

We have prim adapters for pretty much
everything.

camera

basis curves

mesh

points

cone

coordinate systems

cube
cylinder

cylinder light

disk light

distant light

dome light

volume
field

point instancer

material

nurbs patch

nurbs curve

sphere

sphere light

Matt will be talking about more use cases in production for imaging prim adapters during the next section.

Integrating Hydra  
into your Application

Scene
Delegate RenderIndex Render

Delegate

ChangeTracker

Engine

Application

Tasks

UsdImagingGLEngine

HdxTaskController

Integrating Hydra

HdEngine

Hydra can be embedded to your application in multiple ways :

• For some applications you might find it useful to directly instance HdEngine and be able to configure your scene delegates and your render delegate, this is a great

option if you don't want to carry any OpenGL dependencies.

• A different option is to use HdxTaskController which provides a render graph that you can give to HdEngine and it will do things like rendering, colorization, picking...

• Yet another option (more higher level) is to use UsdImagingGLEngine which uses both HdxTaskController and HdEngine, and it facilitates loading a usd stage.

Integrating Hydra

• UsdImagingEngine 
Uses HdEngine and HdxTaskController, and it also uses a Usd delegate to provide
easy rendering of usd stages

• HdxTaskController 
Provides a task graph with rendering, picking and more, it can be used with
HdEngine

• HdEngine 
Low level Hydra integration

Usdview uses UsdImagingGLEngine

Katana uses taskController 
Maya uses its own delegates 
Presto its own delegates

Integrating Hydra

Less  
flexibility

More  
flexibility

Easier
integration

Harder
integration

UsdImagingGLEngine

HdxTaskController

HdEngine

Let’s go back to the previous diagram.

In terms of control, the higher level you go the less low level control you will have.

Usdview

Usdview

Scene Graph

Primitives

UsdImagingGL

Hydra Core Storm 
Render Delegate

USD  
Scene Delegate

Presto

This can also apply to other software like Maya.

Presto 
Legacy Rendering System

Presto

Scene Graph

Subdivs  
Polygonal 

Guides  
...

Presto

Legacy System

Scene Graph

Subdivs  
Polygonal 

Guides  
...

Presto 
Basic Hydra Integration

Presto

Legacy System

Scene Graph

Subdivs  
Polygonal 

Guides  
...

You don’t have to integrate Hydra all over your application, and we didn’t either, you can start small, let’s say integrating UsdImagingGL.

Presto

Legacy System

Scene Graph

Subdivs  
Polygonal 

Guides  
...

USD

Presto

Legacy System

Scene Graph

Subdivs  
Polygonal 

Guides  
...

USD

UsdImagingGL

Hydra Core Storm 
Render Delegate

USD  
Scene Delegate

Presto 
Full Hydra Integration

Presto

Legacy System

Scene Graph

Guides
...

Subdivs  
Polygonal 

Simple Lights
Materials

Draw Targets
Shadows

I should say that we didn’t want to do Guides because they are OpenGL callbacks and it was a lot to tackle.

Presto

Legacy System

Scene Graph

Guides
...

Subdivs  
Polygonal 

Simple Lights
Materials

Draw Targets
Shadows

Hydra

Hydra Core Storm 
Render Delegate

USD  
Scene Delegate

Presto

Legacy System

Scene Graph

Guides
...

Subdivs  
Polygonal 

Simple Lights
Materials

Draw Targets
Shadows

Hydra

Hydra Core Storm 
Render Delegate

Presto  
Scene Delegate

Presto

Legacy System

Scene Graph

Guides
...

Subdivs  
Polygonal 

Simple Lights
Materials

Draw Targets
Shadows

Execution
Engine

Hydra

Hydra Core Storm 
Render Delegate

Presto  
Scene Delegate

Presto

Legacy System

Scene Graph

Guides
...

Subdivs  
Polygonal 

Simple Lights
Materials

Draw Targets
Shadows

Execution
Engine

USD

Hydra

Hydra Core Storm 
Render Delegate

Presto  
Scene Delegate

Presto

Legacy System

Scene Graph

Guides
...

Subdivs  
Polygonal 

Simple Lights
Materials

Draw Targets
Shadows

Execution
Engine

Hydra

Hydra Core Storm 
Render Delegate

Presto  
Scene Delegate

USD

Presto

Legacy System

Scene Graph

Guides
...

Subdivs  
Polygonal 

Simple Lights
Materials

Draw Targets
Shadows

Execution
Engine

USD

Hydra

Hydra Core
Storm 

Render Delegate
Presto  

Scene Delegate

USD  
Scene Delegate

Presto

Legacy System

Scene Graph

Guides
...

Subdivs  
Polygonal 

Simple Lights
Materials

Draw Targets
Shadows

Execution
Engine

USD

USD

Hydra

Hydra Core
Storm 

Render Delegate
Presto  

Scene Delegate

USD  
Scene Delegate

USD  
Scene Delegate

Presto 
Hybrid Rendering

Legacy Start Frame

Legacy Shadow Pass

Legacy Render Target Pass

Legacy Render Pass

Legacy End Frame

Tasks
Setup Lights

Shadow Pass

Render Target Pass

Render Pass

Multiple Renderers

Summary

To summarize what we have seen today…

An open source framework to transport live  
scene graph data to renderers

Hydra is an open source framework to transport live scene graph data to renderers.

Fields
Textures

Aov

Mesh

Points

Basis Curves

Volume

Native Instancing

Point Instancers

Sphere Lights

Rect Lights

Distant Lights

Material Networks

Computations Skel Deformations

Coordinate Systems

Cameras Dome Lights

Render thread

Render stats

Render settings

Progressive

Primvar sampling

Tasks

Picking

HighlightingColor correction

Selection

Colorize

Hydra can transport Rprims like volumes or meshes, Bprims like textures, Sprims like lights.

It provides building blocks to support multithreaded rendering, progressive renderers, sample primvars, our render settings.

And it comes with a set of tasks ready to use that can provide colorization, highlighting and more.

Scene
Graph Renderer

A Hydra-Enabled Application

When you have integrated Hydra in your application, you can use USD in your application, and you gain access to our rasterizer Storm and our path tracer RenderMan.

But not just that, you also have access to multiple plugins and examples that are being build by the open source community.

Once again, if you have any questions about what we covered today or didn’t cover, please feel free to reach out to us. We are actively working on all these pieces and
any feedback is welcome!

Alright! We are now gonna take another 5 minutes break, we will be here if you have any questions.

Thank you!

