

 	
 Introduction to USD

 	
 Getting Help with USD

 	
 USD Frequently Asked Questions

 	
 USD Glossary

 	
 Maximizing USD Performance

 	
 USD Developer API Reference

 	
 USD Toolset

 	
 USD 3rd Party Plugins

 	
 Alembic USD Plugin

 	
 Houdini USD Plugins

 	
 A Tour of USD Houdini Primitives

 	
 Writing USD from Houdini

 	
 Katana USD Plugins

 	
 Maya USD Plugins

 	
 RenderMan USD Imaging Plugin

 	
 USD Tutorials

 	
 Hello World - Creating Your First USD Stage

 	
 Hello World Redux - Using Generic Prims

 	
 Inspecting and Authoring Properties

 	
 Referencing Layers

 	
 Converting Between Layer Formats

 	
 Traversing a Stage

 	
 Authoring Variants

 	
 Variants Example in Katana

 	
 Transformations, Time-sampled Animation, and Layer Offsets

 	
 Simple Shading in USD

 	
 End to End Example

 	
 Generating New Schema Classes

 	
 Houdini USD Example Workflow

 	
 Creating a Usdview Plugin

 	
 Contributing to USD

 	
 USD Contributors

 	
 Press

 	
 Open Source Announcement

 	
 Open Source Release

 	
 USD White Papers

 	
 Adapting UsdLux to Accommodate Geometry Lights

 	
 Adapting UsdLux to the Needs of Renderers

 	
 Asset Resolution (Ar) 2.0

 	
 Coordinate Systems in USD Proposal

 	
 Generalizing Connectable Nodes Beyond UsdShade

 	
 Render Settings in USD Proposal

 	
 Rigid Body Physics in USD Proposal

 	
 UsdAudio Proposal

 	
 UsdPreviewSurface Proposal

 	
 UsdShade Material Assignment

 	
 Usdz File Format Specification

 Usdz File Format Specification

 	
 User Docs

	
 API Docs

	
 Downloads and Videos

	
 Help

Github

 Usdz File Format Specification

 Copyright (C) 2018, Pixar Animation Studios, version 1.2

	Purpose
	Usdz Specification
	Rationale
	Packaging Considerations for Streaming and Encapsulation
	MIME Type
	Toolset

Purpose

USD provides multiple features that could make it a compelling choice for 3D content delivery, including:

	Robust schemas for interchange of geometry, shading, and skeletal deformation
	High performance data retrieval and rendering, including powerful instancing features
	The ability to package user-selectable content variations, natively
	A sound architecture that is flexible enough to adapt to future needs

However, part of USD's appeal is its ability to create a 3D scene by "composing" many modular data sources (files) together into successively larger and larger aggregations. While very useful within content creation pipelines, this aspect can be a very large hindrance to using USD to deliver assets in the form that they have been built up. In particular, even though USD does provide several means of "flattening" multiple USD files into a single file, there is, by design, no mechanism for representing images/textures as the "scene description" encodable in USD files. Content delivery is simplified and useful on a broader range of platforms when the content is:

	A single object, from marshaling and transmission perspectives
	Potentially streamable
	Usable without unpacking to a filesystem

We believe we can address these concerns by leveraging USD's FileFormat plugin mechanism to design an archive format that contains and proxies for files of other formats embedded within the archive. This document provides the specification for such a format, for which we will assign the .usdz extension; we refer to the format as "the usdz format", as we similarly refer to the usda and usdc file formats; only when forming the start of a sentence or word in a class name do we capitalize it, such as UsdUsdzFileFormat. We refer to usdz files as packages, and the design rests on a new Ar-level abstraction of a package, of which the UsdUsdzFileFormat is the first implementation, but we retain the architecture required to easily add others in the future, if needed.

Usdz Specification

	Aspect	Structure/Behavior	Rationale
	Foundation	A usdz package is a zip archive.	Rationale
	Zip Constraints	A usdz package is a zero compression, unencrypted zip archive. We reserve the ability to relax this constraint in the future, but consider it unlikely.	Rationale
	Layout	
The only absolute layout requirement a usdz package makes of files within the package is that the data for each file begin at a multiple of 64 bytes from the beginning of the package.

However, if you wish the package to be presentable on a UsdStage "as is", or be able to target the package with a simple reference to the package itself, then the first file in the package must be a native usd file, but otherwise, there are no constraints on the number or layout of other files in the package. We refer to this "first USD file" as the Default Layer, in analogy to the defaultPrim metadata used to allow layer referencers to elide a prim target.

Clients wishing to deliver "streamable content" may wish to consider other layout constraints, as well.

	Rationale
	File Types	
A usdz package can contain only file types whose data can be consumed by the USD runtime via mmap, pointer to memory, or threadsafe access to a FILE* (i.e. solely pread-like access). This excludes, for example, Alembic files, currently. Allowable file types are currently:

	
usda, usdc, usd files (Apple's current usdz implementation allows only a single usdc file, but this restriction will be lifted in future OS updates)
	
png and jpeg files (any of the multiple common extensions for jpeg) for images/textures
	
M4A, MP3, WAV files for embedded audio (given in order of preferred format)

	Rationale
	USD Constraints	
To make usdz packages maximally useful within production pipelines, we impose no further constraints on the allowable content within a package. Of particular note:

	it is possible to reference individual files within a package from outside the package

	packages can themselves contain other packages.

When the key intention of a package is to provide perfectly reproducible results in arbitrary consuming environments, it may be useful to enforce restrictions on the kinds of asset paths encoded in USD files within the package. We explore this further in For Reproducible Results, Encapsulate Using Anchored Asset Paths, and imagine that adherence to such protocols may be something useful to encode in package metadata (see next item).

	Rationale
	Editability	
A usdz file is read-only - editing its contents requires first unpacking the package and editing its constituent parts using appropriate tools. Since usdz is a "core" USD file format, one can use usdcat and usdedit on packages:

	If the package contains a Default Layer, usdcat will print its contents, otherwise, it prints nothing.
	
If the package contains a Default Layer file, usdedit will populate an editor with its contents, but with the --noeffect option in force, preventing the saving of any changes; otherwise, it will show an empty layer.

	
	Accessibility	Although not required, if creators of usdz packages use SdfLayer::SetDocumentation() to add a documentation string to the Default Layer, then consumers of usdz packages can retrieve the textual description using SdfLayer::GetDocumentation() on the Default Layer.
	

Rationale

Foundation - Zip Files

Zip files are ubiquitous and supported by most modern computing environments. Although we are only using a subset of zip's featureset, by choosing zip over a format of our own devising, we make it easy for usdz files to be useful as a "simple" transport protocol whereby the receiver just unzips the contents and has "normal" USD scene description to work with and inspect.

Zip Constraints - No Compression or Encryption

A key consideration for efficient direct consumption of usdz files is that, given a package already held in heap storage (possibly arriving over a network) or as a single file on disk, we be able to use the most direct API's available in USD for accessing the data contained within the package, without extracting files to disk, or allocating more heap storage. If we allowed either compression or encryption in usdz packages, we would need to violate one or both of the preconditions that allow, for example, the usda and usdc formats to access their data via direct memory access (typically via mmap).

We do not believe the lack of zip compression will be a serious concern for data size. Most image formats themselves allow internal compression schemes, and the usdc format is quite compact, particularly as you collect more data into a single file; although we do not yet have an end-user tool for doing so, USD now contains all of the core features we require to aggregate an arbitrary composition's worth of usd files into a single file, without removing any composition features from the scene.

Layout - Alignment and the Default Layer

Alignment

To achieve access to data within a package without unpacking it, our preferred implementation will rely on mmapping into the package, with offsets. Some file formats and processing algorithms of the data within those packages benefit from aligning array data on boundaries greater than one byte. Of particular importance, the "zero copy" feature of usdc (crate) files that will appear in the 0.8.5 release of USD returns to clients pointers to array data directly into the mmapping of the crate file; to avoid unspecified behavior, the starting address of each such array must be aligned to the size of the underlying POD datatype. The crate format itself internally aligns (and falls back to copying data into heap memory when the alignment is off). The performance advantages of zero-copy in both time and heap memory are substantial, and we wish to ensure that consumers of usdz files will observe the same benefits; therefore, we require a minimum alignment of 8 bytes. The largest such alignment constraint for performance boosting of which we are currently aware is the 64 byte alignment for Intel's AVX512 instruction set. While there might in future be an AVX1024 or greater, given that 64 bytes is also the intel processor page size, we hopefully balance package-bloat with potential optimization and settle on 64 bytes.

Therefore we require that each file begin on a 64 byte alignment within the package. Fortunately, the zip format gives us a variable sized field in each file's header section that we can appropriate to this purpose. Unfortunately, off-the-shelf zip tools do not allow specification of padding or alignment for zipped content, so USD will need to provide its own wrapping of the core zip API's, and its own packaging tool that uses them.

Default Layer and defaultLayer.usd

The Default Layer, if it exists, is always the first file in the package. The Default Layer is the layer that will be returned by a call to SdfLayer::FindOrOpen("package.usdz"), and therefore also the root layer when the package is placed on a UsdStage, or when referenced or sublayered as a whole. Given that, due to alignment considerations, we will need to provide packaging utilities more sophisiticated than "zip", we can always allow you to specify what the Default Layer should be, as a command option. However, to make the packaging process as simple as possible – particularly focusing on the workflow for "editing" a package, in which we must unpack a package, edit files, and then remake the package, losing the positional information originally present in the package – we provide some extra affordances to reduce the scenarios in which one must manually specify the Default Layer:

	If the complete set of files handed to the packager contains only a single USD file "at package root scope", then that will be selected as the Default Layer, and added first to the package. This does not prevent one from including arbitrary other USD files within subdirectories within the package. This allows for reliable and easy unpacking/repackaging, and multiple packages can be unpacked into the same directory as long as their contents are differently named.
	If there is more than one USD file at the package's root scope, and one of them is named defaultLayer.usd, then we select that layer as the Default Layer. This also allows for easy unpacking/repackaging, with a bit of up-front work during original package creation, and also makes it less likely that one could safely unpack multiple packages directly into the same directory, but provides a clear and familiar (i.e. to defaultPrim metadata) mechanism for encoding arbitrarily complex organizations within a package.
	Otherwise, the packaging API will fail to run unless the Default Layer is manually specified.

File Types - DMA

We wish to avoid the need to ever unpack a usdz package to consume its contents in the USD runtime, both because some target platforms may be unable to do so, and because managing caches of extracted package contents between processes is fraught.

USD Constraints - Asset Resolution

There is no mandated restriction on types of asset paths encodable in a usdz package, so for example if a studio uses URI's whose resolution depends on a specific ArResolver implementation, it is allowed to embed such paths in a package, with the understanding that they will not be resolvable at other sites, and therefore likely not as useful for content-delivery to clients. Packages can additionally contain both anchored relative paths, like @./model.geom.usd@ , and search relative paths, like @materials/metals.usd@.

Anchored relative paths will always resolve to other files within the package, or be unresolvable. Because usdz packages are themselves containers, we think it a useful builtin behavior that, for any search relative path contained in the package, the usdz FileFormat itself will attempt to pre-resolve any path to other files within the package using a specialzed ArPackageResolver, because a generic ArResolver cannot "see inside" a package, and therefore cannot resolve to files inside a package. The behavior of the UsdUsdzResolver can be described as follows:

	First attempt to anchor the path to the layer-within-the-package in which the path is authored, to attempt to locate another file within the package
	Should that fail to locate a file, attempt to anchor the path to the package's Default Layer, which is the same behavior one would get from unpacking the package and putting its unpacked Default Layer on a stage, when using the ArDefaultResolver.
	Should that fail to locate a file, perform normal asset resolution on the path with whatever ArResolver is installed.

We can construct references to any file inside a package using a new reserved syntax in identifiers, like @foo.usdz[path/to/file/within/package.usd]@ . ArResolver understands this syntax and is responsible for decomposing identifiers into a prefix that gets resolved normally (foo.usdz in the example) and a suffix which is a potentially nested location of a file contained within the package. (Nesting can occur when one usdz file embeds another, e.g. @set.usdz[areas/shire.usdz[architecture/BilboHouse/Table.usd]]@). Any asset path that resolves successfully can be turned into an ArAsset, which serves as an abstraction so that clients of USD files, images, or any other file type can access the data without knowing whether it resides in its own file, inside a package file like a usdz, or is a heap-allocated buffer of data that was generated or transferred across the net.

Packaging Considerations for Streaming and Encapsulation

File Ordering Within Package for Streaming

There are many interpretations and possible implementations/encodings of "streaming usd context", and we feel it is, at this time, beyond the scope of USD's concerns to dictate how streaming must be achieved. We limit our concern in this matter to the already-stated "Default Layer" semantics, which dictates the first file in the package must be a usd file for the package to be imageable directly on a stage. This means that a consumer app can, using the zip (or wrapper, provided by the usdz file format) API, determine the size of the first file and therefore know when it has been fully delivered, and display the contents of that file in its "default state", while waiting for subsequent files (described in the layer's metadata) to be delivered. This enables many kinds of streaming; to suggest just a few:

	LOD, in which the first file contains low-complexity geometry, with a variantSet that can bring in higher quality LOD's in other files, when switched
	LOD, in which the first file binds no or simple materials, with a variantSet that binds texture-driven Materials when the textures are available
	Animation, in which the first file contains a static pose, with a payload arc to another file containing animation.

It is important to note that the USD runtime has no knowledge or consideration of streaming: it will be the responsibility of the client application to manage the scene it is streaming, and ensuring not to ask the USD runtime to consume any part of the package that has not yet been delivered. In particular, it must use the provided API's to construct an SdfLayer directly using offsets into an incompletely downloaded usdz package, rather than trying to point a UsdStage directly at the incomplete usdz package, as the UsdzFileFormat will assume and require that the package it is consuming is complete and intact.

For Reproducible Results, Encapsulate Using Anchored Asset Paths

To insure uniform consumption of assets shipped to clients via usdz, we feel it is prudent to curtail the power of USD's asset resolution system, so that the asset references within a package resolve uniformly on any consuming system, regardless of how that system's USD ArResolver is configured. Rather than make restrictions within the FileFormat itself, we propose that such "encapsulation" of packages be achieved by restricting the content to only use anchored paths (paths that begin with "./" or "../", both of which are interpreted in the virtual filesystem described by the package's internal layout.

This does not prevent one from overriding the textures or other non-USD assets contained in an "encapsulated" package, by specifically overriding the attributes that name the assets, in a layer stronger than the package in a composition.

MIME Type

Usdz is registered with IANA, with a media type name of model and a subtype name of vnd.usd+zip. For full details, see Usdz's IANA registration page.

Toolset

The UsdzFileFormat includes helper API's for introspecting and extracting data from a package, as well as tailored wrappings of the zip API functions for creating and adding files to an package that satisfy the usdz layout constraints. The toolset also includes:

	
usdzip - a command-line program that accepts either an explicit list of files to package, or when provided the --asset or --arkitAsset options, will "localize" the named USD file, discovering all (recursively) referenced files, updating the references to point to their new, package-relative locations, and create a new usdz package. The reason for a "–arkitAsset" option separate from "–asset" is that usdz files intended for transmission to iOS devices support a more limited subset of USD functionality. usdzip can also list the contents of a package file, and optionally validate the contents as they are being packaged. Usdz files can be unpacked using any zip/unzip program.

	
usdcat, usdedit - as described above, these utilities will operate on the defaultLayer of a usdz package.
	
usdchecker - will validate the contents of a package (or any other USD format) ; for usdz files specifically, the usdchecker option --arkit will make usdchecker enforce stricter "web-compliant" rules that disallow certain advanced USD features that web-browsers do not yet support.

 Document generated by Confluence on Sep 06, 2021 16:41

 All content on this site © Disney/Pixar, All Rights Reserved. "Universal Scene Description," "PIXAR," "PRESTO" and the "PRESTO" logo are trademarks of Pixar Animation Studios.
All other trademarks and logos are the property of their respective owners.

 TM & © 1986 - 2017 PIXAR. ALL RIGHTS RESERVED. Terms of Use.

