Papers by Fabrice Rousselle


Order by: Date  | Author  | Title  | Index of all authors  | Index of Pixar Technical Memos


Kernel-Predicting Convolutional Networks for Denoising Monte Carlo Renderings

Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novak, Alex Harvill, Pradeep Sen, Tony DeRose, Fabrice Rousselle
July 2017

Regression-based algorithms have shown to be good at denoising Monte Carlo (MC) renderings by leveraging its inexpensive by-products (e.g., feature buffers). However, when using higher-order models to handle complex cases, these techniques often overfit to noise in the input. For this reason, supervised learning methods have been proposed that ... more

Paper (PDF)

SIGGRAPH 2017